245
Views
7
CrossRef citations to date
0
Altmetric
Power Electronics

Frequency Regulation in Conventional, Deregulated and Microgrid Systems: A Review on Designs, Strategies, Techniques and Related Aspects

&

References

  • H. Beidas, and K. Gacem, “Automatic generation control in a deregulated environment: An overview,” Proc. Am. Power Conf., Vol. 62, no. 4, pp. 294–298, 2000.
  • A. Keyhani, and A. Chatterjee, “Automatic generation control structure for smart power grids,” IEEE Trans. Smart Grid, Vol. 3, no. 3, pp. 1310–1316, 2012. doi:10.1109/TSG.2012.2194794.
  • A. Rahman, L. C. Saikia, and N. Sinha, “Load frequency control of a hydrothermal system under deregulated environment using biogeography-based optimised three-degree-of-freedom integral-derivative controller,” IET Gener. Transm. Distrib., Vol. 9, no. 15, pp. 2284–2293, 2015. doi:10.1049/iet-gtd.2015.0317.
  • O. I. Elgerd, and C. Fosha, “Optimum megawatt-frequency control of multi-area electric energy systems,” IEEE Trans. Power Appar. Syst., Vol. PAS-89, no. 4, pp. 556–563, 1970.
  • C. Fosha, and O. I. Elgerd, “The megawatt-frequency control problem: A new approach via optimal control theory,” IEEE Trans. Power Appar. Syst., Vol. PAS-89, no. 4, pp. 563–577, 1970.
  • O. I. Elger. Electric energy systems theory—an introduction, TMH ed. New Delhi: McGraw-Hill, 1983, pp. 209–233.
  • L. Jin, C. K. Zhang, Y. He, L. Jiang, and M. Wu, “Delay-dependent stability analysis of multi-area load frequency control with enhanced accuracy and computation efficiency,” IEEE Trans. Power Syst., Vol. 34, no. 5, pp. 3687–3696, 2019. doi:10.1109/TPWRS.2019.2902373.
  • M. Ma, C. Zhang, X. Liu, and H. Chen, “Distributed model predictive load frequency control of the multi-area power system after deregulation,” IEEE Trans. Ind. Electron., Vol. 64, no. 6, pp. 5129–5139, 2017. doi:10.1109/TIE.2016.2613923.
  • C. K. Zhang, L. Jiang, Q. H. Wu, Y. He, and M. Wu, “Further results on delay-dependent stability of multi-area load frequency control,” IEEE Trans. Power Syst., Vol. 28, no. 4, pp. 4465–4474, 2013. doi:10.1109/TPWRS.2013.2265104.
  • F. Daneshfar, “Intelligent load-frequency control in a deregulated environment: continuous-valued input, extended classifier system approach,” IET Gener. Transm. Distrib., Vol. 7, no. 6, pp. 551–559, 2013. doi:10.1049/iet-gtd.2012.04787.
  • A. D. Rosaline, and U. Somarajan, “Structured H-infinity controller for an uncertain deregulated power system,” IEEE Trans. Ind. Appl., Vol. 55, no. 1, pp. 892–906, 2019. doi:10.1109/TIA.2018.2866560.
  • J. Kumar, K. H. Ng, and G. Sheble, “AGC simulator for price-based operation, Part 1: A model,” IEEE Power Eng. Rev., Vol. 17, no. 5, p. 51, 1997.
  • J. Kumar, K. H. Ng, and G. Sheble, “AGC simulator for price-based operation, Part 2: Case study results,” IEEE Power Eng. Rev., Vol. 17, no. 5, p. 52, 1997.
  • A. Prakash, K. Kumar, and S. K. Parida, “PDF(1+FOD) controller for load frequency control with SSSC and AC-DC tie-line in deregulated environment,” IET Gener. Transm. Distrib., Vol. 14, no. 14, pp. 2751–2762, 2020. doi:10.1049/iet-gtd.2019.1418.
