285
Views
7
CrossRef citations to date
0
Altmetric
Medical Electronics

Glaucoma Detection Using SS-QB-VMD-Based Fine Sub-Band Images from Fundus Images

ORCID Icon, ORCID Icon & ORCID Icon

References

  • R. Bock, J. Meier, L. G. Nyul, J. Hornegger, and G. Michelson, “Glaucoma risk index: automated glaucoma detection from color fundus images,” Med. Image Anal., Vol. 14, no. 3, pp. 471–481, 2010.
  • Types-of-glaucoma. Available: https://www.glaucoma.org/glaucoma/types-of-glaucoma.php, accessed April 2020.
  • Y. C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, and C. Y. Cheng, “Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis,” Ophthalmology, Vol. 121, no. 11, pp. 2081–2090, 2014.
  • S. Resnikoff, D. Pascolini, D. Etya'ale, I. Kocur, R. Pararajasegaram, G. P. Pokharel, and S. P. Mariotti, “Global data on visual impairment in the year 2002,” Bull W. H. Org., Vol. 82, no. 11, pp. 844–51, 2004.
  • U. R. Acharya, et al., “Automated screening system for retinal health using bi-dimensional empirical mode decomposition and integrated index,” Comput. Biol. Med., Vol. 75, no. 1, pp. 54–62, 2016.
  • RIM-One fundus image database medical image analysis group. Available: http://medimrg.webs.ull.es/, 2020.
  • C. Raja, and N. Gangatharan, “Glaucoma detection in fundal retinal images using trispectrum and complex wavelet based features,” Eur. J. Sci. Res., Vol. 97, no. 1, pp. 159–171, 2013.
  • C. Raja, and N. Gangatharan, “Appropriate sub-band selection in wavelet packet decomposition for automated glaucoma diagnoses,” Int. J. Autom. Comput., Vol. 12, no. 4, pp. 393–401, 2015.
  • C. Raja, and N. Gangatharan, “Optimal hyper analytic wavelet transform for glaucoma detection in fundal retinal images,” J. Electr. Eng. Technol., Vol. 10, no. 4, pp. 1899–1909, 2015.
  • G. O. Gajbhiye, and A. N. Kamthane, “Automatic classification of glaucomatous images using wavelet and moment feature,” in Proc. of Annual IEEE India Conference (INDICON,), New Delhi, 2015, pp. 1–5.
  • A. Ghosh, A. Sarkar, A. S. Ashour, T. D. Balas, N. Dey, and V. E. Balas, “Grid color moment features in glaucoma classification,” Int. J. Adv. Comput. Sci. Appl., Vol. 6, no. 9, pp. 99–107, 2015.
  • S. Maheshwari, R. B. Pachori, and U. R. Acharya, “Automated diagnosis of glaucoma using empirical wavelet transform and correntropy features extracted from fundus images,” IEEE J. Biomed. Health Inf., Vol. 21, no. 3, pp. 903–813, May 2017.
  • A. Upadhyay, and R. B. Pachori, “Instantaneous voiced/non-voiced detection in speech signals based on variational mode decomposition,” J. Franklin Inst., Vol. 352, pp. 2679–2707, 2015.
  • A. Upadhyay, and R. B. Pachori, “Speech enhancement based on mEMD-VMD method,” Electron. Lett., Vol. 53, pp. 502–504, 2017.
  • A. Upadhyay, M. Sharma, and R. B. Pachori, “Determination of instantaneous fundamental frequency of speech signals using variational mode decomposition,” Comput. Electr. Eng., Vol. 62, pp. 630–647, 2017.
  • A. Upadhyay, M. Sharma, R. B. Pachori, and R. Sharma, “A nonparametric approach for multicomponent AM–FM signal analysis,” Circuits Syst. Signal Process., Vol. 39, pp. 6316–6357, 2020.
  • S. Maheshwari, R. B. Pachori, V. Kanhangad, S. V. Bhandary, and U. R. Acharya, “Iterative variational mode decomposition based automated detection of glaucoma using fundus images,” Comput. Biol. Med., Vol. 88, pp. 142–149, 2017.
  • B. S. Kirar, and D. K. Agrawal, “Glaucoma diagnosis using discrete wavelet transform and histogram features from fundus image,” Int. J. Eng. Sci. Technol., Vol. 7, no. 4, pp. 2546–2551, 2018.
  • B. S. Kirar, and D. K. Agrawal, “Computer aided diagnosis of glaucoma using discrete and empirical wavelet transform from fundus images,” IET Image Process., Vol. 13, no. 1, pp. 73–82, 2019.
  • B. S. Kirar, and D. K. Agrawal, “Current research on glaucoma detection using compact variational mode decomposition from fundus images,” Int. J. Intell. Eng. Syst., Vol. 12, no. 3, pp. 1–10, 2019.
  • D. K. Agrawal, B. S. Kirar, and R. B. Pachori, “Automated glaucoma detection using quasi-bivariate variational mode decomposition from fundus images,” IET Image. Process, Vol. 13, no. 13, pp. 2401–2408, 2019.
