164
Views
4
CrossRef citations to date
0
Altmetric
Review Article

A Partially Filled Shorted Coaxial Line Technique for Material Relative Permittivity Determination

ORCID Icon, , &

References

  • U. Kaatze, “Techniques for measuring the microwave dielectric properties of materials,” Metrologia, Vol. 47, pp. S91–S113, Mar. 2010.
  • J. Hinojosa, “Dielectric permittivity measuring technique of film-shaped materials at microwave frequencies from open-end coplanar waveguide,” Prog. Electromagn. Res. C., Vol. 5, pp. 57–70, May 2008.
  • M. G. Lountala, F. Moukanda Mbango, F. Ndagijimana, and D. Lilonga-Boyenga, “Movable short-circuit technique to extract the material relative permittivities from a coaxial transmission-line cell,” J. Meas. Eng., Vol. 7, no. 4, pp. 183–194, Dec. 2019.
  • A. A. Rammah, Z. Zakaria, E. Ruslan, and A. A. M. Isa, “Comparative study of materials characterization using microwave resonators,” Australian J. Basic and Applied Sciences, Vol. 9, no. 1, pp. 76–85, Jan. 2015.
  • F. Moukanda Mbango, F. Ndagijimana, J. Chilo, and P. Saguet, “Complex permittivity using two transmission line s-parameter measurements,” African Physical Review, Vol. 2, no. 30, pp. 62–64, Apr. 2009.
  • A. Al Takach, F. Moukanda Mbango, F. Ndagijimana, M. Al-Husseini, and J. Jomaa, “Two-line technique for dielectric material characterization with application in 3D-printing filament electrical parameters extraction,” Prog. Electromagn Res. M., Vol. 85, pp. 95–109, Oct. 2019.
  • D. M. Pozar. Microwave Engineering. New York: John Wiley & Sons, 2005.
  • Z. Liu, L. Zhu, G. Xiao, and Q. S. Wu, “An effective approach to deemed the complex propagation constant of half-mode SIW and its application,” IEEE on Trans. Components, Packaging and Manufacturing Tech., Vol. 6, no. 1, pp. 109–116, Jan. 2016.
  • U. C. Hasar, G. Buldu, M. Bute, J. J. Barroso, T. Karacali, and M. Ertugrul, “Determination of constitutive parameters of homogeneous metamaterial slabs by a novel calibration-independent method,” AIP. Adv., Vol. 4, no. 10, pp. 107–116, Oct. 2014.
  • E. J. Rothwell, J. L. Frasch, S. M. Ellison, P. Chahal, and R. O. Ouedraogo, “Analysis of the Nicolson-Ross-Weir method for characterizing the electromagnetic properties of engineered materials,” Prog. Electromagn. Res., Vol. 157, pp. 31–47, Oct. 2016.
  • T. T. Grove, M. F. Maters, and R. E. Miers, “Determining dielectric constants using a parallel plate capacitor,” Am. J. Phys., Vol. 73, no. 1, pp. 52–56, Jan. 2005.
  • J. R. Bray, and L. Roy, “Microwave characterization of a microstrip line using a two-port ring resonator with an improved lumped-element model,” IEEE Trans. on Microw. Theory and Tech., Vol. 51, no. 5, pp. 1540–1547, May 2003.
  • A. Kaczkowski, and A. Milewski, “High-accuracy wide range measurement method for determination of complex permittivity in reentrant cavity: part B-experimental analysis of measurement errors,” IEEE Trans. on Microw. Theory and Tech., Vol. 28, no. 3, pp. 228–231, Mar. 1980.
  • S. Kim, and J. Baker-Jarvis, “An approximate approach to determining the permittivity and permeability near resonances in transmission/reflection measurements,” Prog. Electromagn. Res. B., Vol. 58, pp. 95–109, Jan. 2014.
  • B. Huang, and Q. Jia, “A method to extract dielectric parameters from transmission lines with conductor surface roughness at microwave frequencies,” Prog. Electromagn. Res. M., Vol. 48, pp. 1–8, Jan. 2016.
  • A. Lewandowski, A. Szypłowska, M. Kafarski, A. Wilczek, P. Barmuta, and W. Skierucha, “0.05-3 GHz VNA characterization of soil dielectric properties based on the multiline TRL calibration,” Meas. Sci. Technol., Vol. 28, no. 2, pp. 1–7, Jan. 2017.
  • F. Moukanda Mbango, F. Ndagijimana, J. Chilo, and P. Saguet, “Coaxial probe fixture used for complex permittivity measurement of thin layers,” African Physical Review, Vol. 2, no. 31, pp. 65–67, Aug. 2008.
  • P. Meany, T. Rydholm, and H. Brisby, “A transmission-based dielectric property probe for clinical applications,” Sensor, Vol. 18, no. 10, pp. 3484–3499, Oct. 2018.
  • C. D. Garret, J. Bourqui, and C. E. Fear, “Antenna calibration method for dielectric property estimation of biological tissues at microwave frequencies,” Prog. Electromagn. Res., Vol. 158, pp. 73–87, Apr. 2017.
  • I. Rolfes, and B. Schiek, “Calibration methods for microwave free space measurements,” Advances in Radio Sci., Vol. 2, pp. 19–25, Jan. 2004.
  • N. Gagnon, J. Shaker, L. Roy, A. Petosa, and P. Berini, “Low-cost free-space measurement of dielectric constant at Ka band,” IEE-Proc. – Microw. Antennas Propag., Vol. 151, no. 3, pp. 271–276, Jun. 2004.