  • H. Gozde, M. Cengiz Taplamacioglu, and I. Kocaarslan, “Comparative performance analysis of artificial bee colony algorithm in automatic generation control for interconnected reheat thermal power system,” Int. J. Electr. Power Energy Syst., Vol. 42, no. 1, pp. 167–178, 2012. doi:10.1016/j.ijepes.2012.03.039.
  • C. K. Shiva, and V. Mukherjee, “Automatic generation control of multi-unit multi-area deregulated power system using a novel quasi-oppositional harmony search algorithm,” IET Gener. Transm. Distrib., Vol. 9, no. 15, pp. 2398–2408, 2015. doi:10.1049/iet-gtd.2015.0376.
  • G. Chen, Z. Li, Z. Zhang, and S. Li, “An improved ACO algorithm optimized fuzzy PID controller for load frequency control in multi-area interconnected power systems,” IEEE. Access., Vol. 8, pp. 6429–6447, 2020. doi:10.1109/ACCESS.2019.2960380.
  • B. Mohanty, and P. K. Hota, “Comparative performance analysis of fruit fly optimisation algorithm for multi-area multisource automatic generation control under deregulated environment,” IET Gener. Transm. Distrib., Vol. 9, no. 14, pp. 1845–1855, 2015. doi:10.1049/iet-gtd.2015.0284.
  • W. Tasmin, and L. C. Saikia, “Performance comparison of several energy storage devices in deregulated AGC of a multi-area system incorporating geothermal power plant,” IET Renew. Power Gener., Vol. 12, no. 7, pp. 761–772, 2018. doi:10.1049/iet-rpg.2017.0582.
  • A. Dutta, and S. Debbarma, “Frequency regulation in deregulated market using vehicle-to-grid services in residential distribution network,” IEEE Syst. J., Vol. 12, no. 3, pp. 2812–2820, 2018. doi:10.1109/JSYST.2017.2743779.
  • C. Jain, H. K. Verma, and L. D. Arya, “A novel statistically tracked particle swarm optimization method for automatic generation control,” J. Mod. Power Syst. Clean Energy, Vol. 2, no. 4, pp. 396–410, 2014. doi:10.1007/s40565-014-0083-x.
  • V. Gholamrezaie, M. G. Dozein, H. Monsef, and B. Wu, “An optimal frequency control method through a dynamic load frequency control (LFC) model incorporating wind farm,” IEEE Syst. J., Vol. 12, no. 1, pp. 392–401, 2018. doi:10.1109/JSYST.2016.2563979.
  • P. Bhatt, R. Roy, and S. P. Ghoshal, “Comparative performance evaluation of SMEs-SMES, TCPS-SMES and SSSC-SMES controllers in automatic generation control for a two-area hydro-hydro system,” Int. J. Electr. Power Energy Syst., Vol. 33, no. 10, pp. 1585–1597, 2011. doi:10.1016/j.ijepes.2010.12.015.
  • D. Guha, P. K. Roy, and S. Banerjee, “Optimal tuning of 3 degree-of-freedom proportional-integral-derivative controller for hybrid distributed power system using dragonfly algorithm,” Comput. Electr. Eng., Vol. 72, pp. 137–153, 2018. doi:10.1016/j.compeleceng.2018.09.003.
  • A. Behera, D. G. Adhya, and S. K. Parida, “Analysis of robust interval type-2 fuzzy PID controller for AGC in a restructured power system,” in 2017 7th International Conference on Power Systems, ICPS, 2018, pp. 168–174. doi:10.1109/ICPES.2017.8387288
  • Z. M. Al-Haouz, and H. N. Al-Duwamish, “New load frequency variable structure controller using genetic algorithms,” Electr. Power Syst. Res., Vol. 55, no. 1, pp. 1–6, 2000. doi:10.1016/S0378-7796(99)00095-4.
  • A. M. Kassem, “Neural predictive controller of a two-area load frequency control for interconnected power system,” Ain Shams Eng. J., Vol. 1, no. 1, pp. 49–58, 2010. doi:10.1016/j.asej.2010.09.006.
