103
Views
3
CrossRef citations to date
0
Altmetric
Instrumentation & Measurement

Autonomic Features in Prediction of Coronary Artery Disease and Myocardial Infarction

, &

References

  • G. A. Roth, et al., “Global, regional, and national burden of cardiovascular diseases for 10 causes, 1990 to 2015,” J. Am. Cardiol, Vol. 70, no. 1, pp. 1–25, 2017.
  • A. Dolatabadi, S. E. Khadem, and B. M. Asl, “Automated diagnosis of coronary artery disease (CAD) patients using optimized SVM,” Comput. Meth. Prog. Bio, Vol. 138, pp. 117–126, 2017.
  • M. Kumar, R. B. Pachori, and U. R. Acharya, “Characterization of coronary artery disease using flexible analytic wavelet transform applied on ECG signals,” Biomed. Signal. Process, Vol. 31, pp. 301–308, 2017.
  • Y. Aggarwal, J. Das, P. M. Mazumder, R. Kumar, and R. K. Sinha, “Heart rate variability time domain features in automated prediction of diabetes in rat,” Phys. Eng. Sci. Med, Vol. 44, pp. 45–52, 2021.
  • R. S. Shukla, and Y. Aggarwal, “Fourier Transform and autoregressive HRV features in prediction and classification of breast cancer,” IETE J. Res, 2021. doi: 10.1080/03772063.2021.1878063.
  • Y. Aggarwal, J. Das, P. M. Mazumder, R. Kumar, and R. K. Sinha, “Heart rate variability features from nonlinear cardiac dynamics in identification of diabetes using artificial neural network and support vector machine,” Biocybern. Biomed. Eng, Vol. 40, pp. 1002–1009, 2020.
  • M. G. Poddar, A. C. Birajdar, and J. Virmani, “Automated classification of hypertension and coronary artery disease patients by PNN, KNN, and SVM classifiers using HRV analysis,” in Machine learning in Bio-signal analysis and diagnostic imaging, Dey, et al., Ed. London: Academic Press, 2019, pp. 99–125.
  • M. H. Abdelnabi, “Cardiovascular clinical implications of heart rate variability,” Int. J. Cardiovasc. Acad, Vol. 5, no. 2, pp. 37, 2019.
  • R. S. Shukla, and Y. Aggarwal, “Nonlinear heart rate variability based artificial intelligence in lung cancer prediction,” J. Appl. Biomed, Vol. 16, no. 2, pp. 145–155, 2018.
  • R. S. Shukla, and Y. Aggarwal, “Time-domain heart rate variability-based computer-aided prognosis of lung cancer,” Indian J. Cancer, Vol. 55, no. 1, pp. 61–65, 2018.
  • U. R. Acharya, O. Faust, V. Sree, G. Swapna, R. J. Martis, N. A. Kadri, and J. S. Suri, “Linear and nonlinear analysis of normal and CAD-affected heart rate signals,” Comput. Meth. Prog. Bio, Vol. 113, no. 1, pp. 55–68, 2014.
  • Z. Binici, M. R. Mouridsen, L. Køber, and A. Sajadieh, “Decreased nighttime heart rate variability is associated with increased stroke risk,” Stroke, Vol. 42, no. 11, pp. 3196–3201, 2011.
  • E. Buccelletti, E. Gilardi, E. Scaini, L. Galiuto, R. Persiani, A. Biondi, F. Basile, and N. G. Silveri, “Heart rate variability and myocardial infarction: systematic literature review and metanalysis,” Eur. Rev. Med.Pharmacol. Sci., Vol. 13, no. 4, pp. 299–307, 2009.
  • U. R. Acharya, K. P. Joseph, N. Kannathal, C. M. Lim, and J. S. Suri, “Heart rate variability: a review,” Med. Biol. Eng. Comput, Vol. 44, no. 2, pp. 1031–1051, 2006.
  • J. Sztajzel, “Heart rate variability: a noninvasive electrocardiographic method to measure the autonomic nervous system,” Swiss Med. Wkly, Vol. 134, no. 35-36, pp. 514–522, 2004.
  • I. Goldenberg et al., “Heart Rate Variability for risk assessment of myocardial ischemia in patients without known coronary artery disease: The HRV-DETECT (Heart Rate Variability for the detection of myocardial ischemia) study”, J. Am. Heart. Assoc, Vol. 8, no. 24, pp. e014540, 2019.
  • Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, Heart rate variability: Standards of measurement, physiological interpretation, and clinical use, Eur. Heart. J, Vol. 17, pp. 354–381, 1996.
  • B. Xhyheri, O. Manfrini, M. Mazzolini, C. Pizzi, and R. Bugiardini, “Heart rate variability today,” Prog. Cardiovasc. Dis, Vol. 55, no. 3, pp. 321–331, 2012.
  • H. G. Lee, W. S. Kim, K. Y. Noh, J. H. Shin, U. Yun, and K. H. Ryu, “Coronary artery disease prediction method using linear and nonlinear feature of heart rate variability in three recumbent postures,” Inform. Syst. Front, Vol. 11, no. 4, pp. 419–431, 2009.
  • H. G. Lee, K. Y. Noh, and K. H. Ryu, “A data mining approach for coronary heart disease prediction using HRV features and carotid arterial wall thickness,” International Conference on Biomedical Engineering and Informatics, 200–206, 2008.
  • O. Manfrini, C. Pizzi, M. Viecca, and R. Bugiardini, “Abnormalities of cardiac autonomic nervous activity correlate with expansive coronary artery remodeling,” Atherosclerosis, Vol. 197, no. 1, pp. 183–189, 2008.
  • W. S. Kim, S. H. Jin, Y. K. Park, and H. M. Choi, “A study on development of multi-parametric measure of heart rate variability diagnosing cardiovascular disease”, in World Congress on Medical Physics and Biomedical Engineering, Springer, Berlin, Heidelberg 2006 pp. 3480–3483.
  • L. Verde, and G. A. de Pietro, “A neural network approach to classify carotid disorders from heart rate variability analysis,” Comput. Biol. Med, Vol. 109, pp. 226–234, 2019.
  • L. Verde, and G.A. de Pietro, “Machine learning approach for carotid diseases using heart rate variability features”, HEALTHINF, pp. 658–664, 2018.
  • J. Pan, and W. J. Tompkins, “A real-time QRS detection algorithm,” IEEE Trans. Biomed. Eng., Vol. BME-32, no. 3, pp. 230–236, 1985.
  • D. H. Singer, G. J. Martin, N. Magid, J. S. Weiss, J. W. Schaad, R. Kehoe, T. Zheutlin, D. J. Fintel, A-M. Hsieh, and M. Lesch, “Low heart rate variability and sudden cardiac death,” J. Electrocardiol., Vol. 21, pp. S46–S55, 1988.
  • P. K. Stein, and R. E. Kleiger, “Insights from the study of heart rate variability,” Annu. Rev. Med., Vol. 50, no. 1, pp. 249–261, 1999.
  • R. M. Carney, M. W. Rich, A. TeVelde, J. Saini, K. Clark, and K. E. Freedland, “The relationship between heart rate, heart rate variability and depression in patients with coronary artery disease,” J. Psychosom. Res., Vol. 32, no. 2, pp. 159–164, 1988.
  • L. Verma, S. Srivastava, and P.C. Negi, “A hybrid data mining model to predict coronary artery disease cases using non-invasive clinical data”, J. Med. Syst, Vol. 40, no. 7, pp. 178, 2016.
  • A. Barwad, P. Dey, and S. Susheilia, “Artificial neural network in diagnosis of metastatic carcinoma in effusion cytology’,” Cytometry Part B: Clin. Cyto, Vol. 82B, no. 2, pp. 107–111, 2012.
  • J. F. de Canete, S. Gonzalez-Perez, and J. C. Ramos-Diaz, “Artificial neural networks for closed loop control of in silico and ad hoc type 1 diabetes,” Comput. Meth. Prog. Bio, Vol. 106, no. 1, pp. 55–66, 2012.
  • E. Elveren, and N. Yumuşak, “Tuberculosis disease diagnosis using artificial neural network trained with genetic algorithm,” J. Med. Syst, Vol. 35, no. 3, pp. 329–332, 2011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.