308
Views
10
CrossRef citations to date
0
Altmetric
Power Electronics

A Comprehensive Study of Wide-Area Damping Controller Requirements Through Real-Time Evaluation with Operational Uncertainties in Modern Power Systems

&

References

  • J. Ma. Power System Wide-Area Stability Analysis and Control. 1st ed. Singapore: John Wiley & Sons, 2018.
  • G. Rogers. Power System Oscillations. New York: Springer, US, 2000. DOI:10.1007/978-1-4615-4561-3.
  • P. Kundur. Power System Stability and Control. Electric Power Research Institute. New York: McGraw-Hill, 1994.
  • J. H. Chow, and J. J. Sanchez-Gasca. Power System Modeling, Computation, and Control. West Sussex: Wiley-IEEE Pres, Dec. 2019.
  • P. W. Sauer, M. A. Pai, and J. H. Chow. Power System Dynamics and Stability with Synchrophasor Measurement and Power System Toolbox. New Delhi, India: Wiley-IEEE Press, 2017.
  • J. Machowski, Z. Lubosny, J. W. Bialek, and J. R. Bumby. Power System Dynamics: Stability and Control. 3rd ed. West Sussex: Wiley, UK, 2020.
  • Y. Hase, T. Khandelwal, and K. Kameda. Power System Dynamics with Computer-Based Modeling and Analysis. Pondicherry, India: Wiley, 2020.
  • K. R. Padiyar . Power System Dynamics Stability and Control. Hyderabad, India: B.S. Publications, 2008.
  • M. Gibbard, P. Pourbeik, and D. Vowles. Small-Signal Stability, Control and Dynamic Performance of Power Systems. Adelaide, Australia: The University of Adelaide Press, 2015.
  • D. Mondal, A. Chakrabarti, and A. Sengupta. Power System Small Signal Stability Analysis and Control. Academic Press, London, UK: Elsevier, 2020.
  • B. Pal, and B. Chaudhuri. Robust Control in Power Systems. New York, USA: Springer , 2005.
  • B. K. Panigrahi, A. Abraham, and S. Das. Computational Intelligence in Power Engineering. Chennai, India: Springer, Scientific Publishing Services Pvt. Ltd., 2010.
  • J. L. Rueda-Torres, and F. Gonzalez-Longatt. Dynamic Vulnerability Assessment and Intelligent Control for Sustainable Power Systems. Chennai, India: Wiley, 2018.
  • S. Mishra, “Neural-network-based adaptive UPFC for improving transient stability performance of power system,” IEEE Trans. Neural Netw., Vol. 17, no. 2, pp. 461–70, Mar. 2006. DOI:10.1109/TNN.2006.871706
  • T. T. Nguyen, and R. Gianto, “Optimisation-based control coordination of PSSs and FACTS devices for optimal oscillations damping in multi-machine power system,” IET. Gener. Transm. Distrib., Vol. 1, no. 4, pp. 564–73, Jul. 2007. DOI:10.1049/iet-gtd:20060065
  • S. K. M. Kodsi, and C. A. Canizares, “Application of a stability-constrained Optimal Power Flow to tuning of oscillation Controls in competitive electricity markets,” IEEE Trans. Power Syst., Vol. 22, no. 4, pp. 1944–54, Nov. 2007. DOI:10.1109/TPWRS.2007.907359
  • M. Tripathy, and S. Mishra, “Interval type-2-based thyristor controlled series capacitor to improve power system stability,” IET. Gener. Transm. Distrib., Vol. 5, no. 2, pp. 209–22, Feb. 2011. DOI:10.1049/iet-gtd.2010.0035
  • J. M. Ramirez, R. J. Davalos, and I. Coronado, “Use of an optimal criterion for co-ordinating FACTS-based stabilisers,” IEE Proc. Gener. Transm. Distrib., Vol. 149, no. 3, pp. 345–51, May 2002. DOI:10.1049/ip-gtd:20020210
  • A. Heniche, and I. Kamwa, “Assessment of two methods to select wide-area signals for power system damping control,” IEEE Trans. Power Syst., Vol. 23, no. 2, pp. 572–81, May 2008. DOI:10.1109/TPWRS.2008.919240
  • T. T. Nguyen, and R. Gianto, “Neural networks for adaptive control coordination of PSSs and FACTS devices in multimachine power system,” IET. Gener. Transm. Distrib., Vol. 2, no. 3, pp. 355–72, May 2008. DOI:10.1049/iet-gtd:20070125
  • R. Majumder, B. Chaudhuri, and B. C. Pal, “Implementation and test results of a wide-area measurement-based controller for damping interarea oscillations considering signal-transmission delay,” IET. Gener. Transm. Distrib., Vol. 1, no. 1, pp. 1–7, Jan. 2007. DOI:10.1049/iet-gtd:20050493
  • M. Darabian, S. M. Mohseni-Bonab, and B. Mohammadi-Ivatloo, “Improvement of power system stability by optimal SVC controller design using shuffled frog-leaping algorithm”,” IETE. J. Res., Vol. 61, no. 2, pp. 160–9, 2015. DOI:10.1080/03772063.2014.999830
  • R. V. D. Oliveira, R. Kuiava, R. A. Ramos, and N. G. Bretas, “Automatic tuning method for the design of supplementary damping controllers for flexible alternating current transmission system devices,” IET. Gener. Transm. Distrib., Vol. 3, no. 10, pp. 919–29, Oct. 2009. DOI:10.1049/iet-gtd.2008.0424
  • S. Ray, G. K. Venayagamoorthy, B. Chaudhuri, and R. Majumder, ““Comparison of adaptive critic-based and classical wide-area controllers for power systems,” IEEE Trans. Syst. Man Cybern., Vol. 38, no. 4, pp. 1002–7, Aug. 2008. DOI:10.1109/TSMCB.2008.924141
  • G. K. Venayagamoorthy, and S. R. Jetti, “Dual-function neuron-based external controller for a static var compensator,” IEEE Trans. Power Delivery, Vol. 23, no. 2, pp. 997–1006, April 2008. DOI:10.1109/TPWRD.2007.916013
  • M. Xiao-ming, Z. Yao, G. Lin, and W. Xiao-chen, “Coordinated control of interarea oscillation in the China southern power grid,” IEEE Trans. Power Syst., Vol. 21, no. 2, pp. 845–52, May 2006. DOI:10.1109/TPWRS.2006.873116
  • Q. Y. Jiang, Y. J. Cao, and S. J. Cheng, “A genetic approach to design a HVDC supplementary subsynchronous damping controller,” IEEE Trans. Power Delivery, Vol. 20, no. 2, pp. 1059–64, April 2005. DOI:10.1109/TPWRD.2004.838522
  • D. Kim, H. Nam, and Y. Moon, “A practical approach to HVDC system control for damping subsynchronous oscillation using the novel eigenvalue analysis program,” IEEE Trans. Power Syst., Vol. 22, no. 4, pp. 1926–34, Nov. 2007. DOI:10.1109/TPWRS.2007.907974
  • R. Preece, and J. V. Milanović, “Tuning of a damping controller for multiterminal VSC-HVDC grids using the probabilistic collocation method,” IEEE Trans. Power Delivery, Vol. 29, no. 1, pp. 318–26, Feb. 2014. DOI:10.1109/TPWRD.2013.2258945
  • Y. Pipelzadeh, B. Chaudhuri, and T. C. Green, “Control coordination within a VSC HVDC link for power oscillation damping: A robust decentralized approach using homotopy,” IEEE Trans. Control Syst. Technol., Vol. 21, no. 4, pp. 1270–9, July 2013. DOI:10.1109/TCST.2012.2202285
  • J. Björk, K. H. Johansson, and L. Harnefors, “Fundamental performance limitations in utilizing HVDC to damp interarea modes,” IEEE Trans. Power Syst., Vol. 34, no. 2, pp. 1095–104, March 2019. DOI:10.1109/TPWRS.2018.2876554
  • M. R. Safari Tirtashi, O. Samuelsson, J. Svensson, and R. Pates, “Impedance matching for VSC-HVDC damping controller gain selection,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 5226–35, Sept. 2018. DOI:10.1109/TPWRS.2018.2815153
  • S. Pirooz Azad, R. Iravani, and J. E. Tate, “Damping inter-area oscillations based on a model predictive control (MPC) HVDC supplementary controller,” IEEE Trans. Power Syst., Vol. 28, no. 3, pp. 3174–83, Aug. 2013. DOI:10.1109/TPWRS.2013.2247640
  • X. Hu, X. Wang, L. Wu, H. Liu, and S. Sheng, “Electrical resonance mitigation scheme based on damping controller for wind farm integration through VSC-HVDC system,” J Eng., Vol. 2019, no. 16, pp. 2957–9, 2019. DOI:10.1049/joe.2018.8444
  • Y. Pipelzadeh, N. R. Chaudhuri, B. Chaudhuri, and T. C. Green, “Coordinated control of offshore wind farm and onshore HVDC converter for effective power oscillation damping,” IEEE Trans. Power Syst., Vol. 32, no. 3, pp. 1860–72, May 2017. DOI:10.1109/TPWRS.2016.2581984
  • L. Wang, and M. S. Thi, “Comparisons of damping controllers for stability enhancement of an offshore wind farm fed to an OMIB system through an LCC-HVDC link,” IEEE Trans. Power Syst., Vol. 28, no. 2, pp. 1870–8, May 2013. DOI:10.1109/TPWRS.2012.2231705
  • B. J. Pierre, et al., “Design of the Pacific DC intertie wide area damping controller,” IEEE Trans. Power Syst., Vol. 34, no. 5, pp. 3594–604, Sept. 2019. DOI:10.1109/TPWRS.2019.2903782
  • F. Yan, et al., “Coordinated start-up control and inter-converter oscillations damping for MMC-HVDC grid,” IEEE. Access., Vol. 7, pp. 65093–102, 2019. DOI:10.1109/ACCESS.2019.2914765
  • A. Fuchs and M. Morari, “Placement of HVDC links for power grid stabilization during transients,” 2013 IEEE Grenoble Conference, Grenoble, pp. 1-6, 2013.