  • E. S. Ali, and S. M. Abd-Elazim, “BFOA based design of PID controller for two area load frequency control with nonlinearities,” Int. J. Electr. Power Energy Syst., Vol. 51, pp. 224–231, 2013. doi:10.1016/j.ijepes.2013.02.030.
  • M. N. Anwar, and S. Pan, “A new PID load frequency controller design method in frequency domain through direct synthesis approach,” Int. J. Electr. Power Energy Syst., Vol. 67, pp. 560–569, 2015. doi:10.1016/j.ijepes.2014.12.024.
  • A. Aziz, A. T. Oo, and A. Stojcevski, “Analysis of frequency sensitive wind plant penetration effect on load frequency control of hybrid power system,” Int. J. Electr. Power Energy Syst., Vol. 99, pp. 603–617, 2018. doi:10.1016/j.ijepes.2018.01.045.
  • A. K. Barisal, “Comparative performance analysis of teaching learning-based optimization for automatic load frequency control of multi-source power systems,” Int. J. Electr. Power Energy Syst., Vol. 66, pp. 67–77, 2015. doi:10.1016/j.ijepes.2014.10.019.
  • E. Çam, “Application of fuzzy logic for load frequency control of hydroelectrical power plants,” Energy Convers. Manage., Vol. 48, no. 4, pp. 1281–1288, 2007. doi:10.1016/j.enconman.2006.09.026.
  • E. Çam, and I. Kocaarslan, “Load frequency control in two area power systems using fuzzy logic controller,” Energy Convers. Manage., Vol. 46, no. 2, pp. 233–243, 2005. doi:10.1016/j.enconman.2004.02.022.
  • D. Chen, S. Kumar, M. York, and L. Wang, “Smart automatic generation control,” IEEE Power and Energy Society General Meeting, 2012, 1–7. doi:10.1109/PESGM.2012.6345136.
  • Y. Arya, “A new optimized fuzzy FOPI-FOPD controller for automatic generation control of electric power systems,” J. Franklin Inst., Vol. 356, no. 11, pp. 5611–5629, 2019. doi:10.1016/j.jfranklin.2019.02.034.
  • S. Debbarma, and A. Dutta, “Utilizing electric vehicles for LFC in restructured power systems using fractional order controller,” IEEE Trans. Smart Grid, Vol. 8, no. 6, pp. 2554–2564, 2017. doi:10.1109/TSG.2016.2527821.
  • B. K. Sahu, S. Pati, P. K. Mohanty, and S. Panda, “Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system,” Appl. Soft Comput. J., Vol. 27, pp. 240–249, 2015. doi:10.1016/j.asoc.2014.11.027.
  • P. C. Pradhan, R. K. Sahu, and S. Panda, “Firefly algorithm optimized fuzzy PID controller for AGC of multi-area multi-source power systems with UPFC and SMEs,” Eng. Sci. Technol. Int. J., Vol. 19, no. 1, pp. 338–354, 2016. doi:10.1016/j.jestch.2015.08.007.
  • E. E. Ejegi, J. A. Rossiter, and P. Trodden, “Distributed model predictive load frequency control of a deregulated power system,” in 2016 UKACC International Conference on Control, UKACC Control, 2016, pp. 1–6. doi:10.1109/CONTROL.2016.7737648.
  • N. El Yakine Kouba, M. Menaa, M. Hasni, and M. Boudoir, “Frequency stability enhancement in two-area deregulated power system based competitive electricity markets with redox flow batteries and power flow controllers,” in Proceedings of 2016 8th International Conference on Modelling, Identification and Control, ICMIC, 2017, pp. 1029–1036. doi:10.1109/ICMIC.2016.7804264.
  • P. Dash, L. C. Saikia, and N. Sinha, “Comparison of performances of several FACTS devices using Cuckoo search algorithm optimized 2DOF controllers in multi-area AGC,” Int. J. Electr. Power Energy Syst., Vol. 65, pp. 316–324, 2015. doi:10.1016/j.ijepes.2014.10.015.
