428
Views
4
CrossRef citations to date
0
Altmetric
Review Article

A Comprehensive Review of High-frequency Transmission Inverters for Magnetic Resonance Inductive Wireless Charging Applications in Electric Vehicles

&

REFERENCES

  • Z. Zhang, S. Member, H. Pang, S. Member, and I. Paper, “Wireless power transfer – an overview,” IEEE Trans. Ind. Electron, Vol. 66, no. 2, pp. 1044–58, 2019.
  • C. Jiang, K. T. Chau, C. Liu, and C. H. T. Lee, “An overview of resonant circuits for wireless power transfer,” Energies, 1–20, 2017.
  • T. Tomoharu Nagashima. “Analysis and design of class-e switching circuits for inductively coupled wireless power transfer systems,” Graduate School of Advanced Integration Science, Chiba University, January 2015.
  • K. T. Chau. Energy Systems for Electric and Hybrid Vehicles. London: The Institution of Engineering and Technology, 2016.
  • M. Fu, C. Ma, and X. Zhu, “A cascaded boost–buck converter for high-efficiency wireless power transfer systems,” IEEE Transactions on Industrial Informatics, Vol. 10, no. 3, pp. 1972–80, 2014.
  • A. Okuno, L. Gamage, and M. Nakaoka, “Performance evaluations of high-frequency inverter-linked DC/DC converter with noncontact pickup coil,” IEEE Transactions on Industrial Electronics, Vol. 48, no. 2, pp. 475–7, 2001.
  • S. Ahmed, and A. Massoud, “Traction System with On-Board Inductive Power Transfer,” in 7th IET International Conference on Power Electronics, Machines and Drives (PEMD 2014), pp. 0092. 2014.
  • C. T. Rim, and C. Mi. Wireless Power Transfer for Electric Vehicles and Mobile Devices. Wiley: IEEE Press. ISBN 9781119329053, 2017.
  • R. Huang, B. Zhang, D. Qiu, and Y. Zhang, “Frequency splitting phenomena of magnetic resonant coupling wireless power transfer,” in IEEE Transactions on Magnetics, Vol. 50, no. 11, pp. 1–4, 2014.
  • D. Seo, and J. Lee, “Frequency-tuning method using the reflection coefficient in a wireless power transfer system,” in IEEE Microwave and Wireless Components Letters, Vol. 27, no. 11, pp. 959–61, 2017.
  • A. Trigui, S. Hached, F. Mounaim, A. C. Ammari, and M. Sawan, “Inductive power transfer system with self-calibrated primary resonant frequency,” IEEE Transactions on Power Electronics, Vol. 30, no. 11, pp. 6078–87, 2015.
  • Y. Lyu, et al., “A method of using nonidentical resonant coils for frequency splitting elimination in wireless power transfer,” IEEE Transactions on Power Electronics, Vol. 30, no. 11, pp. 6097–107, 2015.
  • J. Kim, G. Wei, M. Kim, H. Ryo, P. Ri, and C. Zhu, “A splitting frequencies-based wireless power and information simultaneous transfer method,” IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 65, no. 12, pp. 4434–45, 2018.
  • S. Samanta, A. K. Rathore, and D. J. Thrimawithana, “Analysis and design of current-fed half-bridge (C) (L.C.) – (L.C.) resonant topology for inductive wireless power transfer application,” IEEE Transactions on Industry Applications, Vol. 53, no. 4, pp. 3917–26, 2017.
  • S. Samanta, A. K. Rathore, and D. J. Thrimawithana, “Bidirectional current-fed half-bridge (C) (L.C.)-(L.C.) configuration for inductive wireless power transfer system,” IEEE Trans. Ind. Appl., Vol. 53, no. 4, pp. 4053–62, 2017.
  • A. T. Al-awami, E. Sortomme, G. Muhammad, A. Akhtar, and S. Faddel, “A voltage-based controller for an electric-vehicle charger,” IEEE Trans. Veh. Technol, Vol. 65, no. 6, pp. 4185–96, 2016.
