220
Views
2
CrossRef citations to date
0
Altmetric
Power Electronics

A High Voltage Gain Multi-Stage DC-DC Boost Converter with Reduced Voltage Stress

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , & show all

References

  • A. P. Reda Cherif, and F. Hasanov. “Riding the Energy Transition: Oil Beyond 2040,” 2017. [Online]. Available: https://www.imf.org/en/Publications/WP/Issues/2017/05/22/Riding-the-Energy-Transition-Oil-Beyond-2040-44932.
  • Y. Song, and B. Wang, “Evaluation methodology and control strategies for improving reliability of HEV power electronic system,” IEEE Trans. Veh. Technol, Vol. 63, no. 8, pp. 3661–76, Oct. 2014. DOI: 10.1109/TVT.2014.2306093.
  • M. A. Rahman, M. R. Islam, A. M. Mahfuz-Ur-Rahman, K. M. Muttaqi, and D. Sutanto, “Investigation of the effects of DC current injected by transformer-less PV inverters on distribution transformers,” IEEE Trans. Appl. Supercond, Vol. 29, no. 2, pp. 1–4, 2019. DOI: 10.1109/TASC.2019.2895580.
  • Q. Yan, X. Wu, X. Yuan, Y. Geng, and Q. Zhang, “Minimization of the DC component in transformerless three-phase grid-connected photovoltaic inverters,” IEEE Trans. Power Electron, Vol. 30, no. 7, pp. 3984–97, Jul. 2015. DOI: 10.1109/TPEL.2014.2350485.
  • Y. Lei, W. Xu, C. Mu, Z. Zhao, H. Li, and Z. Li, “New hybrid damping strategy for grid-connected photovoltaic inverter With LCL filter,” IEEE Trans. Appl. Supercond, Vol. 24, no. 5, pp. 1–8, Oct. 2014. DOI: 10.1109/TASC.2014.2351237.
  • A. Abdelhakim, P. Mattavelli, D. Yang, and F. Blaabjerg, “Coupled-Inductor-Based DC current measurement technique for transformerless grid-tied inverters,” IEEE Trans. Power Electron, Vol. 33, no. 1, pp. 18–23, Jan. 2018. DOI: 10.1109/TPEL.2017.2712197.
  • M. Muhammad, M. Armstrong, and M. A. Elgendy, “Analysis and implementation of high-gain non-isolated DC–DC boost converter,” IET Power Electron., Vol. 10, no. 11, pp. 1241–9, Sep. 2017. DOI: 10.1049/iet-pel.2016.0810.
  • J. Zhang, H. Wu, X. Qin, and Y. Xing, “PWM plus secondary-side phase-shift controlled soft-switching full-bridge three-port converter for renewable power systems,” IEEE Trans. Ind. Electron, Vol. 62, no. 11, pp. 7061–72, Nov. 2015. DOI: 10.1109/TIE.2015.2448696.
  • D. Debnath, and K. Chatterjee, “Two-Stage solar photovoltaic-based stand-alone scheme having battery as energy storage element for rural deployment,” IEEE Trans. Ind. Electron, Vol. 62, no. 7, pp. 4148–57, Jul. 2015. DOI: 10.1109/TIE.2014.2379584.
  • M. Pakdel, A. Taheri, and S. Jalilzadeh, “A novel soft switching DC–DC boost converter with higher efficiency,” IETE J. Res, Vol. 67, no. 4, pp. 559–68, Jul. 2021. DOI: 10.1080/03772063.2019.1565949.
  • Y. Xu, K. Wang, L. Jin, Y. Deng, Y. Lu, and Y. Yang. “Isolated Multi-port DC-DC Converter-Based on Bifurcate MMC Structure,” in 2019 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC), Dec. 2019, pp. 1–6. DOI: 10.1109/APPEEC45492.2019.8994701.
  • F. A. Himmelstoss, J. W. Kolar, and F. C. Zach, “A bidirectional DC-DC converter – analysis and control design,” IETE J. Res, Vol. 37, no. 1, pp. 124–32, Jan. 2015. DOI: 10.1080/03772063.1991.11436943.