  • R. R. Lekshmi, S. Balamurugan, and K. K. Sasi, “Decentralised automatic generation control strategy for a three-area bilateral power market,” in 2016 – Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy, PESTS, 2016, pp. 1–6. doi:10.1109/PESTSE.2016.7516502
  • G. Mahesh, and P. D. Dewangan, “Implementation of 2-DOFPID controller in multi-area deregulated power system,” in Proceedings of the International Conference on Inventive Communication and Computational Technologies, ICICCT, 2018, pp. 1898–1903. doi:10.1109/ICICCT.2018.8472994
  • A. Pappachen, and A. Peer Fathima, “Load frequency control in deregulated power system integrated with SMES-TCPS combination using ANFIS controller,” Int. J. Electr. Power Energy Syst., Vol. 82, pp. 519–534, 2016. doi:10.1016/j.ijepes.2016.04.032.
  • K. Liao, and Y. Xu, “A robust load frequency control scheme for power systems based on second-order sliding mode and extended disturbance observer,” IEEE Trans. Ind. Inf., Vol. 14, no. 7, pp. 3076–3086, 2018. doi:10.1109/TII.2017.2771487.
  • S. Pain, and P. Acharjee, “Load frequency control of security Constrained deregulated power system using crow search algorithm,” in 2018 3rd International Conference for Convergence in Technology, I2CT, 2018, pp. 1–6. doi:10.1109/I2CT.2018.8529344
  • K. Bharti, V. P. Singh, and S. P. Singh, “Impact of intelligent demand response for load frequency control in smart grid perspective,” IETE. J. Res., 2020. doi:10.1080/03772063.2019.1709570.
  • G. T. Chandra Sekhar, R. K. Sahu, A. K. Baliarsingh, and S. Panda, “Load frequency control of power system under deregulated environment using optimal firefly algorithm,” Int. J. Electr. Power Energy Syst., Vol. 74, pp. 195–211, 2016. doi:10.1016/j.ijepes.2015.07.025.
  • M. H. Khooban, and T. Niknam, “A new intelligent online fuzzy tuning approach for multi-area load frequency control: self adaptive modified bat algorithm,” Int. J. Electr. Power Energy Syst., Vol. 71, pp. 254–261, 2015. doi:10.1016/j.ijepes.2015.03.017.
  • K. Lu, W. Zhou, G. Zeng, and Y. Zheng, “Constrained population extremal optimization-based robust load frequency control of multi-area interconnected power system,” Int. J. Electr. Power Energy Syst., Vol. 105, pp. 249–271, 2019. doi:10.1016/j.ijepes.2018.08.043.
  • C. K. Zhang, L. Jiang, Q. H. Wu, Y. He, and M. Wu, “Delay-dependent robust load frequency control for time-delay power systems,” IEEE Trans. Power Syst., Vol. 28, no. 3, pp. 2192–2201, 2013. doi:10.1109/TPWRS.2012.2228281.
  • A. M. Ersdal, L. Imsland, and K. Uhlen, “Model predictive load-frequency control,” IEEE Trans. Power Syst., 1–9, 2015. doi:10.1109/TPWRS.2015.2412614.
  • A. M. Ersdal, L. Imsland, K. Uhlen, D. Fabozzi, and N. F. Thornhill, “Model predictive load–frequency control taking into account imbalance uncertainty,” Control. Eng. Pract., Vol. 53, pp. 139–150, 2016. doi:10.1016/j.conengprac.2015.12.001.
  • A. Ahmadi, and M. Aldeen, “Robust overlapping load frequency output feedback control of multi-area interconnected power systems,” Int. J. Electr. Power Energy Syst., Vol. 89, pp. 156–172, 2017. doi:10.1016/j.ijepes.2016.12.015.
  • S. F. Aliabadi, S. A. Taher, and M. Shahidehpour, “Smart deregulated grid frequency control in presence of renewable energy resources by EVs charging control,” IEEE Trans. Smart Grid, Vol. 9, no. 2, pp. 1073–1085, 2018. doi:10.1109/TSG.2016.2575061.