  • S. D. C. Ac, I. Without, and C. Wang, “Nonlinear-controlled strategy for soft-switched switches,” IEEE Trans. Power Electron., Vol. 18, no. 3, pp. 764–74, 2003.
  • T. Zaid, S. Saat, Y. Yusmarnita, A. A. M. Isa, and N. Jamal, “Investigations on capacitor compensation topologies effects of different inductive coupling links configurations,” Int. J. Power Electron. Drive Syst., Vol. 6, no. 2, pp. 274, 2017.
  • N. Jamal, S. Saat, and A. Z. Shukor, “A study on performances of different compensation topologies for loosely coupled inductive power transfer system,” Proc.IEEE Int. Conf. Control Syst. Comput. Eng. ICCSCE, Vol. 2, no. 1, pp. 173–8, 2013.
  • S. Samanta, S. Member, A. K. Rathore, and S. Member, “Small-signal modelling and closed-loop control of a parallel – series/series resonant converter for wireless inductive power transfer,” IEEE Trans. Ind. Electron., Vol. 66, no. 1, pp. 172–82, 2019.
  • Y. H. Sohn, B. H. Choi, E. S. Lee, G. C. Lim, G. Cho, and C. T. Rim, “General unified analyses of two-capacitor inductive power transfer systems: equivalence of current-source SS and S.P. compensations,” IEEE Transactions on Power Electronics, Vol. 30, no. 11, pp. 6030–45, 2015.
  • V. Vu, V. Phan, M. Dahidah, and V. Pickert, “Multiple output inductive charger for electric vehicles,” IEEE Transactions on Power Electronics, Vol. 34, no. 8, pp. 7350–68, 2019.
  • Rashid Muhammad H., ‘Resonant and soft-switching converters’ in (Ed.): Power Electronics Handbook, X. Butterworth-Heinemann, Amsterdam, Elsevier, 4th edn., pp. 339–83, 2018
  • H. Cai, and L. Shi, “A novel multiple-frequency inverter topology for inductively coupled power transfer system,” in IECON 2017 Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 657–62.
  • M. Moghaddami, “A. Sundararajan, and A. I. Sarwat, ‘A power-frequency controller with resonance frequency tracking capability for inductive power transfer systems’,” IEEE Trans. Ind. Appl., Vol. 54, no. 2, pp. 1773–83, 2018.
  • X. Ju, L. Dong, X. Huang, and X. Liao, “Switching technique for inductive power transfer at high- $Q$ regimes,” IEEE Transactions on Industrial Electronics, Vol. 62, no. 4, pp. 2164–73, 2015.
  • A. A. S. Mohamed, D. Allen, T. Youssef, and O. Mohammed, “Optimal design of high frequency H-bridge inverter for wireless power transfer systems in E.V. applications,” in IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC), Florence,”, 2016.
  • B. Esteban, M. Sid-ahmed, N. C. Kar, and S. Member, “A comparative study of power supply architectures in wireless E.V. charging systems,” IEEE Trans. Power Electron, Vol. 30, no. 11, pp. 6408–22, 2015.
  • D. Yang, Z. Cheng, H. Li, S. Won, B. Zhou, and J. Tian, “PCB layout optimization of high-frequency inverter for magnetic coupled resonance wireless power transfer system,” IEEE Access, Vol. 7, pp. 171395–404, 2019.
  • A. F. Abdul Aziz, M. F. Romlie, and Z. Baharudin, “Review of inductively coupled power transfer for electric vehicle charging,” IET Power Electron, Vol. 12, no. 14, pp. 3611–3623, 2019.
  • H. Tebianian, Y. Salami, B. Jeyasurya, and J. E. Quaicoe, “A 13.56-MHz full-bridge class-D ZVS inverter with dynamic dead-time control for wireless power transfer systems,” in IEEE Transactions on Industrial Electronics, Vol. 67, no. 2, pp. 1487–97, Feb. 2020.