  • A. Fuchs, M. Imhof, T. Demiray, and M. Morari, “Stabilization of large power systems using VSC–HVDC and model predictive control,” IEEE Trans. Power Delivery, Vol. 29, no. 1, pp. 480–8, Feb. 2014. DOI:10.1109/TPWRD.2013.2280467
  • L. Zeni, et al., “Power oscillation damping from VSC–HVDC connected offshore wind power plants,” IEEE Trans. Power Delivery, Vol. 31, no. 2, pp. 829–38, April 2016. DOI:10.1109/TPWRD.2015.2427878
  • P. Agnihotri, A. M. Kulkarni, A. M. Gole, B. A. Archer, and T. Weekes, “A robust wide-area measurement-based damping controller for networks with embedded multiterminal and multiinfeed HVDC links,” IEEE Trans. Power Syst., Vol. 32, no. 5, pp. 3884–92, Sept. 2017. DOI:10.1109/TPWRS.2017.2650559
  • Y. Liu, A. Raza, K. Rouzbehi, B. Li, D. Xu, and B. W. Williams, “Dynamic resonance analysis and oscillation damping of multiterminal DC grids,” IEEE. Access., Vol. 5, pp. 16974–84, 2017. DOI:10.1109/ACCESS.2017.2740567
  • G. Wu, Z. Du, C. Li, and G. Li, “VSC-MTDC operation adjustments for damping inter-area oscillations,” IEEE Trans. Power Syst., Vol. 34, no. 2, pp. 1373–82, Mar. 2019. DOI:10.1109/TPWRS.2018.2879112
  • R. Eriksson, “A New control structure for multiterminal DC Grids to damp interarea oscillations,” IEEE Trans. Power Delivery, Vol. 31, no. 3, pp. 990–8, June 2016. DOI:10.1109/TPWRD.2014.2364738
  • Y. Li, et al., “Modeling and damping control of modular multilevel converter based DC grid,” IEEE Trans. Power Syst., Vol. 33, no. 1, pp. 723–35, Jan. 2018. DOI:10.1109/TPWRS.2017.2691737
  • Z. Huang, et al., “Improving small signal stability through operating point adjustment,” in IEEE PES General Meeting, Providence, RI, 2010, pp. 1–8.
  • N. R. Chaudhuri, et al., “Power oscillation damping control using wide-area signals: A case study on Nordic equivalent system,” in IEEE PES T&D 2010, New Orleans, LA, 2010, pp. 1–8.
  • P. Korba, and K. Uhlen, “Wide-area monitoring of electromechanical oscillations in the Nordic power system: practical experience,” IET. Gener. Transm. Distrib., Vol. 4, no. 10, pp. 1116–26, October 2010. DOI:10.1049/iet-gtd.2009.0487
  • P. Mitra, and G. K. Venayagamoorthy, “Wide area control for improving stability of a power system with plug-in electric vehicles,” IET. Gener. Transm. Distrib., Vol. 4, no. 10, pp. 1151–63, October 2010. DOI:10.1049/iet-gtd.2009.0505
  • Y. Pipelzadeh, B. Chaudhuri, and T. C. Green, “Wide-area power oscillation damping control through HVDC: A case study on Australian equivalent system,” in IEEE PES General Meeting, Providence, RI, 2010, pp. 1–7.
  • O. B. Tor, C. Gencoglu, O. Yilmaz, E. Cebeci, and A. N. Guven, “Damping measures against prospective oscillations between turkish grid and ENTSO-E system,” in 2010 International Conference on Power System Technology, Hangzhou, 2010, pp. 1–7.
  • F. Tuffner, Z. Huang, N. Zhou, R. Guttromson, and A. Jayantilal, “Initial studies on actionable control for improving small signal stability in interconnected power systems,” in IEEE PES T&D 2010, New Orleans, LA, 2010, pp. 1–6.
