81
Views
5
CrossRef citations to date
0
Altmetric
Communications

Ball-Bearing Fault Classification Using Comparative Analysis of Wavelet Coefficient based on Entropy Measurement

ORCID Icon, , , &

REFERENCES

  • W. J. Wang, J. Chen, X. K. Wu, and Z. T. Wu, “The application of some non-linear methods in rotating machinery fault diagnosis,” Mech. Syst. Signal. Process, Vol. 15, pp. 697–705, 2001. doi:10.1006/mssp.2000.1316
  • B. Samanta, K. R. Al-Balushi, and S. A. Al-Araimi, “Artificial neural networks and genetic algorithm for bearing fault detection,” Soft. Comput., Vol. 10, pp. 264–271, 2006. doi:10.1007/s00500-005-0481-0
  • B. Samanta, K. R. Al-Balushi, and S. A. Al-Araimi, “Bearing fault detection using artificial neural networks and genetic algorithm,” J. Appl. Signal. Process, Vol. 3, pp. 366–377, 2004.
  • S. Janjarasjitt, H. Ocak, and K. A. Loparo, “Bearing condition diagnosis and prognosis using applied nolinear dynamical analysis of machine vibration signal,” J. Sound. Vib., Vol. 317, pp. 112–126, 2008. doi:10.1016/j.jsv.2008.02.051
  • K. Feng, Z. Jiang, W. He, and Q. Qin, “Rolling element bearing fault detection based on optimal antisymmetric real Laplace wavelet,” Measurement, Vol. 44, pp. 1582–1591, 2011. doi:10.1016/j.measurement.2011.06.011
  • S. L. Volpi, et al. “Time evolution analysis of bearing faults,” Proceeding International Conference on Intelligent Systems and Control, Cambridge, MA, U.S, 2009, pp. 131–137.
  • C. Bianchini, F. Immovilli, M. Cocconcelli, R. Rubini, and A. Bellini, “Fault detection of linear bearings in brushless AC linear motors by vibration analysis,” IEEE Trans. Ind. Electron., Vol. 58, no. 5, pp. 1684–1694, 2011. doi:10.1109/TIE.2010.2098354
  • N. Nguyen, and H. Lee. “Bearing fault diagnosis using adaptive network based fuzzy inference system.” Proceeding International Symposium on Electrical & Electronics Engineering, HCM City, Vietnam, 2007, pp. 280–285.
  • N. Tandon, and A. Choudhury, “A review of vibration and acoustic measurement methods for the detection of defects in rolling element bearings,” Tribol. Int., Vol. 32, no. 8, pp. 469–480, 2009. doi:10.1016/S0301-679X(99)00077-8
  • A. Parey, M. El Badaoui, F. Guillet, and N. Tandon, “Dynamic modelling of spur gear pair and application of empirical mode decomposition-based statistical analysis for early detection of localized tooth defect,” J. Sound. Vib., Vol. 294, pp. 547–561, 2006. doi:10.1016/j.jsv.2005.11.021
  • H. Li, and Y. Yin. “Bearing Fault Diagnosis Based on Laplace Wavelet Transform,” Telkomnika Indonesian J. Electric. Eng. Comput. Sci. Vol. 10, no. 8, pp. 2139–2150, 2012.
  • N. E. Huang, et al., “The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. Royal Soc. London, Vol. 454, pp. 903–995, 1998. doi:10.1098/rspa.1998.0193
  • Z. K. Zhu, Z. He, A. Wang, and S. Wang, “Synchronous enhancement ofperiodic transients on polar diagram for machine fault diagnosis,” Int. J. Wavelets Multiresolution Inf. Process., Vol. 7, no. 4, pp. 427–442, 2009. doi:10.1142/S0219691309003008
  • J. Rafiee, M. A. Rafiee, and P. W. Tse, “Application of mother waveletfunctions for automatic gear and bearing fault diagnosis,” Expert. Appl., Vol. 37, pp. 4568–4579, 2010. doi:10.1016/j.eswa.2009.12.051
  • P. K. Kankar, S. C. Sharma, and S. P. Harsha, “Rolling element bearing faultdiagnosis using wavelet transform,” Neurocomputing, Vol. 74, pp. 1638–1645, 2011. doi:10.1016/j.neucom.2011.01.021
  • K. F. Al-Raheem, A. Roy, K. P. Ramachandran, D. K. Harrison, and S. Grainger, “Rolling element bearing faults diagnosis based onautocorrelation of optimized wavelet denoising technique,” Int. J. Adv. Manuf. Technol., Vol. 40, pp. 393–402, 2009. doi:10.1007/s00170-007-1330-3