  • T. Nagashima, X. Wei, E. Bou, E. Alarcón, M. K. Kazimierczuk, and H. Sekiya, “Analysis and design of loosely inductive coupled wireless power transfer system based on Class-E2 DC-DC converter for efficiency enhancement,” IEEE Transactions on Circuits and Systems, Vol. 62, no. 11, pp. 2781–91, 2016.
  • S. Lu, X. Deng, W. Shu, X. Wei, and S. Li, “A new ZVS tuning method for double-sided LCC compensated wireless power transfer system,” Energies, Vol. 11, no. 2, pp. 1–14, 2018.
  • Y. Liu, and Y. X. Zhang, “Design and analysis of magnetic coupling resonant wireless power transfer system with Class-E inverter,” in 2017 2nd Int. Conf. Power Renew. Energy, ICPRE 2017, 2018, pp. 11–14.
  • S. Aldhaher, P. C. Luk, S. Member, A. Bati, J. F. Whidborne, and S. Member, “Wireless power transfer using class e inverter with saturable DC-feed inductor,” IEEE Trans. Ind. Appl, Vol. 50, no. 4, pp. 2710–8, 2014.
  • M. K. Uddin, S. Mekhilef, and G. Ramasamy, “A compact wireless IPT system using a modified voltage-fed multi-resonant class E.F. 2 Inverter,” Journal of Power Electronics, Vol. 18, no. 1, pp. 277–88, 2018.
  • S. Jeong, J. Kwon, and B. Kwon, “High-efficiency bridgeless single-power-conversion battery charger for light electric vehicles,” IEEE Trans. Ind. Electron., Vol. 66, no. 1, pp. 215–22, 2019.
  • M. Liu, M. Fu, and C. Ma, “Parameter Design for a 6.78-MHz wireless power transfer system based on analytical derivation of Class E current-driven rectifier,” IEEE Transactions on Power Electronics, Vol. 31, no. 6, pp. 4280–91, 2016.
  • A. Kamineni, G. A. Covic, and J. T. Boys, “Self-tuning power supply for inductive charging,” IEEE Transactions on Power Electronics, Vol. 32, no. 5, pp. 3467–79, May 2017.
  • Z. Liao, Y. Sun, Z. Ye, C. Tang, and P. Wang, “Resonant analysis of magnetic coupling wireless power transfer systems,” in IEEE Transactions on Power Electronics, Vol. 34, no. 6, pp. 5513–23, 2019.
  • T. Nagashima, X. Wei, E. Bou, E. Alarcón, M. K. Kazimierczuk, and H. Sekiya, “Steady-state analysis of isolated Class-E2 converter outside nominal operation,” in IEEE Transactions on Industrial Electronics, Vol. 64, no. 4, pp. 3227–38, 2017.
  • K. Aditya, and S. S. Williamson, “Design guidelines to avoid bifurcation in a series – series compensated inductive power transfer system,” IEEE Trans. Ind. Electron, Vol. 66, no. 5, pp. 3973–82, 2019.
  • Z. Fang, T. Cai, S. Duan, and C. Chen, “Optimal design methodology for LLC resonant converter in battery charging applications based on time – weighted average efficiency,” IEEE Transaction on Power Electronics, Vol. 8993, no. c, pp. 1–15, 2014.
  • Y. Zhang, T. Kan, Z. Yan, and C. C, “Mi, ‘frequency and voltage tuning of series–series compensated wireless power transfer system to sustain rated power under various conditions’,” IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 7, no. 2, pp. 1311–7, 2019.
  • D. Ahn, “Transmitter coil resonant frequency selection for wireless power transfer,” IEEE Trans. Power Electron., Vol. 33, no. 6, pp. 5029–41, June 2018. doi:10.1109/TPEL.2017.2730924.
  • F. Farajizadeh, and D. M. Vilathgamuwa, “Expandable N-legged converter to drive closely spaced multi transmitter wireless power transfer systems for dynamic charging,” IEEE Transactions on Power Electronics, Vol. 35, no. 4, pp. 3794–806, 2020.