  • M. Zarghami, M. L. Crow, and S. Jagannathan, “Nonlinear control of FACTS controllers for damping interarea oscillations in power systems,” IEEE Trans. Power Delivery, Vol. 25, no. 4, pp. 3113–21, Oct. 2010. DOI:10.1109/TPWRD.2010.2055898
  • R. Eriksson, and L. Söder, “Wide-area measurement system-based subspace Identification for obtaining linear models to centrally coordinate controllable devices,” IEEE Trans. Power Delivery, Vol. 26, no. 2, pp. 988–97, April 2011. DOI:10.1109/TPWRD.2010.2094628
  • A. Chakrabortty, “Wide-area damping control of power systems using dynamic clustering and TCSC-based redesigns,” IEEE Trans. Smart Grid, Vol. 3, no. 3, pp. 1503–14, Sept. 2012. DOI:10.1109/TSG.2012.2197029
  • Y. Li, C. Rehtanz, S. Ruberg, L. Luo, and Y. Cao, “Assessment and choice of input signals for multiple HVDC and FACTS wide-area damping controllers,” IEEE Trans. Power Syst., Vol. 27, no. 4, pp. 1969–77, Nov. 2012. DOI:10.1109/TPWRS.2012.2189865
  • Y. Li, C. Rehtanz, S. Ruberg, L. Luo, and Y. Cao, “Wide-area robust coordination approach of HVDC and FACTS controllers for damping multiple interarea oscillations,” IEEE Trans. Power Delivery, Vol. 27, no. 3, pp. 1096–105, July 2012. DOI:10.1109/TPWRD.2012.2190830
  • B. P. Padhy, S. C. Srivastava, and N. K. Verma, “Robust wide-area TS fuzzy output feedback controller for enhancement of stability in multimachine power system,” IEEE Syst. J., Vol. 6, no. 3, pp. 426–35, Sept. 2012. DOI:10.1109/JSYST.2011.2165639
  • J. Zhang, C. Y. Chung, and Y. Han, “A novel modal decomposition control and its application to PSS design for damping interarea oscillations in power systems,” IEEE Trans. Power Syst., Vol. 27, no. 4, pp. 2015–25, Nov. 2012. DOI:10.1109/TPWRS.2012.2188820
  • P. Zhang, and K. W. Chan, “Reliability evaluation of phasor measurement unit using monte carlo dynamic fault tree method,” IEEE Trans. Smart Grid, Vol. 3, no. 3, pp. 1235–43, Sept. 2012. DOI:10.1109/TSG.2011.2180937
  • J. Ma, T. Wang, Z. Wang, and J. S. Thorp, “Adaptive damping control of inter-area oscillations based on federated Kalman filter using wide area signals,” IEEE Trans. Power Syst., Vol. 28, no. 2, pp. 1627–35, May 2013. DOI:10.1109/TPWRS.2012.2223721
  • B. P. Padhy, S. C. Srivastava, and N. K. Verma, “A coherency-based approach for signal selection for wide area stabilizing control in power systems,” IEEE Syst. J., Vol. 7, no. 4, pp. 807–16, Dec. 2013. DOI:10.1109/JSYST.2013.2249241
  • J. Zhang, C. Y. Chung, S. Zhang, and Y. Han, “Practical wide area damping controller design based on ambient signal analysis,” IEEE Trans. Power Syst., Vol. 28, no. 2, pp. 1687–96, May 2013. DOI:10.1109/TPWRS.2012.2220383
  • S. Golshannavaz, F. Aminifar, and D. Nazarpour, “Application of UPFC to enhancing oscillatory response of series-compensated wind farm integrations,” IEEE Trans. Smart Grid, Vol. 5, no. 4, pp. 1961–8, July 2014. DOI:10.1109/TSG.2014.2304071
  • J. Ma, et al., “Application of dual youla parameterization based adaptive wide-area damping control for power system oscillations,” IEEE Trans. Power Syst., Vol. 29, no. 4, pp. 1602–10, July 2014. DOI:10.1109/TPWRS.2013.2296940
  • U. Malhotra, and R. Gokaraju, “An add-on self-tuning control system for a UPFC application,” IEEE Trans. Ind. Electron., Vol. 61, no. 5, pp. 2378–88, May 2014. DOI:10.1109/TIE.2013.2272272
  • X. Sui, Y. Tang, H. He, and J. Wen, “Energy-storage-based low-frequency oscillation damping control using particle swarm optimization and heuristic dynamic programming,” IEEE Trans. Power Syst., Vol. 29, no. 5, pp. 2539–48, Sept. 2014. DOI:10.1109/TPWRS.2014.2305977
  • F. Bai, et al., “A measurement-based control input-output signal selection approach to damp inter-area oscillations,” in 2015 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Brisbane, QLD, 2015, pp. 1–5.
  • J. Deng, C. Li, and X. Zhang, “Coordinated design of multiple robust FACTS damping controllers: A BMI-based sequential approach with multi-model systems,” IEEE Trans. Power Syst., Vol. 30, no. 6, pp. 3150–9, Nov. 2015. DOI:10.1109/TPWRS.2015.2392153
  • C. Lu, Y. Zhao, K. Men, L. Tu, and Y. Han, “Wide-area power system stabiliser based on model-free adaptive control,” IET Control Theory Appl., Vol. 9, no. 13, pp. 1996–2007, 2015. DOI:10.1049/iet-cta.2014.1289
  • M. H. Nguyen, T. K. Saha, and M. Eghbal, “Input/output selection for wide-area power oscillation damper of hybrid multi-terminal high-voltage direct current to connect remotely located renewable energy resources,” IET. Gener. Transm. Distrib., Vol. 9, no. 5, pp. 483–93, 2015. DOI:10.1049/iet-gtd.2013.0345
  • Y. Tang, H. He, J. Wen, and J. Liu, “Power system stability control for a wind farm based on adaptive dynamic programming,” IEEE Trans. Smart Grid, Vol. 6, no. 1, pp. 166–77, Jan. 2015. DOI:10.1109/TSG.2014.2346740
  • A. Vahidnia, G. Ledwich, E. Palmer, and A. Ghosh, “Wide-area control through aggregation of power systems,” IET. Gener. Transm. Distrib., Vol. 9, no. 12, pp. 1292–300, 2015. DOI:10.1049/iet-gtd.2014.1206
  • T. Wang, A. Pal, J. S. Thorp, Z. Wang, J. Liu, and Y. Yang, “Multi-polytope-based adaptive robust damping control in power systems using CART,” IEEE Trans. Power Syst., Vol. 30, no. 4, pp. 2063–72, July 2015. DOI:10.1109/TPWRS.2014.2352855
  • J. Zhang, C. Y. Chung, C. Lu, K. Men, and L. Tu, “A novel adaptive wide area PSS based on output-only modal analysis,” IEEE Trans. Power Syst., Vol. 30, no. 5, pp. 2633–42, Sept. 2015. DOI:10.1109/TPWRS.2014.2362923
  • D. K. Chaturvedi, and O. P. Malik, “Generalized neuron-based adaptive PSS for multimachine environment,” IEEE Trans. Power Syst., Vol. 20, no. 1, pp. 358–66, Feb. 2005. DOI:10.1109/TPWRS.2004.840410
  • X. M. Mao, Y. Zhang, L. Guan, X. C. Wu, and N. Zhang, “Improving power system dynamic performance using wide-area high-voltage direct current damping control,” IET. Gener. Transm. Distrib., Vol. 2, no. 2, pp. 245–51, March 2008. DOI:10.1049/iet-gtd:20070232
  • X. Y. Bian, Y. Geng, K. L. Lo, Y. Fu, and Q. B. Zhou, “Coordination of PSSs and SVC damping controller to improve probabilistic small-signal stability of Power system with Wind farm integration,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 2371–82, May 2016. DOI:10.1109/TPWRS.2015.2458980
  • M. Beiraghi, and A. M. Ranjbar, “Additive model decision tree-based adaptive wide-area damping controller design,” IEEE Syst. J., Vol. 12, no. 1, pp. 328–39, March 2018. DOI:10.1109/JSYST.2016.2524518
  • T. Bi, J. Guo, K. Xu, L. Zhang, and Q. Yang, “The impact of time synchronization deviation on the performance of synchrophasor measurements and wide area damping control,” IEEE Trans. Smart Grid, Vol. 8, no. 4, pp. 1545–52, July 2017. DOI:10.1109/TSG.2015.2489384
  • D. Cai, P. Wall, M. Osborne, and V. Terzija, “Roadmap for the deployment of WAMPAC in the future GB power system,” IET. Gener. Transm. Distrib., Vol. 10, no. 7, pp. 1553–62, 2016. DOI:10.1049/iet-gtd.2015.0582
  • K. Liao, Z. He, Y. Xu, G. Chen, Z. Y. Dong, and K. P. Wong, “A sliding mode based damping control of DFIG for interarea power oscillations,” IEEE Trans. Sustain. Energy, Vol. 8, no. 1, pp. 258–67, Jan. 2017. DOI:10.1109/TSTE.2016.2597306
  • K. Liao, Y. Xu, Z. He, and Z. Y. Dong, “Second-order sliding mode based P-Q coordinated modulation of DFIGs against interarea oscillations,” IEEE Trans. Power Syst., Vol. 32, no. 6, pp. 4978–80, Nov. 2017. DOI:10.1109/TPWRS.2017.2667228
  • A. Patel, S. Samal, S. Ghosh, and B. Subudhi, “A study on wide-area controller design for inter-area oscillation damping,” in 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC), Kolkata, 2016, pp. 245–9.
  • A. K. Singh, and B. C. Pal, “Decentralized control of oscillatory dynamics in power systems using an extended LQR,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 1715–28, May 2016. DOI:10.1109/TPWRS.2015.2461664
  • X. Wu, F. Dörfler, and M. R. Jovanović, “Input-output analysis and decentralized optimal control of inter-area oscillations in power systems,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 2434–44, May 2016. DOI:10.1109/TPWRS.2015.2451592
  • Y. Yu, S. Grijalva, J. J. Thomas, L. Xiong, P. Ju, and Y. Min, “Oscillation energy analysis of inter-area low-frequency oscillations in power systems,” IEEE Trans. Power Syst., Vol. 31, no. 2, pp. 1195–203, March 2016. DOI:10.1109/TPWRS.2015.2414175
  • N. R. Chaudhuri, B. Chaudhuri, S. Ray, and R. Majumder, “Wide-area phasor power oscillation damping controller: A new approach to handling time-varying signal latency,” IET. Gener. Transm. Distrib., Vol. 4, no. 5, pp. 620–30, May 2010. DOI:10.1049/iet-gtd.2009.0624
  • F. Liu, R. Yokoyama, Y. Zhou, Y. Li, and M. Wu, “SVC robust additional damping controller design for power system with considering time-delay of wide-area signals,” in 2010 9th International Conference on Environment and Electrical Engineering, Prague, 2010, pp. 313–6.