  • Y. R. Prajapati, and V. N. Kamat, “Secondary frequency regulation / automatic generation control under deregulated power system along with renewable energy sources using electric vehicle / distributed energy storage systems,” in International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT, 2016, Vol. 1, pp. 34–41. doi:10.1109/ICEEOT.2016.7755293
  • S. K. Aditya, and D. Das, “Battery energy storage for load frequency control of an interconnected power system,” Electr. Power Syst. Res., Vol. 58, pp. 179–185, 2001.
  • A. Daraz, S. A. Malik, H. Mokhlis, I. U. Haq, F. Zafar, and N. N. Mansor, “Improved-fitness dependent optimizer-based FOI-PD controller for automatic generation control of multi-source interconnected power system in deregulated environment,” IEEE. Access., Vol. 8, pp. 197757–197775, 2020. doi:10.1109/ACCESS.2020.3033983.
  • P. Sharma, A. Mishra, A. Saxena, and R. Shankar, “A novel hybridized fuzzy PI-LADRC based improved frequency regulation for restructured power system integrating renewable energy and electric vehicles,” IEEE. Access., Vol. 9, pp. 7597–7617, 2021. doi:10.1109/ACCESS.2020.3049049.
  • G. Shankar, and V. Mukherjee, “Load frequency control of an autonomous hybrid power system by quasi-oppositional harmony search algorithm,” Int. J. Electr. Power Energy Syst., Vol. 78, pp. 715–734, 2016. doi:10.1016/j.ijepes.2015.11.091.
  • H. Bevrani, F. Habibi, P. Babahajyani, M. Watanabe, and Y. Mitani, “Intelligent frequency control in an AC microgrid: online PSO-based fuzzy tuning approach,” IEEE Trans. Smart Grid, Vol. 3, no. 4, pp. 1935–1944, 2012. doi:10.1109/TSG.2012.2196806.
  • H. Li, X. Wang, and J. Xiao, “Adaptive event-triggered load frequency control for interconnected microgrids by observer-based sliding mode control,” IEEE. Access., Vol. 7, pp. 68271–68280, 2019. doi:10.1109/ACCESS.2019.2915954.
  • A. Ghafouri, J. Milimonfared, and G. B. Gharehpetian, “Coordinated control of distributed energy resources and conventional power plants for frequency control of power systems,” IEEE Trans. Smart Grid, Vol. 6, no. 1, pp. 104–113, 2015. doi:10.1109/TSG.2014.2336793.
  • J. Bahasa, and I. Ngamroo, “Coordinated control of wind turbine blade pitch angle and PHEVs using MPCs for load frequency control of microgrid,” IEEE Syst. J., Vol. 10, no. 1, pp. 97–105, 2016. doi:10.1109/JSYST.2014.2313810.
  • M. H. Khooban, T. Niknam, M. Shasadeghi, T. Dragicevic, and F. Blaabjerg, “Load frequency control in microgrids based on a stochastic noninteger controller,” IEEE Trans. Sustain. Energy, Vol. 9, no. 2, pp. 853–861, 2018. doi:10.1109/TSTE.2017.2763607.
  • B. Fan, J. Peng, J. Duan, Q. Yang, and W. Liu, “Distributed control of multiple-bus microgrid with paralleled distributed generators,” IEEE/CAA J. Autom. Sin., Vol. 6, no. 3, pp. 676–684, 2019. doi:10.1109/JAS.2019.1911477.
  • S. Acharya, M. S. El Moursi, and A. Al-Hinai, “Coordinated frequency control strategy for an Islanded microgrid with demand side management capability,” IEEE Trans. Energy Convers., Vol. 33, no. 2, pp. 639–651, 2018. doi:10.1109/TEC.2017.2763186.