  • S. Y. Jeong, J. H. Park, G. P. Hong, and C. T. Rim, “Auto tuning control system by variation of self-inductance for dynamic wireless E.V. charging with small air gap,” IEEE Trans. Power Electron., Vol. 34, no. 6, pp. 5165–74, 2019.
  • A. Babaki, S. Vaez-Zadeh, and A. Zakerian, “Performance optimization of dynamic wireless E.V. charger under varying driving conditions without resonant information,” IEEE Transactions on Vehicular Technology, Vol. 68, no. 11, pp. 10429–38, Nov. 2019.
  • C. Cai, et al., “Design and optimization of load-independent magnetic resonant wireless charging system for electric vehicles,” IEEE Access, Vol. 6, pp. 17264–74, 2018.
  • M. Kim, S. Member, D. Joo, and S. Member, “Design and control of inductive power transfer system for electric vehicles considering wide variation of output voltage,” IEEE Trans. Power Electron., Vol. 34, no. 2, pp. 1197–208, 2019.
  • A. Namadmalan, “Self-oscillating tuning loops for series resonant inductive power transfer systems,” IEEE Trans. Power Electron., Vol. 31, no. 10, pp. 7320–7, 2016.
  • D. Ahn, S. Kim, J. Moon, and I. Cho, “Wireless power transfer with automatic feedback control of load resistance transformation,” IEEE Transactions on Power Electronics, Vol. 31, no. 11, pp. 7876–86, 2016.
  • J. Lee, Y. Lim, H. Ahn, J. Yu, and S. Lim, “Impedance-matched wireless power transfer systems using an arbitrary number of coils with flexible coil positioning,” IEEE Antennas Wirel. Propag. Lett., Vol. 13, pp. 1207–10, 2014. doi:10.1109/LAWP.2014.2331673.
  • A. Zaheer, H. Hao, G. A. Covic, and D. Kacprzak, “Investigation of multiple decoupled coil primary pad topologies in lumped IPT systems for interoperable electric vehicle charging,” IEEE Trans. Power Electron., Vol. 30, no. 4, pp. 1937–55, 2015.
  • K. E. Koh, T. C. Beh, T. Imura, and Y. Hori, “Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling,” IEEE Trans. Ind. Appl., Vol. 50, no. 3, pp. 2061–70, 2014.
  • M. Kiani, and M. Ghovanloo, “The circuit theory behind coupled-mode magnetic resonance-based wireless power transmission,” IEEE Trans. Circuits Syst. I Regul. Pap, Vol. 59, no. 9, pp. 2065–74, 2012.
  • Y. Wang, H. Wang, T. Liang, X. Zhang, D. Xu, and L. Cai, “Analysis and design of an LCC/S compensated resonant converter for inductively coupled power transfer,” IEEE Transportation Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), 0–4, 2017.
  • P. Darvish, S. Mekhilef, S. Member, H. Azil, B. Illias, and S. Member, “A novel S – S – LCLCC compensation for three-coil WPT to improve misalignment and energy efficiency stiffness of wireless charging System,” IEEE Transactions on Power Electronics, Vol. 36, no. 2, pp. 1341–55, 2021.
  • S. Lu, X. Deng, W. Shu, X. Wei, and S. Li, “A new ZVS tuning method for double-sided LCC compensated wireless power transfer system,” Energies, Vol. 11, no. 2, pp. 1–15, 2018.
  • T. Zaid, S. Saat, Y. Yusmarnita, A. A. M. Isa, and N. Jamal, “Investigations on capacitor compensation topologies effects of different inductive coupling links configurations,” Int. J. Power Electron. Drive Syst., Vol. 6, no. 2, pp. 274, 2017.
  • Y. Wang, Y. Yao, X. Liu, D. Xu, and L. Cai, “An LC/S compensation topology and coil design technique for wireless power transfer,” IEEE Trans. Power Electron, Vol. 33, no. 3, pp. 2007–2025, 2018.
  • S. Varikkottil, and J. L. Febin Daya, “Estimation of optimal operating frequency for wireless E.V. charging system under misalignment,” Electron, Vol. 8, no. 3, pp. 1–15, 2019.