  • H. Nguyen-Duc, L. Dessaint, A. F. Okou, and I. Kamwa, “A power oscillation damping control scheme based on bang-bang modulation of FACTS signals,” IEEE Trans. Power Syst., Vol. 25, no. 4, pp. 1918–27, Nov. 2010. DOI:10.1109/TPWRS.2010.2046504
  • W. Juanjuan, F. Chuang, and Z. Yao, “Design of WAMS-based multiple HVDC damping control system,” IEEE Trans. Smart Grid, Vol. 2, no. 2, pp. 363–74, June 2011. DOI:10.1109/TSG.2011.2118773
  • D. P. Ke, C. Y. Chung, and Y. Xue, “An eigenstructure-based performance index and its application to control design for damping inter-area oscillations in power systems,” IEEE Trans. Power Syst., Vol. 26, no. 4, pp. 2371–80, 2011. DOI:10.1109/TPWRS.2011.2123119
  • W. Yao, L. Jiang, Q. H. Wu, J. Y. Wen, and S. J. Cheng, “Delay-dependent stability analysis of the power system with a wide-area damping controller embedded,” IEEE Trans. Power Syst., Vol. 26, no. 1, pp. 233–40, Feb. 2011. DOI:10.1109/TPWRS.2010.2093031
  • A. E. Leon, J. M. Mauricio, A. Gomez-Exposito, and J. A. Solsona, “Hierarchical wide-area control of power systems including wind farms and FACTS for short-term frequency regulation,” IEEE Trans. Power Syst., Vol. 27, no. 4, pp. 2084–92, Nov. 2012. DOI:10.1109/TPWRS.2012.2189419
  • P. Zhang, D. Y. Yang, K. W. Chan, and G. W. Cai, “Adaptive wide-area damping control scheme with stochastic subspace identification and signal time delay compensation,” IET. Gener. Transm. Distrib., Vol. 6, no. 9, pp. 844–52, Sept. 2012. DOI:10.1049/iet-gtd.2011.0680
  • R. Hadidi, and B. Jeyasurya, “Reinforcement learning based real-time wide-area stabilizing control agents to enhance power system stability,” IEEE Trans. Smart Grid, Vol. 4, no. 1, pp. 489–97, March 2013. DOI:10.1109/TSG.2012.2235864
  • I. Kamwa, S. R. Samantaray, and G. Joos, “Optimal integration of disparate C37.118 PMUs in wide-area PSS with electromagnetic transients,” IEEE Trans. Power Syst., Vol. 28, no. 4, pp. 4760–70, Nov. 2013. DOI:10.1109/TPWRS.2013.2266694
  • M. Mokhtari, F. Aminifar, D. Nazarpour, and S. Golshannavaz, “Wide-area power oscillation damping with a fuzzy controller compensating the continuous communication delays,” IEEE Trans. Power Syst., Vol. 28, no. 2, pp. 1997–2005, 2013. DOI:10.1109/TPWRS.2012.2215347
  • D. Molina, G. K. Venayagamoorthy, J. Liang, and R. G. Harley, “Intelligent local area signals based damping of power system oscillations using virtual generators and approximate dynamic programming,” IEEE Trans. Smart Grid, Vol. 4, no. 1, pp. 498–508, March 2013. DOI:10.1109/TSG.2012.2233224
  • R. Preece, J. V. Milanovic, A. M. Almutairi, and O. Marjanovic, “Probabilistic evaluation of damping controller in networks with multiple VSC-HVDC lines,” IEEE Trans. Power Syst., Vol. 28, no. 1, pp. 367–76, Feb. 2013. DOI:10.1109/TPWRS.2012.2197641
  • R. Preece, J. V. Milanović, A. M. Almutairi, and O. Marjanovic, “Damping of inter-area oscillations in mixed AC/DC networks using WAMS based supplementary controller,” IEEE Trans. Power Syst., Vol. 28, no. 2, pp. 1160–9, 2013. DOI:10.1109/TPWRS.2012.2207745
  • R. Shah, N. Mithulananthan, K. Y. Lee, and R. C. Bansal, “Wide-area measurement signal-based stabiliser for large-scale photovoltaic plants with high variability and uncertainty,” IET Renew. Power Gener., Vol. 7, no. 6, pp. 614–22, Nov. 2013. DOI:10.1049/iet-rpg.2013.0046
  • B. Yang, and Y. Sun, “Damping factor based delay margin for wide area signals in power system damping control,” IEEE Trans. Power Syst., Vol. 28, no. 3, pp. 3501–2, Aug. 2013. DOI:10.1109/TPWRS.2013.2242699
  • B. Yang, and Y. Sun, “A novel approach to calculate damping factor based delay margin for wide area damping control,” IEEE Trans. Power Syst., Vol. 29, no. 6, pp. 3116–7, Nov. 2014. DOI:10.1109/TPWRS.2014.2315494
  • S. Zhang, and V. Vittal, “Design of wide-area power system damping controllers resilient to communication failures,” IEEE Trans. Power Syst., Vol. 28, no. 4, pp. 4292–300, Nov. 2013. DOI:10.1109/TPWRS.2013.2261828
  • A. E. Leon, and J. A. Solsona, “Power oscillation damping improvement by adding multiple wind farms to wide-area coordinating controls,” IEEE Trans. Power Syst., Vol. 29, no. 3, pp. 1356–64, May 2014. DOI:10.1109/TPWRS.2013.2289970
  • J. Ma, T. Wang, X. Gao, S. Wang, and Z. Wang, “Classification and regression tree-based adaptive damping control of inter-area oscillations using wide-area signals,” IET. Gener. Transm. Distrib., Vol. 8, no. 6, pp. 1177–86, June 2014. DOI:10.1049/iet-gtd.2013.0506
  • M. Mokhtari, and F. Aminifar, “Toward wide-area oscillation control through doubly-fed induction generator wind farms,” IEEE Trans. Power Syst., Vol. 29, no. 6, pp. 2985–92, Nov. 2014. DOI:10.1109/TPWRS.2014.2309012
  • W. Yao, L. Jiang, J. Wen, Q. H. Wu, and S. Cheng, “Wide-area damping controller of FACTS devices for inter-area oscillations considering communication time delays,” IEEE Trans. Power Syst., Vol. 29, no. 1, pp. 318–29, 2014. DOI:10.1109/TPWRS.2013.2280216
  • K. Zhu, and L. Nordström, “Design of wide-area damping systems based on the capabilities of the supporting information communication technology infrastructure,” IET. Gener. Transm. Distrib., Vol. 8, no. 4, pp. 640–50, Apr. 2014. DOI:10.1049/iet-gtd.2013.0147
  • K. Zhu, M. Chenine, L. Nordström, S. Holmström, and G. Ericsson, “Design requirements of wide-area damping systems—using empirical data from a utility IP network,” IEEE Trans. Smart Grid, Vol. 5, no. 2, pp. 829–38, Mar. 2014. DOI:10.1109/TSG.2013.2290493
  • R. Vikhram Yohanandhan, and L. Srinivasan, “Decentralised wide-area fractional order damping controller for a large-scale power system,” IET. Gener. Trans. Distrib., Vol. 10, no. 5, pp. 1164–78, 2016. DOI:10.1049/iet-gtd.2015.0747
  • S. Pirooz Azad, J. A. Taylor, and R. Iravani, “Decentralized supplementary control of multiple LCC-HVDC links,” IEEE Trans. Power Syst., Vol. 31, no. 1, pp. 572–80, Jan. 2016. DOI:10.1109/TPWRS.2015.2393372
  • N. T. Anh, L. Vanfretti, J. Driesen, and D. Van Hertem, “A quantitative method to determine ICT delay requirements for wide-area power system damping controllers,” IEEE Trans. Power Syst., Vol. 30, no. 4, pp. 23–30, 2015.
