163
Views
6
CrossRef citations to date
0
Altmetric
Articles

New Design of Binary to Ternary Converter

&

Reference

  • S.-S. Ahmadpour, and M. Mosleh, “New designs of fault-tolerant adders in quantum-dot cellular automata,” Nano. Commun. Netw., Vol. 19, pp. 10–25, 2019.
  • M. Zahmatkesh, S. Tabrizchi, S. Mohammadyan, K. Navi, and N. Bagherzadeh, “Robust coplanar full adder based on novel inverter in quantum cellular automata,” Int. J. Theor. Phys., Vol. 58, no. 2, pp. 639–655, 2019.
  • M. M. Arjmand, M. Soryani, and K. Navi, “Coplanar wire crossing in quantum cellular automata using a ternary cell,” IET Circuits Devices Syst., Vol. 7, no. 5, pp. 263–272, 2013.
  • S. Ebrahimi, R. Sabbaghi-Nadooshan, and M. B. Tavakoli, “Designing optical gates using metal–organic–metal transmission lines with multivalue and reconfigurable characteristics,” J. Nanophotonics, Vol. 13, no. 3, pp. 036014, 2019.
  • S. Ebrahimi, R. Sabbaghi-Nadooshan, and M. B. Tavakoli, “Design of a ternary logical circuit using the Au-DNA-Ag Memristor,” J. Electron. Mater., Vol. 48, no. 10, pp. 6261–6268, 2019.
  • C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, Vol. 4, no. 1, pp. 49, 1993.
  • S. M. Mohaghegh, R. Sabbaghi-Nadooshan, and M. Mohammadi, “Designing ternary quantum-dot cellular automata logic circuits based upon an alternative model,” Comput. Electr. Eng., Vol. 71, pp. 43–59, 2018.
  • J. Timler, and C. S. Lent, “Power gain and dissipation in quantum-dot cellular automata,” J. Appl. Phys., Vol. 91, no. 2, pp. 823–831, 2002.
  • S. Erniyazov, and J.-C. Jeon, “Carry save adder and carry look ahead adder using inverter chain based coplanar QCA full adder for low energy dissipation,” Microelectron. Eng., Vol. 211, pp. 37–43, 2019.
  • S. Babaie, A. Sadoghifar, and A. N. Bahar, “Design of an efficient multilayer arithmetic logic unit in quantum-dot cellular automata (QCA),” IEEE Trans. Circuits Syst. Express Briefs, Vol. 66, no. 6, pp. 963–967, 2019.
  • M. Kianpour, and R. Sabbaghi-Nadooshan, “A novel quantum-Dot cellular automata X-bit × 32-bit SRAM,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 24, no. 3, pp. 827–836, 2016.
  • M. Kianpour, and R. Sabbaghi-Nadooshan, “Novel 8-bit reversible full adder/subtractor using a QCA reversible gate,” J. Comput. Electron., Vol. 16, no. 2, pp. 459–472, 2017.
  • M. M. Arjmand, M. Soryani, K. Navi, and M. A. Tehrani. “A novel ternary-to-binary converter in quantum-dot cellular automata,” in 2012 IEEE Computer Society Annual Symposium on VLSI, 2012: IEEE, pp. 147-152.
  • T. N. Sasamal, A. K. Singh, and A. Mohan, “An efficient design of quantum-dot cellular automata based 5-input majority gate with power analysis,” Microprocess. Microsyst., Vol. 59, pp. 103–117, 2018.
  • F. Deng, G. Xie, X. Cheng, Z. Zhang, and Y. Zhang, “CFE: a convenient, flexible, and efficient clocking scheme for quantum-dot cellular automata,” IET Circuits Devices Syst., Vol. 14, no. 1, pp. 88–92, 2020.
  • F. Salimzadeh, and S. R. Heikalabad, “Design of a novel reversible structure for full adder/subtractor in quantum-dot cellular automata,” Phys. B, Vol. 556, pp. 163–169, 2019.
  • S. M. Mohaghegh, R. Sabbaghi-Nadooshan, and M. Mohammadi, “Innovative model for ternary QCA gates,” IET Circuits Devices Syst., Vol. 12, no. 2, pp. 189–195, 2018.
  • S. M. Mohaghegh, R. Sabbaghi-Nadooshan, and M. Mohammadi, “Design of a ternary QCA multiplier and multiplexer: a model-based approach,” Analog. Integr. Circuits. Signal. Process., Vol. 101, no. 1, pp. 23–29, 2019.
  • I. L. Bajec, N. Zimic, and M. Mraz, “The ternary quantum-dot cell and ternary logic,” Nanotechnology, Vol. 17, no. 8, pp. 1937, 2006.
  • P. Pecar, M. Mraz, N. Zimic, M. Janez, and I. L. Bajec, “Solving the ternary quantum-dot cellular automata logic gate problem by means of adiabatic switching,” Jpn. J. Appl. Phys., Vol. 47, no. 6S, pp. 5000, 2008.
  • M. Janez, I. L. Bajec, P. Pecar, A. Jazbec, N. Zimic, and M. Mraz, “Automatic design of optimal logic circuits based on ternary quantum-dot cellular automata,” WSEAS Trans. Cir. and Sys, Vol. 7, pp. 919–928, 2008.
  • S. Santra, and U. Roy, “Design and implementation of QCA based novel adder circuits,” Int J of Comp, Elect Automation, Control Inform Eng, Vol. 8, no. 1, 2014.
  • M. G. Waje, P. K. Dakhole, “Design and simulation new XOR gate and code converters using QCA with reduced number of wire crossings,” ICCPCT, pp. 1245–1250, 2014.
  • A. Orlov, I. Amlani, G. Bernstein, C. Lent, and G. Snider, “Realization of a functional cell for quantum-dot cellular automata,” Science, Vol. 277, no. 5328, pp. 928–930, 1997.
  • M. Macucci, et al., “A QCA cell in silicon-on-insulator technology: theory and experiment,” Superlattices Microstruct., Vol. 34, no. 3-6, pp. 205–211, 2003.
  • M. Hofmann, et al., “Mix-and-match lithography and cryogenic etching for NIL template fabrication,” Microelectron. Eng., Vol. 224, pp. 111234, 2020.
  • W. Chen, and H. Ahmed, “Fabrication of 5–7 nm wide etched lines in silicon using 100 keV electron-beam lithography and polymethylmethacrylate resist,” Appl. Phys. Lett., Vol. 62, no. 13, pp. 1499–1501, 1993.
  • B. Päivänranta, A. Langner, E. Kirk, C. David, and Y. Ekinci, “Sub-10 nm patterning using EUV interference lithography,” Nanotechnology, Vol. 22, no. 37, pp. 375302, 2011.
  • P. Gao, et al., “Plasmonic lithography for the fabrication of surface nanostructures with a feature size down to 9 nm,” Nanoscale., Vol. 12, no. 4, pp. 2415–2421, 2020.
  • R. Zhang, T. J. Emge, C. Zheng, and J. Li, “The first single-sized (∼ 1 nm) and periodically ordered array of In 2 Te 3 semiconductor quantum dots self-assembled in solution,” J. Mater. Chem. A, Vol. 1, no. 2, pp. 199–202, 2013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.