  • H. Qiu, J. Lee, J. Lee, J. Lin, and G. Yu, “Wavelet filter-based weak signaturedetection method and its application on rolling element bearingprognostics,” J. Sound. Vib., Vol. 289, pp. 1066–1090, 2006. doi:10.1016/j.jsv.2005.03.007
  • W. He, Z. Jiang, and K. Feng, “Bearing fault detection based on optimalwavelet filter and sparse code shrinkage,” Measurement, Vol. 42, pp. 1092–1102, 2009. doi:10.1016/j.measurement.2009.04.001
  • W. Su, F. Wang, H. Zhu, Z. Zhang, and Z. Guo, “Rolling element bearingfaults diagnosis based on optimal Morlet wavelet filter and autocorrelation enhancement,” Mech. Syst. Signal. Process., Vol. 24, pp. 1458–1472, 2010. doi:10.1016/j.ymssp.2009.11.011
  • K. F. Al-Raheem, A. Roy, K. P. Ramachandran, D. K. Harrison, and S. Grainger, “Application of the Laplace-wavelet combined withANN for rolling bearing fault diagnosis,” J. Vib. Acoust., Vol. 130, no. 051007, pp. 1–9, 2008.
  • H. Hong, and M. Liang, “Fault severity assessment for rolling elementbearings using the Lempel–Ziv complexity and continuous wavelettransform,” J. Sound. Vib., Vol. 320, no. 1–2, pp. 452–468, 2009. doi:10.1016/j.jsv.2008.07.011
  • P. Konar, and P. Chattopadhyay, “Bearing fault detection of inductionmotor using wavelet and support vector machines (SVMs),” Appl. Soft Comput., Vol. 11, pp. 4203–4211, 2009. doi:10.1016/j.asoc.2011.03.014
  • P. K. Kankar, S. C. Sharma, and S. P. Harsha, “Rolling element bearing faultdiagnosis using autocorrelation and continuous wavelet transform,” J. Vib. Control, Vol. 17, pp. 2081–2094, 2011. doi:10.1177/1077546310395970
  • C. Li, M. Liang, Y. Zhang, and S. Hou, “Multi-scale autocorrelation viamorphological wavelet slices for rolling element bearing fault diagnosis,” Mech. Syst. Signal. Process., Vol. 31, pp. 428–446, 2012. doi:10.1016/j.ymssp.2012.03.012
  • R. R. Sharma, A. Kalyani, and R. B. Pachori, “An empirical wavelet transform-based approach for cross-terms-free Wigner–Ville distribution,” Signal. Image. Video. Process., Vol. 14, no. 2, pp. 249–256, 2020. doi:10.1007/s11760-019-01549-7
  • R. R. Sharma, P. Chandra, and R. B. Pachori, “Electromyogram signal analysis using eigenvalue decomposition of the Hankel matrix,” in Machine Intelligence and Signal Analysis, Springer, Singapore, 2019, pp. 671–682.
  • R. Kumar, and M. Singh, “Outer race defect width measurement in taperroller bearing using discrete wavelet transform of vibration signal,” Measurement, Vol. 46, no. 1, pp. 537–545, 2013. doi:10.1016/j.measurement.2012.08.012
  • B. Li, P. Zhang, S. S. Mi, R. X. Hu, and D. S. Liu, “An adaptive morphologicalgradient lifting wavelet for detecting bearing defects,” Mech. Syst. Signal. Process, Vol. 29, pp. 415–427, 2012. doi:10.1016/j.ymssp.2011.12.016
  • R. Yan, and R. Gao, “Performance evaluation of complex-valued waveletbasis on vibration analysis for bearing defect diagnosis,” Int. J. Comprehensive Eng., Part A, Vol. 1, pp. 41–47, 2012.
  • H. Liu, et al. Rolling bearing fault diagnosis under variable conditions using Hilbert-Huang transform and singular value decomposition, Mathematical problems in engineering. Hindawi Publishing Corporation, pp. 1–10, 2014.
  • J. Yang, Y. Zhang, and Y. Zhu, “Intelligent fault diagnosis of rolling element bearing based on SVMs and fractal dimension,” Mech. Syst. Signal. Process., Vol. 21, no. 5, pp. 2012–2024, 2007. doi:10.1016/j.ymssp.2006.10.005
  • L. Leiand, and Q. Zhang, “Relevance vector machine based bearing fault diagnosis,” in Proceedings IEEE International Conference on Machine Learning and Cybernetics, Dalian, China, 2006, pp. 3492–3496.
  • G. B. Huang, Q. Y. Zhu, and C. K. Siew, “Extreme learning machine: A new learning scheme of feedforward neural networks,” Proc. IEEE Int. Joint Conf. Neural Networks, 985–990, 2004.
  • N. Gupta, and A. S. Jalal, “Traditional to transfer learning progression on scene text detection and recognition: A survey,” ArtifIntell. Rev., Vol. 55, pp. 3457–3502, 2022.
