163
Views
1
CrossRef citations to date
0
Altmetric
Computers & Computing

RANC-CROP Recommendation Attributed to Soil Nutrients and Stock Analysis Using Machine Learning

, , &

References

  • T. van Klompenburg, A. Kassahun, and C. Catal, “Crop yield prediction using machine learning: A systematic literature review,” Comput. Electron. Agric., Vol. 177, no. Elsevier B.V., pp. 1–18, 2020. doi:10.1016/j.compag.2020.105709.
  • F. Abbas, H. Afzaal, A. A. Farooque, and S. Tang, “Crop yield prediction through proximal sensing and machine learning algorithms,” Agronomy, Vol. 10, no. 7, pp. 1–16, 2020. doi:10.3390/agronomy10071046.
  • A. Crane-Droesch, “Machine learning methods for crop yield prediction and climate change impact assessment in agriculture,” Environ. Res. Lett., Vol. 13, no. 11, pp. 1–13, 2018. doi:10.1088/1748-9326/aae159.
  • A. Chlingaryan, S. Sukkarieh, and B. Whelan, “Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review,” Comput. Electron. Agric., Vol. 151, no. Elsevier B.V., pp. 61–69, 2018. doi:10.1016/j.compag.2018.05.012.
  • P. S. Maya Gopal, and R. Bhargavi, “Performance evaluation of best feature subsets for crop yield prediction using machine learning algorithms,” Appl. Artif. Intell., Vol. 33, no. 7, pp. 621–642, 2019. doi:10.1080/08839514.2019.1592343.
  • C. M. N. Fall, C. Lavaysse, H. Kerdiles, M. S. Dramé, P. Roudier, and A. T. Gaye, “Performance of dry and wet spells combined with remote sensing indicators for crop yield prediction in Senegal,” Climate Risk Management, Vol. 33, pp. 1–27, 2021. doi:10.1016/j.crm.2021.100331.
  • C. H. Sime, and T. A. Demissie, “Assessment and prediction of the climate change impact on crop yield, in jimma zone upper gilgel gibe districts, Ethiopia,” Arabian Journal of Geosciences, Vol. 15, no. 3, pp. 1–15, 2022. doi:10.1007/s12517-022-09605-2.
  • D. K. R, M. S, V. P, N. and I, and A. Jayaraj. “Meta-learning based adaptive Crop Price Prediction for agriculture application,” Jan. 2022, pp. 396–402. doi:10.1109/iceca52323.2021.9675891.
  • N. Rasheed, S. A. Khan, A. Hassan, and S. Safdar, “A decision support framework for national crop production planning,” IEEE. Access., Vol. 9, pp. 133402–133415, 2021. doi:10.1109/ACCESS.2021.3115801.
  • L. Bi, and G. Hu, “A genetic algorithm-assisted deep learning approach for crop yield prediction,” Soft. Comput., Vol. 25, no. 16, pp. 10617–10628, 2021. doi:10.1007/s00500-021-05995-9.
  • S. Iniyan, and R. Jebakumar, “Mutual information feature selection (MIFS) based crop yield prediction on corn and soybean crops using multilayer stacked ensemble regression (MSER),” Wirel. Pers. Commun., Vol. 1, pp. 1–30, 2021. doi:10.1007/s11277-021-08712-9.
  • B. Antony, “Prediction of the production of crops with respect to rainfall,” Environ. Res., Vol. 202, pp. 1–15, 2021. doi:10.1016/j.envres.2021.111624.
  • A. Pandey, and A. Mishra, “Application of artificial neural networks in yield prediction of potato crop,” Russian Agricultural Sciences, Vol. 43, no. 3, pp. 266–272, 2017. doi:10.3103/S1068367417030028.
  • M. U. Gul, K. John Pratheep, M. Junaid, and A. Paul. “Spiking Neural Network (SNN) for Crop Yield Prediction,” Jan. 2022, pp. 1–4. doi:10.1109/icot54518.2021.9680618.
  • N. R. Prasad, N. R. Patel, and A. Danodia, “Crop yield prediction in cotton for regional level using random forest approach,” Spatial Information Research, Vol. 29, no. 2, pp. 195–206, 2021. doi:10.1007/s41324-020-00346-6.
  • G. Shuai, and B. Basso, “Subfield maize yield prediction improves when in-season crop water deficit is included in remote sensing imagery-based models,” Remote Sens. Environ., Vol. 272, pp. 1–13, 2022. doi:10.1016/j.rse.2022.112938.
  • F. Sapino, C. D. Pérez-Blanco, C. Gutiérrez-Martín, A. García-Prats, and M. Pulido-Velazquez, “Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture,” Agric. Water Manag., Vol. 259, pp. 1–15, 2022. doi:10.1016/j.agwat.2021.107248.
  • R. Gamage, H. Rajapaksa, A. Sangeeth, G. Hemachandra, J. Wijekoon, and D. Nawinna. “Smart agriculture prediction system for vegetables grown in Sri Lanka,” in 2021 IEEE 12th Annual Information Technology, Electronics and Mobile Communication Conference, IEMCON 2021, 2021, pp. 246–251. doi:10.1109/IEMCON53756.2021.9623259.