  • R. Goldoost-Soloot, Y. Mishra, and G. Ledwich, “Wide-area damping control for inter-area oscillations using inverse filtering technique,” IET. Gener. Transm. Distrib., Vol. 9, no. 13, pp. 1534–43. 2015. DOI:10.1049/iet-gtd.2015.0027
  • S. Liu, X. Li, and D. Chen, “Wide-area-signals-based nonlinear excitation control in multi-machine power systems,” IEEJ Trans Elec Electron Eng, Vol. 14, no. 3, pp. 366–75, 2019. DOI:10.1002/tee.22817.
  • H. Liu, et al., “ARMAX-based transfer function model identification using wide-area measurement for adaptive and coordinated damping control,” IEEE Trans. Smart Grid, Vol. 8, no. 3, pp. 1105–15, May 2017. DOI:10.1109/TSG.2015.2470648
  • C. Lu, X. Zhang, X. Wang, and Y. Han, “Mathematical expectation modeling of wide-area controlled power systems with stochastic time delay,” IEEE Trans. Smart Grid, Vol. 6, no. 3, pp. 1511–9, May 2015. DOI:10.1109/TSG.2014.2376527
  • Y. Wang, P. Yemula, and A. Bose, “Decentralized communication and control systems for power system operation,” IEEE Trans. Smart Grid, Vol. 6, no. 2, pp. 885–93, March 2015. DOI:10.1109/TSG.2014.2363192
  • W. Yao, L. Jiang, J. Wen, Q. Wu, and S. Cheng, “Wide-area damping controller for power system interarea oscillations: A networked predictive control approach,” IEEE Trans. Control Syst. Technol., Vol. 23, no. 1, pp. 27–36, Jan. 2015. DOI:10.1109/TCST.2014.2311852
  • B. Chaudhuri, R. Majumder, and B. C. Pal, “Wide-area measurement-based stabilizing control of power system considering signal transmission delay,” IEEE Trans. Power Syst., Vol. 19, no. 4, pp. 1971–9, Nov. 2004. DOI:10.1109/TPWRS.2004.835669
  • H. Ni, G. T. Heydt, and L. Mili, “Power system stability agents using robust wide area control,” IEEE Trans. Power Syst., Vol. 17, no. 4, pp. 1123–31, Nov. 2002. DOI:10.1109/TPWRS.2002.805016
  • M. Bhadu, N. Senroy, I. Narayan Kar, and G. N. Sudha, “Robust linear quadratic Gaussian-based discrete mode wide area power system damping controller,” IET. Gener. Transm. Distrib., Vol. 10, no. 6, pp. 1470–8, 2016. DOI:10.1049/iet-gtd.2015.1113
  • M. Bhadu, N. S. Tripathy, I. Narayan Kar, and N. Senroy, “Event-triggered communication in wide-area damping control: A limited output feedback-based approach,” IET. Gener. Transm. Distrib., Vol. 10, no. 16, pp. 4094–104, 2016. DOI:10.1049/iet-gtd.2016.0466
  • M. Beiraghi, and A. M. Ranjbar, “Adaptive delay compensator for the robust wide-area damping controller design,” IEEE Trans. Power Syst., Vol. 31, no. 6, pp. 4966–76, Nov. 2016. DOI:10.1109/TPWRS.2016.2520397
  • S. Ghosh, K. A. Folly, and A. Patel, “Synchronized versus non-synchronized feedback for speed-based wide-area PSS: effect of time-delay,” IEEE Trans. Smart Grid, Vol. 9, no. 5, pp. 3976–85, Sept. 2018. DOI:10.1109/TSG.2016.2645453
  • D. Ke, and C. Y. Chung, “Design of probabilistically-robust wide-area power system stabilizers to suppress inter-area oscillations of wind integrated power systems,” IEEE Trans. Power Syst., Vol. 31, no. 6, pp. 4297–309, 2016. DOI:10.1109/TPWRS.2016.2514520
  • G. Isazadeh, A. Khodabakhshian, and E. Gholipour, “Optimal design of convertible static compensator supplementary damping controller to avoid wide area uncontrolled islanding,” IET. Gener. Transm. Distrib., Vol. 10, no. 10, pp. 2336–50, 2016. DOI:10.1049/iet-gtd.2015.1025
  • A. E. Leon, G. Revel, D. M. Alonso, and G. E. Alonso, “Wind power converters improving the power system stability,” IET. Gener. Transm. Distrib., Vol. 10, no. 7, pp. 1622–33, 2016. DOI:10.1049/iet-gtd.2015.0889
  • B. P. Padhy, S. C. Srivastava, and N. K. Verma, “A wide-area damping controller considering network input and output delays and packet drop,” IEEE Trans. Power Syst., Vol. 32, no. 1, pp. 166–76, Jan. 2017. DOI:10.1109/TPWRS.2016.2547967
  • V. Pradhan, A. M. Kulkarni, and S. A. Khaparde, “A composite strategy for power oscillation damping control using local and wide area feedback signals,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 2348–60, May 2016. DOI:10.1109/TPWRS.2015.2454294
  • M. E. Raoufat, K. Tomsovic, and S. M. Djouadi, “Virtual actuators for wide-area damping control of power systems,” IEEE Trans. Power Syst., Vol. 31, no. 6, pp. 4703–11, Nov. 2016. DOI:10.1109/TPWRS.2015.2506345
  • D. Roberson, and J. F. O’Brien, “Loop shaping of a wide-area damping controller using HVDC,” IEEE Trans. Power Syst., Vol. 32, no. 3, pp. 2354–61, May 2017. DOI:10.1109/TPWRS.2016.2608356
  • G. Sánchez-Ayala, V. Centeno, and J. Thorp, “Gain scheduling with classification trees for robust centralized control of PSSs,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 1933–42, May 2016. DOI:10.1109/TPWRS.2015.2469146
  • T. Surinkaew, and I. Ngamroo, “Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping,” IEEE Trans. Sustain. Energy, Vol. 7, no. 3, pp. 943–55, Jul. 2016. DOI:10.1109/TSTE.2015.2508558
  • V. V. G. Krishnan, S. C. Srivastava, and S. Chakrabarti, “A robust decentralized wide area damping controller for wind generators and FACTS controllers considering load model uncertainties,” IEEE Trans. Smart Grid, Vol. 9, no. 1, pp. 360–72, Jan. 2018. DOI:10.1109/TSG.2016.2552233
  • A. Vahidnia, G. Ledwich, and E. W. Palmer, “Transient stability improvement through wide-area controlled SVCs,” IEEE Trans. Power Syst., Vol. 31, no. 4, pp. 3082–9, July 2016. DOI:10.1109/TPWRS.2015.2473670