  • A. H. Chowdhury, and M. Asaduz-Zaman, “Load frequency control of multi-microgrid using energy storage system,” in 8th International Conference on Electrical and Computer Engineering: Advancing Technology for a Better Tomorrow, ICECE, 2014, pp. 548–551. doi:10.1109/ICECE.2014.7026975
  • D. K. Lal, A. K. Barisal, and M. Tripathy, “Load frequency control of multi-area interconnected microgrid power system using grasshopper optimization algorithm Optimized Fuzzy PID controller,” in IEEE International Conference on 2018 Recent Advances on Engineering, Technology and Computational Sciences, RAETCS, 2018, pp. 1–6. doi:10.1109/RAETCS.2018.8443847
  • H. Al Yamaha, and A. Ai-Hinai, “Intelligent frequency control using optimal tuning and demand response in an AC microgrid,” in Proceedings – International Conference on Solar Energy and Building, ICSoEB, 2015. doi:10.1109/ICSoEB.2015.7244943
  • M. H. Khooban, T. Dragicevic, F. Blaabjerg, and M. Delimar, “Shipboard microgrids: a novel approach to load frequency control,” IEEE Trans. Sustain. Energy, Vol. 9, no. 2, pp. 843–852, 2018. doi:10.1109/TSTE.2017.2763605.
  • N. Vafamand, M. H. Khooban, T. Dragicevic, J. Boudjadar, and M. H. Asemani, “Time-delayed stabilizing secondary load frequency control of shipboard microgrids,” IEEE Syst. J., Vol. 13, no. 3, pp. 3233–3241, 2019. doi:10.1109/JSYST.2019.2892528.
  • J. Lai, X. Lu, and X. Yu, “Stochastic distributed frequency and load sharing control for microgrids with communication delays,” IEEE Syst. J., Vol. 13, no. 4, pp. 4268–4280, 2019. doi:10.1109/JSYST.2019.2901711.
  • C. S. Wang, J. Li, and Y. Hu, “Frequency control of isolated wind-diesel microgrid power system by double equivalent-input-disturbance controllers,” IEEE. Access., Vol. 7, pp. 105617–105626, 2019. doi:10.1109/ACCESS.2019.2932472.
  • X. Wang, Q. Zhao, B. He, Y. Wang, J. Yang, and X. Pan, “Load frequency control in multiple microgrids based on model predictive control with communication delay,” J. Eng., Vol. 13, pp. 1851–1856, 2017. doi:10.1049/joe.2017.0652.
  • H. Bevrani, M. R. Feizi, and S. Ataee, “Robust frequency control in an Islanded microgrid: H∞∞ and μ-synthesis approaches,” IEEE Trans. Smart Grid, Vol. 7, no. 2, pp. 706–717, 2016. doi:10.1109/TSG.2015.2446984.
  • J. W. Simpson-Porco, Q. Shafiee, F. Dorfler, J. C. Vasquez, J. M. Guerrero, and F. Bullo, “Secondary frequency and voltage control of Islanded microgrids via distributed averaging,” IEEE Trans. Ind. Electron., Vol. 62, no. 11, pp. 7025–7038, 2015. doi:10.1109/TIE.2015.2436879.
  • M. H. Khooban, “Secondary load frequency control of time-delay stand-alone microgrids with electric vehicles,” IEEE Trans. Ind. Electron., Vol. 65, no. 9, pp. 7416–7422, 2018. doi:10.1109/TIE.2017.2784385.
  • P. Srimannarayana, A. Bhattacharya, and S. Sharma, “Load frequency control of microgrid considering renewable source uncertainties,” in 7th IEEE International Conference on Computation of Power, Energy, Information and Communication, ICCPEIC, 2018, pp. 419–423. doi:10.1109/ICCPEIC.2018.8525190
  • J. Pan, S. Yu, and M. Ma, “Model predictive load frequency control of isolated micro-grid with electrical vehicles,” in Chinese Control Conference, CCC, 2018, pp. 3588–3593. doi:10.23919/ChiCC.2018.8482678
  • T. Hiranaka, H. Shim, and T. Namerikawa, “Soc regulator and DOB-based load frequency control of a microgrid by coordination of diesel generator and battery storage,” in 2016 IEEE Conference on Control Applications, CCA, 2016, pp. 64–69. doi:10.1109/CCA.2016.7587823
  • M. L. Herrera, S. A. Subramanyam, and X. Zhang, “Robust control and optimal operation of multiple microgrids with configurable interconnections,” in IEEE Green Technologies Conference, 2019. doi:10.1109/GreenTech.2019.8767153
  • S. Ahmadi, S. Shokoohi, and H. Bevrani, “A fuzzy logic-based droop control for simultaneous voltage and frequency regulation in an AC microgrid,” Int. J. Electr. Power Energy Syst., Vol. 64, pp. 148–155, 2015. doi:10.1016/j.ijepes.2014.07.024.