  • S. Das Barman, A. W. Reza, N. Kumar, and T. I. Anowar, “Two-side impedance matching for maximum wireless power transmission,” IETE J. Res, Vol. 62, no. 4, pp. 532–9, 2016.
  • A. Bati, P. C. K. Luk, S. Aldhaher, C. H. See, R. A. Abd-Alhameed, and P. S. Excell, “‘Dynamic analysis model of a class E2 converter for low power wireless charging links,’ IET circuits,” Devices Syst, Vol. 13, no. 3, pp. 399–405, 2019.
  • M. Hayati, S. Zarghami, and A. Grebennikov, “Design of a compact 2.4 GHz class-F power amplifier with high power added efficiency,” IETE J. Res, 1–8, 2019. https://doi.org/10.1080/03772063.2019.1644209.
  • B. Klaus, D. Barth, and T. Leibfried, “Pulse-test for wireless power transfer systems. A special feature for resonance frequency determination,” IEEE Wirel. Power Transf. Conf., 1–4, 2017. http://doi.org/10.1109/WPT.2017.7953882.
  • K. Ahmed, M. Aamir, and S. Mekhilef, “A design method for developing a high misalignment tolerant wireless charging system for electric vehicles,” Measurement, Vol. 118, pp. 237–45, 2018.
  • Y. Wang, L. Dong, X. Liao, X. Ju, S. W. Su, and H. Ma, “A pulse energy injection inverter for the switch- mode inductive power transfer system,” IEEE Trans. Circuits Syst, Vol. 65, no. 7, pp. 2330–40, 2018.
  • M. Moghaddami, A. Sundararajan, and A. I. Sarwat, “A power-frequency controller with resonance frequency tracking capability for inductive power transfer systems,” IEEE Trans. Ind. Appl., Vol. 54, no. 2, pp. 1773–83, 2018.
  • H. Cai, L. Shi, and Y. Li, “Harmonic-based phase-shifted control of inductively coupled power transfer,” IEEE Trans. Power Electron., Vol. 29, no. 2, pp. 594–602, 2014.
  • F. Lu, Yiming Zhang, Hua Zhang, Chong Zhu, “A low-voltage and high-current inductive power transfer system with low harmonics for automatic guided vehicles,” IEEE Trans. Vehicul. Technol., vol. 68, no. 4, pp. 3351–60, 2019.
  • H. Li, K. Wang, J. Fang, and Y. Tang, “Pulse density modulated ZVS full-bridge converters for wireless power transfer systems,” IEEE Trans. Power Electron., Vol. 34, no. 1, pp. 369–77, Jan. 2019.
  • S. Huh, and D. Ahn, “Two-transmitter wireless power transfer with optimal activation and current selection of transmitters,” IEEE Transactions on Power Electronics, Vol. 33, no. 6, pp. 4957–67, 2018.
  • M. Ghorbani Eftekhar, Z. Ouyang, M. A. E. Andersen, P. B. Andersen, L. A. de S. Ribeiro, and E. Schaltz, “Efficiency study of vertical distance variations in wireless power transfer for E-mobility,” in IEEE Transactions on Magnetics, Vol. 52, no. 7, pp. 1–4, 2014.
  • S. Aldhaher, P. C. Luk, S. Member, J. F. Whidborne, and S. Member, “Tuning Class E inverters applied in inductive links using saturable reactors,” IEEE Trans. Power Electron., Vol. 29, no. 6, pp. 2969–78, 2014.
  • S. Aldhaher, P. C. Luk, S. Member, A. Bati, J. F. Whidborne, and S. Member, “Wireless power transfer using class e inverter with saturable DC-feed inductor,” IEEE Trans. Ind. Appl., Vol. 50, no. 4, pp. 2710–8, 2014.
  • R. Huang, and B. Zhang, “Frequency, impedance characteristics and H.F. converters of two-coil and four-coil wireless power transfer,” in IEEE Journal of Emerging and Selected Topics in Power Electronics, Vol. 3, no. 1, pp. 177–83, 2015.