  • F. Liu, R. Yokoyama, Y. Zhou, and M. Wu, “Free-weighting matrices-based robust wide-area FACTS control design with considering signal time delay for stability enhancement of power systems,” IEEJ Trans Elec Electron Eng, Vol. 7, pp. 31–9, 2012. DOI:10.1002/tee.21692
  • R. Yousefian, A. Sahami, and S. Kamalasadan, “Hybrid transient energy function-based real-time optimal wide-area damping controller,” IEEE Trans. Ind. Appl., Vol. 53, no. 2, pp. 1506–16, Mar–Apr. 2017. DOI:10.1109/TIA.2016.2624264
  • R. Yousefian, and S. Kamalasadan, “Energy function inspired value priority based global wide-area control of power grid,” IEEE Trans. Smart Grid, Vol. 9, no. 2, pp. 552–63, Mar. 2018. DOI:10.1109/TSG.2016.2555909
  • X. Zhang, C. Lu, X. Xie, and Z. Y. Dong, “Stability analysis and controller design of a wide-area time-delay system based on the expectation model method,” IEEE Trans. Smart Grid, Vol. 7, no. 1, pp. 520–9, Jan. 2016. DOI:10.1109/TSG.2015.2483563
  • Y. Zhao, Z. Yuan, C. Lu, G. Zhang, X. Li, and Y. Chen, “Improved model-free adaptive wide-area coordination damping controller for multiple-input–multiple-output power systems,” IET. Gener. Transm. Distrib., Vol. 10, no. 13, pp. 3264–75. 2016. DOI:10.1049/iet-gtd.2016.0069
  • Y. Li, Y. Zhou, F. Liu, Y. Cao, and C. Rehtanz, “Design and Implementation of delay-dependent wide-area damping control for stability enhancement of power systems,” IEEE Trans. Smart Grid, Vol. 8, no. 4, pp. 1831–42, July 2017. DOI:10.1109/TSG.2015.2508923
  • A. Patel, S. Ghosh, and K. A. Folly, “Inter-area oscillation damping with non-synchronised wide-area power system stabiliser,” IET. Gener. Transm. Distrib., Vol. 12, no. 12, pp. 3070–8, 2018. DOI:10.1049/iet-gtd.2017.0017
  • P. Agnihotri, A. M. Kulkarni, A. M. Gole, B. A. Archer, and T. Weekes, “A robust wide-area measurement-based damping controller for networks with embedded multi-terminal and multi-infeed HVDC links,” IEEE Trans. Power Syst., Vol. 32, no. 5, pp. 3884–92, Sept. 2017. DOI:10.1109/TPWRS.2017.2650559
  • D. Ke, F. Shen, C. Y. Chung, C. Zhang, J. Xu, and Y. Sun, “Application of information gap decision theory to the design of robust wide-area power system stabilizers considering uncertainties of wind power,” IEEE Trans. Sustain. Energy, Vol. 9, no. 2, pp. 805–17, Apr. 2018. DOI:10.1109/TSTE.2017.2761913
  • M. Li, and Y. Chen, “A wide-area dynamic damping controller based on robust H∞ control for wide-area power systems with random delay and packet dropout,” IEEE Trans. Power Syst., Vol. 33, no. 4, pp. 4026–37, Jul. 2018. DOI:10.1109/TPWRS.2017.2782792
  • M. E. Raoufat, K. Tomsovic, and S. M. Djouadi, “Dynamic control allocation for damping of inter-area oscillations,” IEEE Trans. Power Syst., Vol. 32, no. 6, pp. 4894–903, Nov. 2017. DOI:10.1109/TPWRS.2017.2686808
  • D. Rimorov, A. Heniche, I. Kamwa, S. Babaei, G. Stefopolous, and B. Fardanesh, “Dynamic performance improvement of New York state power grid with multi-functional multi-band power system stabiliser-based wide-area control,” IET. Gener. Transm. Distrib., Vol. 11, no. 18, pp. 4537–45, 2017. DOI:10.1049/iet-gtd.2017.0288
  • D. Roberson, and J. F. O’Brien, “Variable loop gain using excessive regeneration detection for a delayed wide-area control system,” IEEE Trans. Smart Grid, Vol. 9, no. 6, pp. 6623–32, Nov. 2018. DOI:10.1109/TSG.2017.2717449
  • S. Shukla, and L. Mili, “Hierarchical decentralized control for enhanced rotor angle and voltage stability of large-scale power systems,” IEEE Trans. Power Syst., Vol. 32, no. 6, pp. 4783–93, Nov. 2017. DOI:10.1109/TPWRS.2017.2686427
  • T. Surinkaew, and I. Ngamroo, “Two-level coordinated controllers for robust inter-area oscillation damping considering impact of local latency,” IET. Gener. Transm. Distrib., Vol. 11, no. 18, pp. 4520–30, 2017. DOI:10.1049/iet-gtd.2016.2068
  • L. Simon, K. S. Swarup, and J. Ravishankar, “Wide area oscillation damping controller for DFIG using WAMS with delay compensation,” IET Renew. Power Gener., Vol. 13, pp. 128–37, 2019. DOI:10.1049/iet-rpg.2018.5192
  • R. Yousefian, R. Bhattarai, and S. Kamalasadan, “Transient stability enhancement of power grid with integrated wide area control of wind farms and synchronous generators,” IEEE Trans. Power Syst., Vol. 32, no. 6, pp. 4818–31, Nov. 2017. DOI:10.1109/TPWRS.2017.2676138
  • C. Zhang, D. Ke, Y. Sun, C. Y. Chung, J. Xu, and F. Shen, “Coordinated supplementary damping control of DFIG and PSS to suppress inter-area oscillations with optimally controlled plant dynamics,” IEEE Trans. Sustain. Energy, Vol. 9, no. 2, pp. 780–91, Apr. 2018. DOI:10.1109/TSTE.2017.2761813
  • L. Zacharia, L. Hadjidemetriou, and E. Kyriakides, “Integration of renewables into the wide area control scheme for damping power oscillations,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 5778–86, Sept. 2018. DOI:10.1109/TPWRS.2018.2822315
  • I. L. Ortega Rivera, V. Vittal, G. T. Heydt, C. R. Fuerte-Esquivel, and C. Angeles-Camacho, “A dynamic state estimator based control for power system damping,” IEEE Trans. Power Syst., Vol. 33, no. 6, pp. 6839–48, Nov. 2018. DOI:10.1109/TPWRS.2018.2825301
  • A. Banerjee, N. R. Chaudhuri, and R. G. Kavasseri, “A novel explicit disturbance model-based robust damping of interarea oscillations through MTDC grids embedded in AC systems,” IEEE Trans. Power Delivery, Vol. 33, no. 4, pp. 1864–74, Aug. 2018. DOI:10.1109/TPWRD.2018.2799170
  • M. E. C. Bento, “An optimization approach for the wide-area damping control design,” in 2018 13th IEEE International Conference on Industry Applications (INDUSCON), São Paulo, Brazil, 2018, pp. 269–76.