  • F. Guo, C. Wen, J. Mao, and Y. D. Song, “Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids,” IEEE Trans. Ind. Electron., Vol. 62, no. 7, pp. 4355–4364, 2015. doi:10.1109/TIE.2014.2379211.
  • C. James, and S. Dechanupapritta, “Coordinated control of battery energy storage system and plug-in electric vehicles for frequency regulation in smart grid,” in 2019 IEEE PES GTD Grand International Conference and Exposition Asia, GTD Asia, 2019, pp. 286–291. doi:10.1109/GTDAsia.2019.8715962
  • C. Ismayil, R. S. Kumar, and T. K. Sindhu. Optimal fractional order PID controller for automatic generation control of two-area power systems, 2014. doi:10.1002/etep.
  • P. J. Reddy, and T. A. Kumar, “AGC of Three area hydrothermal system in deregulated environment using FOPI and IPFC-,” in 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS), Vol. 2(3); 2017, pp. 1–17.
  • V. Chandrakala, B. Sukumar, and K. Sankaranarayanan, “Load frequency control of multisource multi-area hydrothermal system using flexible alternating current transmission system devices,” Electr. Power Compon. Syst., Vol. 42, no. 9, pp. 927–934, 2014. doi:10.1080/15325008.2014.903540.
  • T. S. Gorripotu, R. K. Sahu, and S. Panda, “AGC of a multi-area power system under deregulated environment using redox flow batteries and interline power flow controller,” Eng. Sci. Technol. Int. J., Vol. 18, no. 4, pp. 555–578, 2015. doi:10.1016/j.jestch.2015.04.002.
  • K. Chatterjee, T. Ghose, and B. M. Karan. Design of dual-mode and fuzzy logic controller for load frequency control- National power systems conference, NPSC 2004; 960–965.
  • S. D. Hanway, and Y. V. Hote, “Optimal PID design for load frequency control using QRAWCP approach,” IFAC-Papers on Line, Vol. 51, no. 4, pp. 651–656, 2018. doi:10.1016/j.ifacol.2018.06.170.
  • F. Daneshfar, and H. Bevrani, “Multiobjective design of load frequency control using genetic algorithms,” Int. J. Electr. Power Energy Syst., Vol. 42, no. 1, pp. 257–263, 2012. doi:10.1016/j.ijepes.2012.04.024.
  • S. M. Abd-Elazim, and E. S. Ali, “Load frequency controller design via BAT algorithm for nonlinear interconnected power system,” Int. J. Electr. Power Energy Syst., Vol. 77, pp. 166–177, 2016. doi:10.1016/j.ijepes.2015.11.029.
  • M. Elsisi, M. Soliman, M. A. S. Abella, and W. Mansour, “Bat inspired algorithm based optimal design of model predictive load frequency control,” Int. J. Electr. Power Energy Syst., Vol. 83, pp. 426–433, 2016. doi:10.1016/j.ijepes.2016.04.036.
  • R. Farhangi, M. Boroushaki, and S. H. Hosseini, “Load-frequency control of interconnected power system using emotional learning-based intelligent controller,” Int. J. Electr. Power Energy Syst., Vol. 36, no. 1, pp. 76–83, 2012. doi:10.1016/j.ijepes.2011.10.026.
  • F. Liu, Y. H. Song, J. Ma, S. Mei, and Q. Lu, “Optimal load-frequency control in restructured power systems.” IEEE Proc.: Gener. Transm. Distrib., Vol. 150, no. 1, pp. 87–95, 2003. doi:10.1049/ip-gtd:20020683.
  • V. Donde, M. A. Pai, and I. A. Hiskens, “Simulation and optimization in an AGC system after deregulation,” IEEE Trans. Power Syst., Vol. 16, no. 3, pp. 481–489, 2001. doi:10.1109/59.932285.