  • S. Maheshwari, V. Kanhangad, R. B. Pachori, S. V. Bhandary, and U. R. Acharya, “Automated glaucoma diagnosis using bit-plane slicing and local binary pattern techniques,” Comput. Biol. Med., Vol. 105, pp. 72–80, 2019.
  • S. Maheshwari, V. Kanhangad, and R. B. Pachori. CNN-based approach for glaucoma diagnosis using transfer learning and lbp-based data augmentation, arXiv preprint arXiv:2002.08013.
  • R. Sharma, P. Sircar, R. B. Pachori, S. V. Bhandary, and U. R. Acharya, “Automated glaucoma detection using center slice of higher order statistics,” J. Mech. Med. Biol, Vol. 19, no. 1, pp. 1940011, 2019.
  • P. Kumar, and R. B. Pachori, “Automatic diagnosis of glaucoma using two-dimensional Fourier-Bessel series expansion based empirical wavelet transform,” Biomed. Signal Process. Contr., Vol. 64, pp. 102237, 2021.
  • A. D. Pinto, S. Morales, V. Naranjo, T. Kohler, J. Mossi, and A. Navea, “CNNs for automatic glaucoma assessment using fundus images: an extensive validation,” Biomed. Eng. Online, Vol. 18, no. 29, pp. 1–19, 2019.
  • S. Serte, and A. Serener, “A generalized deep learning model for glaucoma detection,” in 2019 3rd International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), Ankara, Turkey, 2019, pp. 1–5, doi: 10.1109/ISMSIT.2019.8932753.
  • ACRIMA database of fundus image. Available: https://figshare.com/s/c2d31f850af14c5b5232, 2021.
  • K. Zuiderveld, “Contrast limited adaptive histograph equalization,” in Graphic gems IV, Andrew Glassner, Ed. San Diego: Academic Press Professional, 1994, pp. 474–485.
  • W. Wang, C. Pan, and J. Wang, “Quasi-bivariate variational mode decomposition as a tool of scale analysis in wall-bounded turbulence,” Exp. Fluids, Vol. 59, pp. 1–18, 2018.
  • R. C. Gonzalez, and R. E. Woods. Digital image processing. Noida: Pearson, 2014.
  • J. A. K. Suykens, and J. Vandewalle, “Least squares support vector machine classifiers,” Neural Process. Lett., Vol. 9, no. 3, pp. 293–300, 1999.
  • A. H. Khandoker, D. T. H. Lai, R. K. Begg, and M. Palaniswami, “Wavelet based feature extraction for support vector machines for screening balance impairments in the elderly,” IEEE Trans. Neural Syst. Rehabil. Eng., Vol. 15, no. 4, pp. 587–597, 2007.
  • B. S. Kirar, D. K. Agrawal, and S. Kirar, “Glaucoma detection using image channels and discrete wavelet transform,” IETE. J. Res., doi:10.1080/03772063.2020.1795934.
  • A. McCallum, and K. Nigam, “A comparison of event models for naive Bayes text classification,” in Proc. of the AAAI-98 Workshop on Learning for Text Categorization, 1998, pp. 41–48.
  • L. Breiman, “Random forests,” Mach. Learn., Vol. 45, no. 1, pp. 5–32, 2011.
  • N. Landwehr, M. Hall, and E. Frank, “Logistic model tree,” Mach. Learn., Vol. 59, no. 1-2, pp. 161–205, 2005.
  • S. L. Cessie, and J. V. Houwelingen, “Ridge estimators in logistic regression,” J. R. Stat. Soc. Series C, Vol. 41, no. 1, pp. 191–201, 1992.
  • G. R. S. Reddy, and R. Rao, “Automated identification system for seizure EEG signals using tunable-Q wavelet transform,” Eng. Sci. Technol. Int. J., Vol. 20, pp. 1486–1493, 2017.
  • P. Y. Kim, K. M. Iftekharuddin, P. G. Davey, M. T. Anita Garas, G. H. Anita, and E. A. Essock, “Novel fractal feature-based multiclass glaucoma detection and progression prediction,” IEEE J. Biomed. Health Inf., Vol. 17, no. 2, pp. 269–276, 2013.
  • N. A. Mohamed, M. A. Zulkifley, and A. Hussain, “On analyzing various density functions of local binary patterns for optic disc segmentation,” in Proc. of IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), Langkawi, Malaysia, 2015, pp. 37–41.
  • M. U. Akram, A. Tariq, S. Khalid, M. Y. Jved, S. Abbas, and U. U. Yasin, “Glaucoma detection using novel optic disc localization, hybrid feature set and classification techniques,” Australas. Phys. Eng. Sci. Med., Vol. 38, pp. 643–655, 2015.
  • Z. U. Rehman, M. S. Zia, G. R. Bojja, M. Yaqub, F. Jinchao, and K. Arshid, “Texture based localization of a brain tumor from MR-images by using a machine learning approach,” Med. Hypotheses, Vol. 141, 109705, 2020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.