41
Views
1
CrossRef citations to date
0
Altmetric
Electronic,Circuits Devices & Components

Energy Analysis of Metal QCA Circuits Behavior Based on Particle-Wave Duality

ORCID Icon, ORCID Icon & ORCID Icon

References

  • J. Huang, and F. Lombardi, Design and Test of Digital Circuits by Quantum-Dot Cellular Automata. Artech, 2007.
  • P. D. Tougaw, and C. S. Lent, “Logical devices implemented using quantum cellular automata,” J. Appl. Phys., Vol. 75, no. 3, pp. 1818–25, 1994. DOI: 10.1063/1.356375
  • C. S. Lent, P. D. Tougaw, and W. Porod, “Quantum cellular automata: The physics of computing with arrays of quantum dot molecules,” Proc. Workshop Phys. Comput. PhysComp, Vol. 94, pp. 5–13, 1994. IEEE. DOI: 10.1109/PHYCMP.1994.363705
  • C. S. Lent, and P. D. Tougaw, “A device architecture for computing with quantum dots,” Proc. IEEE, Vol. 85, no. 4, pp. 541–57, 1997. DOI: 10.1109/5.573740
  • C. S. Lent, P. D. Tougaw, W. Porod, and G. H. Bernstein, “Quantum cellular automata,” Nanotechnology, Vol. 4, no. 1, p. 49, 1993. DOI: 10.1088/0957-4484/4/1/004
  • C. S. Lent, G. L. Snider, G. Bernstein, W. Porod, A. Orlov, M. Lieberman, T. Fehlner, M. Niemier, and P. Kogge, “Quantum-dot cellular automata,” Electron Transport Quantum Dots: Springer, 397–431, 2003. DOI: 10.1007/978-1-4615-0437-5_10
  • A. Orlov, I. Amlani, G. Bernstein, C. Lent, and G. Snider, “Realization of a functional cell for quantum-dot cellular automata,” Science, Vol. 277, no. 5328, pp. 928–30, 1997. DOI: 10.1126/science.277.5328.928
  • Y. Lu, and C. S. Lent, “Theoretical study of molecular quantum-dot cellular automata,” J. Comput. Electron., Vol. 4, no. 1, pp. 115–18, 2005. DOI: 10.1007/s10825-005-7120-y
  • C. S. Lent, “Bypassing the transistor paradigm,” Science, Vol. 288, no. 5471, pp. 1597–9, 2000. DOI: 10.1126/science.288.5471.1597
  • H. Qi, S. Sharma, Z. Li, G. L. Snider, A. O. Orlov, C. S. Lent, and T. P. Fehlner, “Molecular quantum cellular automata cells. electric field driven switching of a silicon surface bound array of vertically oriented two-dot molecular quantum cellular automata,” J. Am. Chem. Soc., Vol. 125, no. 49, pp. 15250–9, 2003. DOI: 10.1021/ja0371909
  • M. Lieberman, S. Chellamma, B. Varughese, Y. Wang, C. Lent, G. H. Bernstein, G. Snider, and F. C. Peiris, “Quantum-dot cellular automata at a molecular scale,” Ann. N. Y. Acad. Sci., Vol. 960, no. 1, pp. 225–39, 2002. DOI: 10.1111/j.1749-6632.2002.tb03037.x
  • R. Cowburn, and M. Welland, “Room temperature magnetic quantum cellular automata,” Science, Vol. 287, no. 5457, pp. 1466–8, 2000. DOI: 10.1126/science.287.5457.1466
  • J. Timler, and C. S. Lent, “Power gain and dissipation in quantum-dot cellular automata,” J. Appl. Phys., Vol. 91, no. 2, pp. 823–31, 2002. DOI: 10.1063/1.1421217
  • Qcadesigner-e [Online]. Available: https://github.com/FSillT/.
  • K. Walus, T. J. Dysart, G. A. Jullien, and R. A. Budiman, “QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata,” IEEE Trans. Nanotechnol., Vol. 3, no. 1, pp. 26–31, 2004. DOI: 10.1109/TNANO.2003.820815
  • K. Walus, and G. A. Jullien, “Design tools for an emerging SoC technology: Quantum-dot cellular automata,” Proc. IEEE, Vol. 94, no. 6, pp. 1225–44, 2006. DOI: 10.1109/JPROC.2006.875791
  • F. S. Torres, R. Wille, P. Niemann, and R. Drechsler, “An energy-aware model for the logic synthesis of quantum-dot cellular automata,” IEEE Trans. Comput. Aided Des. Integr. Circuits Syst., Vol. 37, no. 12, pp. 3031–41, 2018. DOI: 10.1109/TCAD.2018.2789782
  • D. Mukhopadhyay, and P. Dutta, “A study on energy optimized 4 dot 2 electron two dimensional quantum dot cellular automata logical reversible flip-flops,” Microelectron. J., Vol. 46, no. 6, pp. 519–30, 2015. DOI: 10.1016/j.mejo.2015.03.001
  • E. P. Blair, E. Yost, and C. S. Lent, “Power dissipation in clocking wires for clocked molecular quantum-dot cellular automata,” J. Comput. Electron., Vol. 9, no. 1, pp. 49–55, 2010. DOI: 10.1007/s10825-009-0304-0
  • M. N. Mohammadi, and R. Sabbaghi-Nadooshan, “Introducing a novel model based on particle wave duality for energy dissipation analysis in MQCA circuits,” J. Comput. Electron., Vol. 15, no. 2, pp. 683–96, 2016. DOI: 10.1007/s10825-015-0765-2
  • C. Cohen-Tannoudji, B. Diu, and F. Laloë, Mécanique Quantique-Tome 1. EDP Sciences, 2021. DOI: 10.1051/978-2-7598-2288-1-005
  • G. Schulhof, K. Walus, and G. A. Jullien, “Simulation of random cell displacements in QCA,” ACM J. Emerg. Technol. Comput. Syst. (JETC), Vol. 3, no. 1, pp. 2-es, 2007. DOI: 10.1145/1229175.1229177
  • V. A. Mardiris, G. C. Sirakoulis, and I. G. Karafyllidis, “Automated design architecture for 1-d cellular automata using quantum cellular automata,” IEEE Trans. Comput., Vol. 64, no. 9, pp. 2476–89, 2014. DOI: 10.1109/TC.2014.2366745
  • S. Srivastava, S. Sarkar, and S. Bhanja, “Estimation of upper bound of power dissipation in QCA circuits,” IEEE Trans. Nanotechnol., Vol. 8, no. 1, pp. 116–27, 2008. DOI: 10.1109/TNANO.2008.2005408
  • R. Akbari-Hasanjani, and R. Sabbaghi-Nadooshan, “New Design of binary to ternary converter,” IETE. J. Res., 1–12, 2021. DOI: 10.1080/03772063.2021.1886881
  • D. A. Neamen. Semiconductor physics and devices: basic principles. New York, NY: McGraw-Hill, 2012.
  • P. D. Tougaw, and C. S. Lent, “Dynamic behavior of quantum cellular automata,” J. Appl. Phys., Vol. 80, no. 8, pp. 4722–36, 1996. DOI: 10.1063/1.363455

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.