26
Views
1
CrossRef citations to date
0
Altmetric
Retracted Article

RETRACTED ARTICLE: Incremental Outlier Feature Clustering Algorithm in Blockchain Networks Based on Big Data Analysis

Pages CLXXIX-CLXXXVII | Published online: 14 Apr 2022

References

  • P. Yang, D. Wang, Z. Wei, X. Duand, and T. Li, “An outlier detection approach based on improved self-organizing feature map clustering algorithm,” IEEE. Access., Vol. 7, no. 11, pp. 14–25, 2019. doi: 10.1109/ACCESS.2019.2922004.
  • G. Karthikeyan, and P. Balasubramanie, “OFS-NN: Optimal features-neural network based outlier detection for big data analysis,” J. of Commun., Vol. 13, no. 7, pp. 396–405, 2018. doi: 10.12720/jcm.13.7.396-405.
  • J. Li, Q. Hu, and M. Ai, “Unsupervised road extraction via a Gaussian mixture model with object-based features,” Int. J. Remote Sens., Vol. 39, no. 8, pp. 2421–40, 2018. doi:10.1080/01431161.2018.1425563.
  • D. Kumar, Z. Ghafoori, J. C. Bezdek, C. Leckie, K. Ramamohanaraoand, and M. Palaniswami, “Dealing with inliers in feature vector data,” Int. J. Uncertain. Fuzziness Knowlege-Based Syst., Vol. 26, no. 2, pp. 25–45, 2019. doi:10.1142/S021848851840010X.
  • M. Kaur, and S. Kadam, “Discovery of resources over cloud using MADM approaches,” Int. J. Engg Model., Vol. 32, no. 2-4 Regular Issue, pp. 83–92, 2019. doi.10.31534/engmod.2019.2-4.ri.02m.
  • S. Zhang, X. Jin, Z. F. Li, and J. Gao, “Outlier detection algorithm based on grid LOF and adaptive K-means,” Command Information System and Technology, Vol. 10, no. 01, pp. 90–4, 2019.
  • X. Q. Hu, “Construction of outlier mining model for big data set based on gradient boosting regression tree,” Journal of Jiamusi University (Natural Science Edition), Vol. 37, no. 5, pp. 743–7, 2019.
  • N. V. Chawla, N. Japkowicz, and A. Kotcz, “Editorial: Special issue on learning from imbalanced data sets,” ACM Sigkdd Explor. Newsl, Vol. 6, pp. 1–6, 2004. doi: 10.1145/1007730.1007733.
  • P. C. Sen, M. Hajra, and M. Ghosh, “Supervised classification algorithms in machine learning: A survey and review,” in Mandal J, Bhattacharya D, editors, Emerging Technology in Modelling and Graphics, Berlin, Germany: Springer, 2020, pp. 99–111. [Google Scholar]. doi: 10.1007/978-981-13-7403-6_11.
  • M. M. Moya, and D. R. Hush, “Network constraints and multi-objective optimization for one-class classification,” Neural Netw., Vol. 9, no. 3, pp. 463–74, 1996. doi: 10.1016/0893-6080(95)00120-4.
  • B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson, “Estimating the support of a high-dimensional distribution,” Neural Comput., Vol. 13, pp. 1443–71, 2001. doi: 10.1162/089976601750264965.
  • V. Barnett, and T. Lewis, “Origin of outliers, statistical methods and aims,” in Outliers in Statistical Data, 3rd ed, Hoboken, NJ, USA: Wiley, 1994, pp. 31–9. ISBN 0-471-93094-6.
  • L. Davies, and U. Gather, “The identification of multiple outliers,” J. Amer. Statist. Assoc, Vol. 88, no. 423, pp. 782–92, Feb. 2012. doi: 10.2307/2290763.
  • R. Agrawal, and P. Raghavan, “A linear method for deviation detection in large databases,” Proc. KDD, San Jose, CA, USA, Vol. 1141, no. 50, pp. 164–9, 1996. doi: 10.5555/3001460.3001495.