  • R. A. Davidson, and S. Ushakumari, “H-infinity loop-shaping controller for load frequency control of an uncertain deregulated power system,” in International Conference on Electrical, Electronics, and Optimization Techniques, ICEEOT, 2016, pp. 2185–2191. doi:10.1109/ICEEOT.2016.7755079
  • B. P. Gandhi, and K. Rout, “Deregulated power system-based study of AGC using PID and fuzzy logic controller,” Int. J. Adv. Res., Vol. 4, no. 6, pp. 847–855, 2016.
  • H. Modi, A. K. Singh, and K. Bhargava, “Integration of distributed generator for frequency regulation and loss compensation ancillary services,” in 2018 3rd International Conference for Convergence in Technology, I2CT, 2018, pp. 1–6. doi:10.1109/I2CT.2018.8529735
  • C. Y. Tee, and J. B. Cardell, “Market integration of distributed resources through coordinated frequency and price droop,” IEEE Trans. Smart Grid, Vol. 5, no. 4, pp. 1556–1565, 2014. doi:10.1109/TSG.2014.2314027.
  • W. Li, P. Du, and N. Lu, “Design of a new primary frequency control market for hosting frequency response reserve offers from both generators and loads,” IEEE Trans. Smart Grid, Vol. 9, no. 5, pp. 4883–4892, 2018. doi:10.1109/TSG.2017.2674518.
  • A. P. Fathima, and M. A. Khan, “Design of a new market structure and robust controller for the frequency regulation service in the deregulated power system,” Electr. Power Compon. Syst., Vol. 36, no. 8, pp. 864–883, 2008. doi:10.1080/15325000801911443.
  • E. Ela, V. Gevorgian, A. Tuohy, B. Kirby, M. Milligan, and M. O’Malley, “Market designs for the primary frequency response ancillary service-part I: Motivation and design,” IEEE Trans. Power Syst., Vol. 29, no. 1, pp. 432–440, 2014. doi:10.1109/TPWRS.2013.2264942.
  • E. Ela, V. Gevorgian, A. Tuohy, B. Kirby, M. Milligan, and M. O’Malley, “Market designs for the primary frequency response ancillary service-part II: Case studies,” IEEE Trans. Power Syst., Vol. 29, no. 1, pp. 432–440, 2014. doi:10.1109/TPWRS.2013.2264951.
  • S. A. Taher, M. Hajiakbari Fini, and S. Falahati Aliabadi, “Fractional order PID controller design for LFC in electric power systems using imperialist competitive algorithm,” Ain Shams Eng. J., Vol. 5, no. 1, pp. 121–135, 2014. doi:10.1016/j.asej.2013.07.006.
  • D. Guha, P. K. Roy, and S. Banerjee, “Load frequency control of interconnected power system using grey wolf optimization,” Swarm. Evol. Comput., Vol. 27, pp. 97–115, 2016. doi:10.1016/j.swevo.2015.10.004.
  • D. Guha, P. K. Roy, and S. Banerjee, “Application of krill herd algorithm for optimum design of load frequency controller for multi-area power system network with generation rate constraint,” Adv. Intel. Syst. Comput., Vol. 404, pp. 245–257, 2016. doi:10.1007/978-81-322-2695-6_22.
  • R. K. Mallick, M. K. Debnath, F. Haque, and R. R. Rout, “Application of grey wolves -based optimization technique in multi-area automatic generation control,” in International Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), 2016, pp. 0–5.
  • P. Dahiya, P. Mukhija, A. R. Saxena, and Y. Arya, “Comparative performance investigation of optimal controller for AGC of electric power generating systems,” Automatika, Vol. 57, no. 4, pp. 902–921, 2016. doi:10.7305/automatika.2017.12.1707.
  • A. H. Gandomi, and A. H. Alavi, “Krill herd: A new bio-inspired optimization algorithm,” Commun. Nonlinear Sci. Numer. Simul., Vol. 17, no. 12, pp. 4831–4845, 2012. doi:10.1016/j.cnsns.2012.05.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.