  • R. Agarwal, A. S. Jalal, and K. V. Arya, “Local binary hexagonal extrema pattern (LBHXEP): A new feature descriptor for fake iris detection,” Vis. Comput., Vol. 37, pp. 1357–1368, 2021. doi:10.1007/s00371-020-01870-0
  • Z. Wang, J. Zhou, W. Du, Y. Lei, and J. Wang, “Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution,” Mech. Syst. Signal. Process., Vol. 162, pp. 108018, 2022. doi:10.1016/j.ymssp.2021.108018
  • B. Yang, S. Xu, Y. Lei, C.-G. Lee, E. Stewart, and C. Roberts, “Multi-source transfer learning network to complement knowledge for intelligent diagnosis of machines with unseen faults,” Mech. Syst. Signal. Process., Vol. 162, pp. 108095, 2022. doi:10.1016/j.ymssp.2021.108095
  • S. Chen, X. Dong, Z. Peng, W. Zhang, and G. Meng, “Nonlinear chirp mode decomposition: A variational method,” IEEE Trans. Signal Process., Vol. 65, pp. 6024–6037, 2017. doi:10.1109/TSP.2017.2731300
  • Y. Cheng, J. Shao, Y. Zhao, S. Liu, and R. Malekian, “An improved separation method of multi-components signal for sensing based on time-frequency representation,” Rev. Sci. Instrum., Vol. 90, pp. 064901, 2019. doi:10.1063/1.5082776
  • J. Niu, G. Ning, Y. Shen, and S. Yang, “Detection and identification of cutting chatter based on improved variational nonlinear chirp mode decomposition,” Int. J. Adv. Manuf. Technol., Vol. 104, pp. 25672578, 2019.
  • B. Singh, and B. K. Panigrahi, “Investigation of vibration signatures for multiple fault diagnosis in variable frequency drive using complex wavelet,” IEEE Trans. Power Electron., Vol. 29, no. 2, pp. 936–945, 2014. doi:10.1109/TPEL.2013.2257869
  • N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, “Entropies for detection of epilepsy in EEG,” Comput. Methods Programs Biomed., Vol. 80, pp. 187–194, 2005. doi:10.1016/j.cmpb.2005.06.012
  • C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., Vol. 27, pp. 379–423, 1948. doi:10.1002/j.1538-7305.1948.tb01338.x
  • J. Fell, J. Röschke, K. Mann, and C. Schäffner, “Discrimination of sleep stages: A comparisonbetween spectral and nonlinear EEG measures,” Electroencephalogr. Clin. Neurophysiol., Vol. 98, pp. 401–410, 1996. doi:10.1016/0013-4694(96)95636-9
  • K. Waheed, and F. Salam, “A data-derived quadratic independence measure for adaptive blind sourcerecovery in practical applications,” in Proceedings of the 45th Midwest Symposium on Circuits and Systems, Tulsa, OK, USA, 3, pp.473–476, 2002.
  • Case Western Reserve University Bearing Data Center. Available at: http://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website.
  • Q. Hu, Z. He, Z. Zhang, and Y. Zi, “Fault diagnosis of rotating machinery based on improved wavelet package transform and SVMs ensemble,” Mech. Syst. Signal. Process., Vol. 21, pp. 688–705, 2007. doi:10.1016/j.ymssp.2006.01.007
  • B. J. Van Wyka, M. A. van Wyk, and G. Qi, “Difference histogram: A new tool for time series analysis applied to bearing fault diagnosis,” Pattern Recognit. Lett., Vol. 30, pp. 595–599, 2009. doi:10.1016/j.patrec.2008.12.012
  • Z. Xu, J. Xuan, T. Shi, B. Wu, and Y. Hu, “Application of a modified fuzzy ARTMAP with feature weight learning for the fault diagnosis of bearing,” Expert. Syst. Appl., Vol. 36, pp. 9961–9968, 2009. doi:10.1016/j.eswa.2009.01.063
  • Y. Lei, Z. He, Y. Zi, and Q. Hu, “Fault diagnosis of rotating machinery based on multiple ANFIS combination with GAs,” Mech. Syst. Signal. Process., Vol. 21, pp. 2280–2294, 2007. doi:10.1016/j.ymssp.2006.11.003
  • R. Dubey, and D. Agrawal, “Bearing fault classification using ANN-based Hilbert footprint analysis,” IET Sci. Meas. Technol., Vol. 9, no. 8, pp. 1016–1022, 2015. doi:10.1049/iet-smt.2015.0026

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.