  • M. Kaur, and S. Kadam, “Bio-inspired workflow scheduling on HPC platform,” TEHNIČKI GLASNIK, Vol. 15, no. 1, pp. 60–8, 2021. doi:10.31803/tg-20210204183323.
  • F. Angiulli, and C. Pizzuti, “Outlier mining in large high-dimensional data sets,” IEEE Trans. Knowl. Data Eng, Vol. 17, no. 2, pp. 203–15, Feb. 2005. doi: 10.1109/tkde.2005.31.
  • M. M. Breunig, H. Kriegel, R. T. Ng, and J. Sander, “LOF: Identifying density-based local outliers,” Proc. SIGMOD, Dallas, TX, USA, Vol. 29, no. 2, pp. 93–104, 2000. doi: 10.1145/335191.335388.
  • V. Hautamaki, I. Karkkainen, and P. Franti, “Outlier detection using k-nearest neighbour graph,” Proc. 17th Int. Conf. Pattern Recognit., Cambridge, U.K., Vol. 3, pp. 430–43, 2004. doi: 10.1109/ICPR.2004.1334558.
  • H. P. Kriegel, M. Schubert, and A. Zimek, “Angle-based outlier detection in high-dimensional data,” in Proc. 14th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, Las Vegas, NV, USA, 2008, pp. 444–5. doi: 10.1145/1401890.1401946.
  • M. Kaur, and S. S. Kadam, “Discovery of resources using MADM approaches for parallel and distributed computing,” Eng. Sci. Technol. Int. J., Elsevier, Vol. 20, no. 3, pp. 1013–24, 2017. doi.10.1016/j.jestch.2017.04.006.
  • F. Angiulli, F. Fassetti, and L. Palopoli, “Detecting outlying properties of exceptional objects,” ACM TODS, Vol. 34, no. 7, pp. 7–7, Apr. 2009. Art. no. 7. doi: 10.1145/1508857.1508864.
  • C. C. Aggarwal, and S. Sathe, “An introduction to outlier ensembles,” in C. C. Aggarwal, and S. Sathe editors, Outlier Ensembles: An Introduction, Cham, Switzerland: Springer, 2017, ch. 1, sec. 1, p. 3. doi: 10.1007/978-3-319-54765-7_1.
  • L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: A survey,” Data Mining Knowl. Discovery, Vol. 29, no. 3, pp. 626–88, 2015. doi: 10.1007/s10618-014-0365-y.
  • G. S. Na, D. Kim, and H. Yu, “DILOF: Effective and memory efficient local outlier detection in data streams,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, London, UK, 2018, pp. 1993–200. doi: 10.1145/3219819.3220022.
  • S. Xu, H. Liu, L. Duan, and W. Wu, “An improved LOF outlier detection algorithm,” in 2021 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA), 2021, pp. 113–7, doi: 10.1109/ICAICA52286.2021.9498181.
  • X. Wang, H. Jiang, and B. Yang, “A k-nearest neighbor medoid-based outlier detection algorithm,” in 2021 International Conference on Communications, Information System and Computer Engineering (CISCE), 2021, pp. 601–5, doi: 10.1109/CISCE52179.2021.9446001.
  • Y. Zhou, and S. Zhang, “Detection algorithm of local outlier based on variable dense cell,” in 2021 IEEE 9th International Conference on Computer Science and Network Technology (ICCSNT), 2021, pp. 12–6, doi: 10.1109/ICCSNT53786.2021.9615480.
  • Q. Yan, J. Chen, and D. S. Lieven, “An outlier detection method based on mahalanobis distance for source localization,” Sensors, Vol. 18, no. 7, pp. 2186–94, 2018. doi: 10.3390/s18072186.
  • K. Kerdprasop, N. Kerdprasop, and P. Sattayatham, “Chapter 48 weighted K-means for density-biased clustering,” Springer Science and Business Media LLC, Vol. 3598, pp. 488–497, 2005. doi: 10.1007/11546849_48.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.