  • M. S. Gastli, L. Nassar, and F. Karray. “Satellite images and deep learning tools for crop yield prediction and price forecasting,” in Proceedings of the International Joint Conference on Neural Networks, Jul. 2021, vol. 2021-July. doi:10.1109/IJCNN52387.2021.9534388.
  • R. K. Singh, and M. Prasad, “Big genomic data analysis leads to more accurate trait prediction in hybrid breeding for yield enhancement in crop plants,” Plant Cell Rep., Vol. 40, no. 10, pp. 2009–2011, 2021. doi:10.1007/s00299-021-02761-x.
  • R. G. Hammer, P. C. Sentelhas, and J. C. Q. Mariano, “Sugarcane yield prediction through data mining and crop simulation models,” Sugar Tech, Vol. 22, no. 2, pp. 216–225, 2020. doi:10.1007/s12355-019-00776-z.
  • J. S. Greene, and E. Maxwell, “Climatic impacts on winter wheat in oklahoma and potential applications to climatic and crop yield prediction,” Int. J. Biometeorol., Vol. 52, no. 2, pp. 117–126, 2007. doi:10.1007/s00484-007-0104-9.
  • M. Jadhav, N. Kolambe, S. Jain, and S. Chaudhari. “Farming made easy using machine learning,” May 2021. doi: 10.1109/INCET51464.2021.9456351.
  • S. Deepa, A. Alli, Sheetac, and S. Gokila, “Machine learning regression model for material synthesis prices prediction in agriculture,” Materials Today: Proceedings 2021. doi:10.1016/j.matpr.2021.04.327.
  • M. Ishak, M. S. Rahaman, and T. Mahmud. “FarmEasy: An intelligent platform to empower crops prediction and crops marketing,” in Proceedings of 2021 13th International Conference on Information and Communication Technology and System, ICTS 2021, 2021, pp. 224–229. doi: 10.1109/ICTS52701.2021.9608436.
  • S. H. Bhojani, and N. Bhatt, “Wheat crop yield prediction using new activation functions in neural network,” Neural Computing and Applications, Vol. 32, no. 17, pp. 13941–13951, 2020. doi:10.1007/s00521-020-04797-8.
  • G. S. Sajja, S. S. Jha, H. Mhamdi, M. Naved, S. Ray, and K. Phasinam. “An investigation on crop yield prediction using machine learning,” in Proceedings of the 3rd International Conference on Inventive Research in Computing Applications, ICIRCA 2021, Sep. 2021, pp. 916–921. doi: 10.1109/ICIRCA51532.2021.9544815.
  • D. Elavarasan, and P. M. D. R. Vincent, “A reinforced random forest model for enhanced crop yield prediction by integrating agrarian parameters,” J. Ambient. Intell. Humaniz. Comput., Vol. 12, no. 11, pp. 10009–10022, 2021. doi:10.1007/s12652-020-02752-y.
  • P. Pandit, K. N. Krishnamurthy, and B. Bakshi. “Prediction of crop yield and pest-disease infestation,” in AI, Edge and IoT-based Smart Agriculture, Elsevier, 2022, pp. 375–393. doi: 10.1016/b978-0-12-823694-9.00021-9.
  • L. Tian, C. Wang, H. Li, and H. Sun, “Yield prediction model of rice and wheat crops based on ecological distance algorithm,” Environmental Technology & Innovation, Vol. 20, pp. 1–12, 2020. doi:10.1016/j.eti.2020.101132.
  • P. Nevavuori, N. Narra, and T. Lipping, “Crop yield prediction with deep convolutional neural networks,” Comput. Electron. Agric., Vol. 163, pp. 1–9, 2019. doi:10.1016/j.compag.2019.104859.
  • C. G. Anupama, and C. Lakshmi, “A comprehensive review on the crop prediction algorithms,” Materials Today: Proceedings, Vol. 1, pp. 1–6, 2021. doi:10.1016/j.matpr.2021.01.549.
  • P. Kamath, P. Patil, S. S. Sushma, and S. S, “Crop yield forecasting using data mining,” Global Transitions Proceedings, Vol. 2, no. 2, pp. 402–407, 2021. doi:10.1016/j.gltp.2021.08.008.
  • F. Alidoost, Z. Su, and A. Stein, “Evaluating the effects of climate extremes on crop yield, production and price using multivariate distributions: A new copula application,” Weather and Climate Extremes, Vol. 26, pp. 1–9, 2019. doi:10.1016/j.wace.2019.100227.
  • S. Ju, et al., “Optimal county-level crop yield prediction using MODIS-based variables and weather data: A comparative study on machine learning models,” Agric. For. Meteorol., Vol. 307, pp. 1–15, 2021. doi:10.1016/j.agrformet.2021.108530.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.