  • M. E. C. Bento, D. Dotta, R. Kuiava, and R. A. Ramos, “A procedure to design fault-tolerant wide-area damping controllers,” IEEE. Access., Vol. 6, pp. 23383–405, 2018. DOI:10.1109/ACCESS.2018.2828609
  • D. Cai, Q. Huang, J. Li, Z. Zhang, Y. Teng, and W. Hu, “Stabilization of time-delayed power system with combined frequency-domain IQC and time-domain dissipation inequality,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 5531–41, Sept. 2018. DOI:10.1109/TPWRS.2018.2808462
  • M. Darabian, and A. Jalilvand, “Designing a wide area damping controller to coordinate FACTS devices in the presence of wind turbines with regard to time delay,” IET Renew. Power Gener., Vol. 12, no. 13, pp. 1523–34. 2018. DOI:10.1049/iet-rpg.2017.0602
  • A. Delavari, and I. Kamwa, “Sparse and resilient hierarchical direct load control for primary frequency response improvement and inter-area oscillations damping,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 5309–18, Sept. 2018. DOI:10.1109/TPWRS.2018.2795462
  • L. Huang, H. Xin, and Z. Wang, “Damping low-frequency oscillations through VSC-HVDC stations operated as virtual synchronous machines,” IEEE Trans. Power Electron., Vol. 34, no. 6, pp. 5803–18, June 2019. DOI:10.1109/TPEL.2018.2866523
  • C. Liu, G. Cai, W. Ge, D. Yang, C. Liu, and Z. Sun, “Oscillation analysis and wide-area damping control of DFIGs for renewable energy power systems using line modal potential energy,” IEEE Trans. Power Syst., Vol. 33, no. 3, pp. 3460–71, May 2018. DOI:10.1109/TPWRS.2018.2791543
  • V. Pradhan, A. M. Kulkarni, and S. A. Khaparde, “A model-free approach for emergency damping control using wide area measurements,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 4902–12, Sept. 2018. DOI:10.1109/TPWRS.2018.2799226
  • Y. Shen, W. Yao, J. Wen, H. He, and L. Jiang, “Resilient wide-area damping control using GrHDP to tolerate communication failures,” IEEE Trans. Smart Grid, Vol. 10, no. 3, pp. 2547–57, May 2019. DOI:10.1109/TSG.2018.2803822
  • Y. Shen, W. Yao, J. Wen, H. He, and W. Chen, “Adaptive supplementary damping control of VSC-HVDC for interarea oscillation using GrHDP,” IEEE Trans. Power Syst., Vol. 33, no. 2, pp. 1777–89, Mar. 2018. DOI:10.1109/TPWRS.2017.2720262
  • T. Surinkaew, and I. Ngamroo, “Inter-area oscillation damping control design considering impact of variable latencies,” IEEE Trans. Power Syst., Vol. 34, no. 1, pp. 481–93, Jan. 2019. DOI:10.1109/TPWRS.2018.2866032
  • T. Surinkaew, and I. Ngamroo, “Adaptive signal selection of wide-area damping controllers under various operating conditions,” IEEE Trans. Ind. Inf., Vol. 14, no. 2, pp. 639–51, Feb. 2018. DOI:10.1109/TII.2017.2752762
  • A. Thakallapelli, S. J. Hossain, and S. Kamalasadan, “Coherency and online signal selection based wide area control of wind integrated power grid,” IEEE Trans. Ind. Appl., Vol. 54, no. 4, pp. 3712–22, Jul.–Aug. 2018. DOI:10.1109/TIA.2018.2814561
  • I. Zenelis, and X. Wang, “Wide-area damping control for interarea oscillations in power grids based on PMU measurements,” IEEE Control Systems Letters, Vol. 2, no. 4, pp. 719–24, Oct. 2018. DOI:10.1109/LCSYS.2018.2847758
  • J. Zhou, D. Ke, C. Y. Chung, and Y. Sun, “A computationally efficient method to design probabilistically robust wide-area PSSs for damping inter-area oscillations in wind-integrated power systems,” IEEE Trans. Power Syst., Vol. 33, no. 5, pp. 5692–703, Sept. 2018. DOI:10.1109/TPWRS.2018.2815534
  • D. Cai, L. Ding, X. Zhang, and V. Terzija, “Wide area inter-area oscillation control system in a GB electric power system,” The Journal of Engineering, Vol. 2019, no. 16, pp. 3294–300, 2019. DOI:10.1049/joe.2018.8752
  • A. S. Mir, and N. Senroy, “DFIG damping controller design using robust CKF-based adaptive dynamic programming,” IEEE Trans. Sustain. Energy, Vol. 11, no. 2, pp. 839–50, Apr. 2020. DOI:10.1109/TSTE.2019.2910262
  • A. S. Mir, S. Bhasin, and N. Senroy, “Decentralized nonlinear adaptive optimal control scheme for enhancement of power system stability,” IEEE Trans. Power Syst., Vol. 35, no. 2, pp. 1400–10, Mar. 2020. DOI:10.1109/TPWRS.2019.2939394
  • J. Qi, Q. Wu, Y. Zhang, G. Weng, and D. Zhou, “Unified Residue method for design of compact wide-area damping controller based on power system stabilizer,” J. Mod. Power Syst. Clean Energy, Vol. 8, no. 2, pp. 367–76, 2020. DOI:10.35833/MPCE.2018.000370
  • A. Thakallapelli, and S. Kamalasadan, “Alternating direction method of multipliers (ADMMs) based distributed approach for wide-area control,” IEEE Trans. Ind. Appl., Vol. 55, no. 3, pp. 3215–27, May–June 2019. DOI:10.1109/TIA.2019.2896837
  • A. D. Falehi, “Robust and intelligent type-2 fuzzy fractional-order controller-based automatic generation control to enhance the damping performance of multi-machine power systems,” IETE. J. Res., vol. 0, pp. 1–12, 2020. DOI:10.1080/03772063.2020.1719908.
  • A. D. Falehi, “Optimal design of fractional order ANFIS-PSS based on NSGA-II aimed at mitigation of DG-connection transient impacts,” Proc. Romanian Acad. , Ser. A, Vol. 19, pp. 473–81, 2018.
  • F. A. Darvish, “Design and scrutiny of maiden PSS for alleviation of power system oscillations using RCGA and PSO techniques,” J. Electr. Eng. Technol., Vol. 8, no. 3, pp. 402–10, 2013. DOI:10.5370/JEET.2013.8.3.402
  • A. Darvish Falehi, “Optimal fractional order BELBIC to ameliorate small signal stability of interconnected hybrid power system,” Environ. Prog Sustainable Energy, Vol. 38, pp. 13208, 2019. DOI:10.1002/ep.13208
  • D. Falehi A, “Optimal robust disturbance observer based sliding mode controller using multi-objective grasshopper optimization algorithm to enhance power system stability,” J. Ambient. Intell. Human. Comput., Vol. 11, pp. 5045–63, 2020. DOI:10.1007/s12652-020-01811-8
  • A. Darvish Falehi, “An optimal second-order sliding mode based inter-area oscillation suppressor using chaotic whale optimization algorithm for doubly fed induction generator,” Int. J. Numer. Model., Vol. 35, no. 2, pp. e2963, 2021. DOI:10.1002/jnm.2963.
  • H. Lin, S. S. Veda, S. S. Shukla, L. Mili, and J. Thorp, “GECO: Global event-driven co-simulation framework for interconnected power system and communication network,” IEEE Trans. Smart Grid, Vol. 3, no. 3, pp. 1444–56, Sept. 2012. DOI:10.1109/TSG.2012.2191805
  • A. T. Al-Hammouri, “A comprehensive co-simulation platform for cyber-physical systems,” Comput. Commun., Vol. 36, pp. 8–19, December 2012. DOI:10.1016/j.comcom.2012.01.003
  • S. Zhang, and V. Vittal, “Wide-area control resiliency using redundant communication paths,” IEEE Trans. Power Syst., Vol. 29, no. 5, pp. 2189–99, Sept. 2014. DOI:10.1109/TPWRS.2014.2300502
  • H. Ye, K. Liu, Q. Mou, and Y. Liu, “Modeling and formulation of delayed cyber-physical power system for small-signal stability analysis and control,” IEEE Trans. Power Syst., Vol. 34, no. 3, pp. 2419–32, May 2019. DOI:10.1109/TPWRS.2018.2890540
  • Q. Mou, H. Ye, and Y. Liu, “Nonsmooth optimization-based WADCS tuning in large delayed cyber-physical power system by interarea mode tracking and gradient sampling,” IEEE Trans. Power Syst., Vol. 34, no. 1, pp. 668–79, 2019. DOI:10.1109/TPEL.2018.2817126
  • Q. Mou, H. Ye, and Y. Liu, “Enabling highly efficient eigen-analysis of large delayed cyber-physical power systems by partial spectral discretization,” IEEE Trans. Power Syst., Vol. 35, no. 2, pp. 1499–508, March 2020. DOI:10.1109/TPWRS.2019.2936488
  • A. Yogarathinam, and N. R. Chaudhuri, “Wide-area damping control using multiple dfig-based wind farms under stochastic data packet dropouts,” IEEE Trans. Smart Grid, Vol. 9, no. 4, pp. 3383–93, July 2018. DOI:10.1109/TSG.2016.2631448
  • O. Bassey, B. Chen, K. L. Butler-Purry, and A. Goulart, “Implementation of wide area control in a real-time cyber-physical power system test bed,” in 2017 North American Power Symposium (NAPS), Morgantown, WV, 2017, pp. 1–6.