  • A. J. Moradewicz, and M. P. Kazmierkowski, “Contactless energy transfer system with FPGA-controlled resonant converter,” in IEEE Transactions on Industrial Electronics, Vol. 57, no. 9, pp. 3181–90, Sept. 2010.
  • J. Choi, D. Tsukiyama, Y. Tsuruda, and J. M. R. Davila, “High-frequency, high-power resonant inverter with eGaN FET for wireless power transfer,” IEEE Transactions on Power Electronics, Vol. 33, no. 3, pp. 1890–6, 2018.
  • F. Lu, et al., “A low-voltage and high-current inductive power transfer system with low harmonics for automatic guided vehicles,” IEEE Transactions on Vehicular Technology, Vol. 68, no. 4, pp. 3351–60, April 2019.
  • R. Bosshard, and J. W. Kolar, “All-SiC 9.5 kW/dm3 on-board power electronics for 50 kW/85 kHz automotive IPT system,” IEEE J. Emerg. Sel. Top. Power Electron., Vol. 5, no. 1, pp. 419–31, March 2017.
  • S. Samanta, and A. K. Rathore, “A new current-fed CLC transmitter and L.C. receiver topology for inductive wireless power transfer application: analysis, design, and experimental results,” IEEE Transactions on Transportation Electrification, Vol. 1, no. 4, pp. 357–68, 2015.
  • K. N. Mude, and K. Aditya, “Comprehensive review and analysis of two-element resonant compensation topologies for wireless inductive power transfer systems,” Chin. J. Electr. Eng., Vol. 5, no. 2, pp. 14–31, 2019.
  • H. Zeng, S. Yang, and F. Z. Peng, “Design consideration and comparison of wireless power transfer via harmonic current for PHEV and E.V. wireless charging,” IEEE Trans. Power Electron., Vol. 32, no. 8, pp. 5943–52, 2017.
  • J. Wu, Y. Li, N. Jin, W. Deng, H. Tang, and V. Snášel, “A GaN-based wireless power and information transmission method using dual-frequency programmed harmonic modulation,” IEEE Access, Vol. 8, pp. 49848–56, 2020.
  • H. A. Atallah, R. Hussein, and A. B. Abdel-Rahman, “‘Compact coupled resonators for small size dual-frequency wireless power transfer (DF-WPT) systems,’ in IET microwaves,” Antennas Propag., Vol. 14, no. 7, pp. 617–28, 10 6 2020.
  • C. Carretero, “Coupling power losses in inductive power transfer systems with litz-wire coils,” IEEE Trans. Ind. Electron., Vol. 64, no. 6, pp. 4474–82, June 2017.
  • D. C. Corrêa, U. C. Resende, and F. S. Bicalho, “Experiments with a compact wireless power transfer system using strongly coupled magnetic resonance and metamaterials,” IEEE Trans. Magn., Vol. 55, no. 8, pp. 1–4, 2019.
  • M. K. Uddin, G. Ramaswamy, S. Mekhilef, K. Ramar, and Y. Lau, “A review on high-frequency resonant inverter technologies for wireless power transfer using magnetic resonance coupling,” IEEE Conference on Energy Conversion (CENCON), Johor Bahru, Malaysia, pp. 412–417, 2014.
  • J. G. Hayes, M. G. Egan, J. M. D. Murphy, S. E. Schulz, and J. T. Hall, “Wide-load-range resonant converter supplying the SAE J-1773 electric vehicle inductive charging interface,” IEEE Trans. Ind. Appl., Vol. 35, no. 4, pp. 884–95, 1999.
  • T. Wang, X. Liu, N. Jin, H. Tang, X. Yang, and M. Ali, “Wireless power transfer for battery powering system,” Electron, Vol. 7, no. 9, pp. 1–21, 2018.
  • P. M. Fan, and M. H. bin Mohd Daut, “Near-unity power factor, voltage step-Up/down conversion pulse-width modulated switching rectification for wireless power transfer receiver,” ” IEEE Trans. Power Electron., Vol. 34, no. 11, pp. 10960–9, Nov. 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.