  • K. Naishadham, “Extraction of RF permeability of Ferrite materials using direct measurement of inductors on Ferrite cores,” in Presented at the IEEE Int. symposium on Ant. and propag. (APSURSI), spokane, WA, Jul. 3–8, pp. 1863–1866, 2011.
  • O. Gbotemi, S. Myllymaki, J. Juuti, M. Teirikangas, H. Jantunen, M. Macek, and M. Jakubowska, “Microwave characterization of printed inductors with ferrimagnetic BaFe12O19 composite layers,” IEEE Trans. On Magnetics, Vol. 53, no. 2, pp. 1–6, Feb. 2017.
  • A. Vicente, G. Dip, and C. Junqueira, “The step by step development of NRW method,” in Presented at the IEEE Int. Microwave and Optoelectronics Conf. (IMOC), Natal, Brazil, Oct. 29 –Nov. 1, pp. 738–742, 2011.
  • A. La Gioia, E. Porter, I. Merunka, A. Shahzad, S. Salahuddin, M. Jones, and M. O'Halloran, “Open-Ended Co-axial probe technique for dielectric measurement of biological tissues: challenges and common practices,” Diagnostics, Vol. 8, no. 2, pp. 1–38, Jul. 2018.
  • J. C. A. Santos, M. H. C. Dias, A. P. Aguiar, I. Borges, and L. E. P. Borge, “Using the coaxial probe method for permittivity measurements of liquids at high temperatures,” J. Microw. Optoelectron. Electromagn. Appl., Vol. 8, no. 1, pp. 78–91, Jun. 2009.
  • Y. Shi, T. Hao, L. Li, and C. Liang, “An improved NRW Method to extract electromagnetic parameters of metamaterials,” Microw. And Optical Techn. Letters, Vol. 58, no. 3, pp. 547–652, Mar. 2016.
  • T. Ozturk, M. Hudlicka, and I. Uluer, “Development of measurement and Extraction Technique of complex permittivity Using Transmission parameter S21 for Millimeter wave frequencies,” J. Infrared, Millimeter, and Terahertz Waves, Vol. 38, no. 12, pp. 1510–1520, Jul. 2017.
  • F. Costa, M. Borgese, M. Degorgi, and A. Monorchio, “Electromagnetic characterisation of materials by using transmission/reflection (T/R) devices,” Diagnostics, Vol. 6, no. 4, pp. 1–27, Nov. 2017.
  • H. Ebara, T. Inoue, and O. Hashimoto, “Measurement method of complex permittivity and permeability for a powdered material using a waveguide in microwave band,” Sce and Tech. of Advanced Materials, Vol. 7, no. 1, pp. 77–83, Feb. 2016.
  • H. I. Azeez, W. Chen, C. Wu, C. Cheng, and H. Yang, “A simple resonance method to investigate dielectric constant of low loss substrates for smart clothing,” Sens. Mater., Vol. 30, no. 3(2), pp. 595–608, Mar. 2018.
  • M. Y. Sandhu, A. Ali, I. C. Hunter, and N. S. Roberts, “A new method for the precise multiband microwave dielectric measurement using stepped impedance stub,” Meas. Sci. and Technol., Vol. 27, pp. 117–121, Sep. 2016.
  • N. Jebbor, and S. Bri, “A microwave method for complex permittivity extraction of thin materials,” J. Microw. Optoelectron. Electromagn. Appl., Vol. 11, no. 2, pp. 285–295, Dec. 2012.
  • M. M. Scott, J. A. Bean, and K. W. Allen, “Permittivity and permeability for high index specimens using partially filled shorted rectangular waveguides,” Microw. and Optical Tech. Lett., Vol. 58, no. 6, pp. 1298–1301, Jun. 2016.
  • C. Vollinger, F. Caspers, and E. Jensen, “Permittivity and permeability measurement methods for particle accelerator related materials,” in Proc. 5th international particle accelerator conference, Dresden, pp. 3893–3895, 2014.
  • J. R. Baker-Jarvis, M. D. Janezic, J. H. Grosvenor, and R. G. Geyer, “Transmission/reflection and short-circuit line permittivity measurement methods,” NIST Tech. Note, Vol. 1341, pp. 68–76, 1990.
  • K. Y. You. "Microwave Systems and Applications," Intech Open, 2017.
  • J. A. Reynoso-Hernandez, “Unified method for determining the complex propagation constant of reflecting and nonreflecting transmission lines,” IEEE Microw. and Wirel. Components Lett., Vol. 13, no. 8, pp. 351–353, Sep. 2003.
  • T. Ozturk, A. Elhawil, M. Dugencil, I. Unal, and I. Uluer, “Extracting the dielectric constant of materials using ABC-based ANNs and NRW algorithms,” J. of Electromagnetic Waves and Appl., Vol. 30, no. 13, pp. 1785–1799, Aug. 2016.
  • U. Kaatze, R. Pottel, and A. Wallusch, “A new automated waveguide system for the precise measurement of complex permittivity of low-to-high-loss liquids at microwave frequencies,” Meas. Sci. Technol., Vol. 6, pp. 1201–1207, May 1995.
  • F. Moukanda Mbango, J. E. D. M'Pemba, F. Ndagijimana, and B. M'Passi-Mabiala, “Use of two open-terminated coaxial transmission-lines technique to extract the material relative intrinsic parameters,” IEEE. Access., Vol. 8, pp. 138682–138689, Aug. 2020.
  • S. Dubrovskiy, and K. Gareev, “Measurement method for detecting magnetic and dielectric properties of composite materials at microwave frequencies,” in Presented at the IEEE NW Russia Young Researchers in Electrical and Electronic Engineering Conf. (EIConRusNW), St-Petersburg, Russia, Feb. 2–4, pp. 24–26, 2015.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.