  • E. Ekomwenrenren, H. Alharbi, T. Elgorashi, J. Elmirghani, and P. Aristidou, “Stabilising control strategy for cyber-physical power systems,” IET Cyber-Physical Systems: Theory & Applications, Vol. 4, no. 3, pp. 265–75, 9 2019. DOI:10.1049/iet-cps.2018.5020
  • H. Ye, T. Li, and Y. Liu, “Time integration-based IGD methods for eigen-analysis of large delayed cyber-physical power system,” IEEE Trans. Power Syst., Vol. 35, no. 2, pp. 1376–88, March 2020. DOI:10.1109/TPWRS.2019.2936871
  • H. Ye, Q. Mou, and Y. Liu, “Calculation of critical oscillation modes for large delayed cyber-physical power system using pseudo-spectral discretization of solution operator,” IEEE Trans. Power Syst., Vol. 32, no. 6, pp. 4464–76, 2017. DOI:10.1109/TPWRS.2017.2686008
  • H. Ye, Y. Liu, and P. Zhang, “Efficient eigen-analysis for large delayed cyber-physical power system using explicit infinitesimal generator discretization,” IEEE Trans. Power Syst., Vol. 31, no. 3, pp. 2361–70, May 2016. DOI:10.1109/TPWRS.2015.2463109
  • Y. Sheng, et al., “Electromagnetic torque analysis-based method for performance evaluation and optimisation of closed-loop CPS regarding small signal stability,” IET Cyber-Physical Syst. Theory Appl., Vol. 3, no. 4, pp. 187–93, 2018. DOI:10.1049/iet-cps.2018.5033
  • Y. Cao, X. Shi, Y. Li, Y. Tan, M. Shahidehpour, and S. Shi, “A simplified co-simulation model for investigating impacts of cyber-contingency on power system operations,” IEEE Trans. Smart Grid, Vol. 9, no. 5, pp. 4893–905, 2018. DOI:10.1109/TSG.2017.2675362
  • N. R. Chaudhuri, H. Song, R. Srinivasan, T. Sookoor, and S. Jeschke, “Wide-area monitoring and control of smart energy cyber-physical systems (CPS),” Smart Cities: Found. Principles Appl., Vol. 0, pp. 155–80, 2017. DOI:10.1002/9781119226444.ch6.
  • B. Chen, J. Wang, and M. Shahidehpour, “Cyber–physical perspective on smart grid design and operation,” IET Cyber-Phys. Syst.: Theory Appl., Vol. 3, no. 3, pp. 129–41, 2018. DOI:10.1049/iet-cps.2017.0143
  • J. Duan, H. Xu, and W. Liu, “Q-learning-based damping control of wide-area power systems under cyber uncertainties,” IEEE Trans. Smart Grid, Vol. 9, no. 6, pp. 6408–18, Nov. 2018. DOI:10.1109/TSG.2017.2711599
  • M. E. C. Bento, “A hybrid procedure to design a wide-area damping controller robust to permanent failure of the communication channels and power system operation uncertainties,” Int. J. Electr. Power Energy Syst., Vol. 110, pp. 118–35, 2019. DOI:10.1016/j.ijepes.2019.03.001
  • A. Noori, M. J. Shahbazadeh, and M. Eslami, “Designing of wide-area damping controller for stability improvement in a large-scale power system in presence of wind farms and SMES compensator,” Int. J. Electr. Power Energy Syst., Vol. 119, pp. 1–19, 2020. DOI:10.1016/j.ijepes.2020.105936.
  • M. Maherani, I. Erlich, and G. Krost, “Fixed order non-smooth robust H∞ wide area damping controller considering load uncertainties,” Int. J. Electr. Power Energy Syst., Vol. 115, pp. 1–10, 2020. DOI:10.1016/j.ijepes.2019.105423.
  • M. Sarkar, and B. Subudhi, “Fixed low-order synchronized and non-synchronized wide-area damping controllers for inter-area oscillation in power system,” Int. J. Electr. Power Energy Syst., Vol. 113, pp. 582–96, 2019. DOI:10.1016/j.ijepes.2019.05.049
  • Q. Mou, H. Ye, Y. Liu, and L. Gao, “Applications of matrix perturbation theory to delayed cyber-physical power system,” Int. J. Electr. Power Energy Syst., Vol. 107, pp. 507–15, 2019. DOI:10.1016/j.ijepes.2018.12.023
  • Y. Nie, P. Zhang, G. Cai, Y. Zhao, and M. Xu, “Unified Smith predictor compensation and optimal damping control for time-delay power system,” Int. J. Electr. Power Energy Syst., Vol. 117, pp. 1–11, 2020. DOI:10.1016/j.ijepes.2019.105670.
  • M. Maherani, and I. Erlich, “Robust decentralized fixed order wide area damping controller,” IFAC-PapersOnLine, Vol. 51, no. 28, pp. 438–43, 2018. DOI:10.1016/j.ifacol.2018.11.742
  • H. Wang, Y. Liu, B. Zhou, N. Voropai, G. Cao, Y. Jia, and E. Barakhtenko, “Advanced adaptive frequency support scheme for DFIG under cyber uncertainty,” Renewable Energy, Vol. 161, pp. 98–109, 2020. DOI:10.1016/j.renene.2020.06.085
  • L. Shi, Q. Dai, and Y. Ni, “Cyber–physical interactions in power systems: A review of models, methods, and applications,” Electr. Power Syst. Res., Vol. 163, pp. 396–412, 2018. DOI:10.1016/j.epsr.2018.07.015
  • A. Ashok, A. Hahn, and M. Govindarasu, “Cyber-physical security of wide-area monitoring, protection and control in a smart grid environment,” J. Adv. Res., Vol. 5, no. 4, pp. 481–9, 2014. DOI:10.1016/j.jare.2013.12.005
  • D. Soudbakhsh, A. Chakrabortty, and A. M. Annaswamy, “A delay-aware cyber-physical architecture for wide-area control of power systems,” Control. Eng. Pract., Vol. 60, pp. 171–82, 2017. DOI:10.1016/j.conengprac.2016.12.012
  • S. Poudel, Z. Ni, and N. Malla, “Real-time cyber physical system testbed for power system security and control,” Int. J. Electr. Power Energy Syst., Vol. 90, pp. 124–33, 2017. DOI:10.1016/j.ijepes.2017.01.016
  • A. Stefanov, and C.-C. Liu, “Cyber-physical system security and impact analysis,” IFAC Proc., Vol. 47, no. 3, pp. 11238–43, 2014.
  • S. Liu, I. Zenelis, Y. Li, X. Wang, Q. Li, and L. Zhu, “Markov game for securing wide-area damping control against false data injection attacks,” IEEE Syst. J., Vol. 15, no. 1, pp. 1356–65, March 2021. DOI:10.1109/JSYST.2020.2985165
  • W. Yao, et al., “Resilient wide-area damping control for inter-area oscillations to tolerate deception attacks,” IEEE Trans. Smart Grid, Vol. 12, no. 5, pp. 4238–49, Sept. 2021. DOI:10.1109/TSG.2021.3068390
  • M. E. C. Bento, R. Kuiava, and R. A. Ramos, “Design of wide-area damping controllers incorporating resiliency to permanent failure of remote communication links,” J. Control. Autom. Electr. Syst., Vol. 29, pp. 541–50, 2018. DOI:10.1007/s40313-018-0398-3
  • M. E. C. Bento, “Fixed low-order wide-area damping controller considering time delays and power system operation uncertainties,” IEEE Trans. Power Syst., Vol. 35, no. 5, pp. 3918–26, Sept. 2020. DOI:10.1109/TPWRS.2020.2978426
  • M. E. C. Bento, and R. A. Ramos, “A method based on linear matrix inequalities to design a wide-area damping controller resilient to permanent communication failures,” IEEE Syst. J., Vol. 15, no. 3, pp. 3832–40, Sept. 2021. DOI:10.1109/JSYST.2020.3029693
  • M. E. C. Bento, “A hybrid particle swarm optimization algorithm for the wide-area damping control design,” IEEE Trans. Ind. Inf., Vol. 18, no. 1, pp. 592–9, Jan. 2022. DOI:10.1109/TII.2021.3054846
  • J. Nan, W. Yao, J. Wen, Y. Peng, J. Fang, X. Ai, and J. Wen, “Wide-area power oscillation damper for DFIG-based wind farm with communication delay and packet dropout compensation,” Int. J. Electr. Power Energy Syst., Vol. 124, pp. 106306. ISSN 0142-0615, 2021. DOI:10.1016/j.ijepes.2020.106306
  • B. P. Padhy, “Adaptive latency compensator considering packet drop and packet disorder for wide-area damping control design,” Int. J. Electr. Power Energy Syst., Vol. 106, pp. 477–87. ISSN 0142-0615, 2019. DOI:10.1016/j.ijepes.2018.10.015

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.