156
Views
5
CrossRef citations to date
0
Altmetric
Electromagnetics

An FSS Based Broadband Elliptical Tree Shaped Antenna with Augmented Gain for Wireless Applications

, &

References

  • K. L. Wong. Compact and Broadband Microstrip Antenna. New York: Wiley, 2002.
  • J. Liu, S. Zhong, and K. P. Esselle, “A printed elliptical monopole antenna with modified feeding structure for bandwidth enhancement,” IEEE Trans. Antennas Propag., Vol. 59, no. 2, pp. 667–670, Feb. 2011.
  • T. Shanmuganantham, and S. Raghavan, “Design of a compact broadband microstrip patch antenna with probe feeding for wireless applications,” AEU - Int J Electron Commun, Vol. 63, no. 8, pp. 653–659, Aug. 2009.
  • M. A. Matin, B. S. Sharif, and C. C. Tsimenidis, “Broadband stacked microstrip antennas with different radiating patch,” Wireless Pers. Commun., Vol. 56, pp. 637–648, Oct. 2011.
  • A. Agrawal, P. K. Singhal, and A. Jain, “Design and optimization of a microstrip patch antenna for increased bandwidth,” Int. J. Microwave Wireless Technol., Vol. 5, pp. 529–535, 2013.
  • K. Mondal, and P. P. Sarkar, “Gain and bandwidth enhancement of microstrip patch antenna for WiMAX and WLAN applications,” IETE J. Res., Vol. 67, no. 5, pp. 726–734, 2019.
  • A. K. Gautam, A. Bisht, and B. K. Kanaujia, “A wideband antenna with defected ground plane for WLAN/WiMAX applications,” Int. J. Electron. Commun., Vol. 70, pp. 354–358, 2016.
  • A. Bakhtiari, R. A. Sadeghzadeh, and M. Naser, “Gain enhanced miniaturized microstrip patch antenna using metamaterial superstrates,” IETE J. Res., Vol. 65, no. 5, pp. 635–640, 2019.
  • T. Shaw, D. Bhattacharjee, and D. Mitra, “Gain enhancement of slot antenna using zero-index metamaterial superstrate,” Int J RF Microw Comput Aided Eng., Vol. 27, no. 4, p. e21078, 2017.
  • J. Liu, Z. Tang, Z. Wang, H. Li, and Y. Yin, “Gain enhancement of a broadband symmetrical dual-loop antenna using shorting pins,” IEEE Antennas Wirel Propag. Lett., Vol. 17, no. 8, pp. 1369–1372, 2018.
  • X. Zhang, and L. Zhu, “Gain-enhanced patch antennas with loading of shorting pins,” IEEE Trans. Antennas Propag., Vol. 64, no. 8, pp. 3310–3318, Aug. 2016.
  • J. Ashish, and A. P. Rao, “A dual band AMC backed antenna for WLAN, WiMAX and 5G wireless applications,” Appl Comput Electromagn Soc. J., Vol. 36, no. 9, pp. 1209–1214, Sept. 2021.
  • B. A. Munk. Frequency Selective Surfaces: Theory and Design. New York: Wiley, 2000.
  • N. Kushwaha, and R. Kumar, “Design of a wideband high gain antenna using FSS for circularly polarized applications,” Int. J. Electron. Commun., Vol. 70, no. 9, pp. 1156–1163, Sep. 2016.
  • R. Mittra, C. H. Chan, and T. Cwik, “Techniques for analyzing frequency selective surfaces-a review,” Proc. IEEE, Vol. 76, no. 12, pp. 1593–1615, Dec.1988.
  • H.-Y. Chen, and Y. Tao, “Performance improvement of a u-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem cross elements,” IEEE Trans. Antennas Propag., Vol. 59, no. 9, pp. 3482–3486, 2011.
  • E. M. F. Fernandes, et al., “2.4–5.8 GHz dual-band patch antenna with FSS reflector for radiation parameters enhancement,” Int. J. Electron. Commun(AEU), Vol. 108, pp. 235–241, Aug. 2019.
  • A. Chatterjee, and S. K. Parui, “Performance enhancement of a dual-band monopole antenna by using a frequency-selective surface-based corner reflector,” IEEE Trans. Antennas Propag., Vol. 64, no. 6, pp. 2165–2171, 2016.
  • S. Sah, A. Mittal, and M. R. Tripathy, “High gain dual band slot antenna loaded with frequency selective surface for WLAN/fixed wireless communication,” Microw. Opt. Technol. Lett., Vol. 61, pp. 519–525, 2019.
  • A. Kumar, S. Dwari, and G. P. Pandey, “A dual-band high-gain microstrip antenna with a defective frequency selective surface for wireless applications,” J. Electromagn. Waves Appl., Vol. 35, no. 12, pp. 1637–1651, 2021.
  • S. Peddakrishna, and T. Khan, “Performance improvement of slotted elliptical patch antenna using FSS superstrate,” Int. J. RF Microw. Comput.-Aided Eng., Vol. 28, no. 9, p. e21421, 2018.
  • R. Sahoo, and D. Vakula, “Gain enhancement of conformal wideband antenna with parasitic elements and low index metamaterial for WiMAX application,” Int J. Electron. Commun. Jun., Vol. 105, pp. 24–35, 2019.
  • A. K. Sohi, and A. Kaur, “A complementary Sierpinski gasket fractal antenna array integrated with a complementary Archimedean defected ground structure for portable 4G/5G UWB MIMO communication devices,” Micro. Opt. Technol. Lett., Vol. 62, no. 7, pp. 2595–2605, 2020.
  • R. Adeline Mellita, D. S. Chandu, and S. S. Karthikeyan, “A compact dual band frequency selective surfaces for gain enhancement of a dual band antenna,” in Optical and Wireless Ethnologies, Springer Electrical Series, 2018, pp. 607–614.
  • K. D. Prasad. Antenna Wave and Propagation. Satya Parkashan, 1983.
  • M. Gupta, and V. Mathur, “Multiband multiple elliptical microstrip patch antenna with circular polarization,” Wireless Pers. Commun., Vol. 102, pp. 355–368, 2018.
  • S. Lakrit, S. Das, S. Ghosh, and B. T. P. Madhav, “Compact UWB flexible elliptical CPW-fed antenna with triple notch bands for wireless communications,” Int. J. RF Microw. Comput. Aided Eng., Vol. 30, no. 7, p. e22201, July 2020.
  • P. Das, and K. Mandal, “Modelling of ultra-wide stop-band frequency-selective surface to enhance the gain of a UWB antenna,” IET Microwaves Antennas Propag., Vol. 13, no. 3, pp. 269–277, 2019.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.