  • B. Farhangi, and H. A. Toliyat, “Modeling and analyzing multiport isolation transformer capacitive components for onboard vehicular power conditioners,” IEEE Trans. Ind. Electron, Vol. 62, no. 5, pp. 3134–42, May 2015. DOI: 10.1109/TIE.2014.2386800.
  • M. Corti, E. Tironi, and G. Ubezio, “DC networks including multiport DC/DC converters: Fault analysis,” IEEE Trans. Ind. Appl, Vol. 52, no. 5, pp. 3655–62, Sep. 2016. DOI: 10.1109/TIA.2016.2572045.
  • V. N. S. R. Jakka, A. Shukla, and G. D. Demetriades, “Dual-Transformer-Based asymmetrical triple-port active bridge (DT-ATAB) isolated DC–DC converter,” IEEE Trans. Ind. Electron, Vol. 64, no. 6, pp. 4549–60, Jun. 2017. DOI: 10.1109/TIE.2017.2674586.
  • H. Liu, H. Hu, H. Wu, Y. Xing, and I. Batarseh, “Overview of high-Step-Up coupled-inductor boost converters,” IEEE J. Emerg. Sel. Top. Power Electron, Vol. 4, no. 2, pp. 689–704, Jun. 2016. DOI: 10.1109/JESTPE.2016.2532930.
  • Z. Saadatizadeh, P. Chavoshipour Heris, M. Sabahi, M. Tarafdar Hagh, and M. Maalandish, “A new non-isolated free ripple input current bidirectional DC-DC converter with capability of zero voltage switching,” Int. J. Circuit Theory Appl, Vol. 46, no. 3, pp. 519–42, Mar. 2018. DOI: 10.1002/cta.2435.
  • E. Babaei, Z. Saadatizadeh, and P. Chavoshipour Heris, “A new topology for nonisolated multiport zero voltage switching dc-dc converter,” Int. J. Circuit Theory Appl, Vol. 46, no. 6, pp. 1204–27, Jun. 2018. DOI: 10.1002/cta.2451.
  • T.-F. Wu, Y.-S. Lai, J.-C. Hung, and Y.-M. Chen, “Boost converter with coupled inductors and Buck–Boost type of active clamp,” IEEE Trans. Ind. Electron, Vol. 55, no. 1, pp. 154–62, Jan. 2008. DOI: 10.1109/TIE.2007.903925.
  • E. Babaei, and Z. Saadatizadeh, “A new interleaved bidirectional dc/dc converter with zero voltage switching and high voltage gain: analyses, design and simulation,” Int. J. Circuit Theory Appl, Vol. 45, no. 11, pp. 1773–800, Nov. 2017. DOI: 10.1002/cta.2360.
  • G. Wu, X. Ruan, and Z. Ye, “Nonisolated high step-Up DC–DC converters adopting switched-capacitor cell,” IEEE Trans. Ind. Electron, Vol. 62, no. 1, pp. 383–93, Jan. 2015. DOI: 10.1109/TIE.2014.2327000.
  • S. Li, Y. Zheng, B. Wu, and K. M. Smedley, “A family of resonant Two-Switch boosting switched-capacitor converter with ZVS operation and a wide line regulation range,” IEEE Trans. Power Electron, Vol. 33, no. 1, pp. 448–59, Jan. 2018. DOI: 10.1109/TPEL.2017.2669841.
  • M. L. Alghaythi, R. M. O’Connell, N. E. Islam, and J. M. Guerrero. “A Multiphase-Interleaved high Step-up DC-DC Boost Converter with Voltage Multiplier and Reduced Voltage Stress on Semiconductors for Renewable Energy Systems,” in 2020 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference (ISGT), Feb. 2020, pp. 1–5. DOI: 10.1109/ISGT45199.2020.9087696.
  • Z. Saadatizadeh, P. Chavoshipour Heris, E. Babaei, and F. Sadikoglu, “Expandable interleaved high voltage gain boost DC-DC converter with low switching stress,” Int. J. Circuit Theory Appl, Vol. 47, no. 5, pp. 782–804, May 2019. DOI: 10.1002/cta.2608.
  • S. Sadaf, N. Al-Emadi, A. Iqbal, and M. S. Bhaskar, “Double stage converter with low current stress for low to high voltage conversion in nanogrid,” Energy Reports, Vol. 7, pp. 5710–21, 2021. DOI: 10.1016/j.egyr.2021.08.199.
  • K. Eguchi, K. Kuwahara, and T. Ishibashi, “Analysis of an LED lighting circuit using a hybrid buck–boost converter with high gain,” Energy Reports, Vol. 6, pp. 250–6, Feb. 2020. DOI: 10.1016/j.egyr.2019.11.070.
  • H. Choi, M. Ciobotaru, M. Jang, and V. G. Agelidis, “Performance of medium-voltage DC-Bus PV system architecture utilizing high-gain DC–DC converter,” IEEE Trans. Sustain. Energy, Vol. 6, no. 2, pp. 464–73, Apr. 2015. DOI: 10.1109/TSTE.2014.2382690.
  • Y. Tang, T. Wang, and Y. He, “A switched-capacitor-based active-network converter With high voltage gain,” IEEE Trans. Power Electron, Vol. 29, no. 6, pp. 2959–68, Jun. 2014. DOI: 10.1109/TPEL.2013.2272639.
  • C.-T. Pan, C.-F. Chuang, and C.-C. Chu, “A novel transformer-less adaptable voltage quadrupler DC converter with low switch voltage stress,” IEEE Trans. Power Electron, Vol. 29, no. 9, pp. 4787–96, Sep. 2014. DOI: 10.1109/TPEL.2013.2287020.
  • V. A. K. Prabhala, P. Fajri, V. S. P. Gouribhatla, B. P. Baddipadiga, and M. Ferdowsi, “A DC-DC converter with high voltage gain and two input boost stages,” IEEE Trans. Power Electron, Vol. 31, no. 6, pp. 4206–15, 2016. DOI: 10.1109/TPEL.2015.2476377.
  • H. Wang, and Z. Li, “A PWM LLC Type resonant converter adapted to wide output range in PEV charging applications,” IEEE Trans. Power Electron, Vol. 33, no. 5, pp. 3791–801, May 2018. DOI: 10.1109/TPEL.2017.2713815.
  • H. Xu, Z. Yin, Y. Zhao, and Y. Huang, “Accurate design of high-efficiency LLC resonant converter with wide output voltage,” IEEE. Access., Vol. 5, pp. 26653–65, 2017. DOI: 10.1109/ACCESS.2017.2757764.
  • T. Jiang, J. Zhang, X. Wu, K. Sheng, and Y. Wang, “A bidirectional three-level LLC resonant converter with PWAM control,” IEEE Trans. Power Electron, Vol. 31, no. 3, pp. 2213–25, Mar. 2016. DOI: 10.1109/TPEL.2015.2438072.
  • H. Feng, T. Cai, S. Duan, X. Zhang, and H. Hu. “Modeling and analysis of phase-shift controlled LCL resonant converter in wireless charging systems,” in 2017 IEEE Applied Power Electronics Conference and Exposition (APEC), Mar. 2017, pp. 3714–9. DOI: 10.1109/APEC.2017.7931232.
  • K. Wang, L. Zhu, D. Qu, H. Odendaal, J. Lai, and F. C. Lee. “Design, implementation, and experimental results of bi-directional full-bridge DC/DC converter with unified soft-switching scheme and soft-starting capability,” in 2000 IEEE 31st Annual Power Electronics Specialists Conference. Conference Proceedings (Cat. No.00CH37018), vol. 2, pp. 1058–63. DOI: 10.1109/PESC.2000.879959.
  • Y. Yuan, Z. Zhang, and X. Mei, “Boost-integrated LCL resonant converter with high voltage gain,” IET Power Electron., Vol. 13, no. 2, pp. 332–9, Feb. 2020. DOI: 10.1049/iet-pel.2019.0569.
  • N. Mohan, T. M. Undeland, and P. W. Robbins. Power Electronics : Converters, Applications and Design. 4th ed. Canada: John Wiley & Sons Inc, 2017.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.