127
Views
0
CrossRef citations to date
0
Altmetric
Control Engineering

Smoothed Functional Algorithm with Norm-limited Update Vector for Identification of Continuous-time Fractional-order Hammerstein Models

&

REFERENCES

  • S. Mukhopadhyay, and A. Mukherjee, “Imdlms: An imputation based LMS algorithm for linear system identification With missing input data,” IEEE Trans. Signal Process., Vol. 68, pp. 2370–2385, 2020. doi:10.1109/TSP.2020.2983162.
  • A. Ayyad, M. Chehadeh, M. I. Awad, and Y. Zweiri, “Real-Time system identification using deep learning for linear processes With application to unmanned aerial vehicles IEEE. Access., vol. 8, 2020, 122539–122553, doi:10.1109/ACCESS.2020.3006277.
  • B. A. H. Vicente, S. S. James, and S. R. Anderson, “Linear system identification versus physical modeling of lateral–longitudinal vehicle dynamics,” IEEE Trans. Contr. Syst. Technol., Vol. 29, no. 3, pp. 1380–1387, 2021. doi:10.1109/TCST.2020.2994120.
  • S. Formentin, and A. Chiuso, “Control-oriented regularization for linear system identification,” Automatica. (Oxf), Vol. 127, pp. 109539, 2021. doi:10.1016/j.automatica.2021.109539.
  • X. Mao, J. He, and C. Zhao. “System identification with variance minimization via input design,” arXiv preprint arXiv:2202.01102, 2022.
  • H. Chen, Y. Chen, and L. Yang, “Intelligent early structural health prognosis with nonlinear system identification for RFID signal analysis,” Comput. Commun., Vol. 157, pp. 150–161, 2020. doi:10.1016/j.comcom.2020.04.026.
  • A. H. Ribeiro, K. Tiels, J. Umenberger, T. B. Schön, and L. A. Aguirre, “On the smoothness of nonlinear system identification,” Automatica. (Oxf), Vol. 121, pp. 109158, 2020. doi:10.1016/j.automatica.2020.109158.
  • F. Hafiz, A. Swain, and E. Mendes, “Multi-objective evolutionary framework for non-linear system identification: A comprehensive investigation,” Neurocomputing, Vol. 386, pp. 257–280, 2020. doi:10.1016/j.neucom.2019.12.095.
  • F. He, and Y. Yang, “Nonlinear system identification of neural systems from neurophysiological signals,” Neuroscience, Vol. 458, pp. 213–228, 2021. doi:10.1016/j.neuroscience.2020.12.001.
  • J. Stiasny, G. S. Misyris, and S. Chatzivasileiadis. “Physics-informed neural networks for non-linear system identification for power system dynamics,” 2021, 1–6. doi:10.1109/PowerTech46648.2021.9495063.
  • S. F. Toha, S. Julai, and M. O. Tokhi, “Ant colony based model prediction of a twin rotor system,” Proc Eng, Vol. 41, pp. 1135–1144, 2012. doi:10.1016/j.proeng.2012.07.293.
  • A. K. M. Azad. “Analysis and design of control mechanisms for flexible manipulator systems.” University of Sheffield, 1995. [Online]. Available: https://books.google.com.my/books?id=CrSCNwAACAAJ.
  • L. Ljung, “Perspectives on system identification,” Ann. Rev. Contr., Vol. 34, no. 1, pp. 1–12, 2010. doi:10.1016/j.arcontrol.2009.12.001.
  • J. C. Gómez, and E. Baeyens, “Identification of block-oriented nonlinear systems using orthonormal bases,” J. Process Contr., Vol. 14, no. 6, pp. 685–697, 2004. doi:10.1016/j.jprocont.2003.09.010.
  • M. Schoukens, and K. Tiels, “Identification of block-oriented nonlinear systems starting from linear approximations: A survey,” Automatica. (Oxf), Vol. 85, pp. 272–292, 2017. doi:10.1016/j.automatica.2017.06.044.
  • J. Voros, “Identification of nonlinear block-oriented systems with backlash and saturation,” J. Electr. Eng., Vol. 70, no. 2, pp. 138–144, 2019. doi:10.2478/jee-2019-0020.
  • Y. Fan, X. Huang, Z. Wang, and Y. Li, “Nonlinear dynamics and chaos in a simplified memristor-based fractional-order neural network with discontinuous memductance function,” Nonlin. Dyn., Vol. 93, no. 2, pp. 611–627, 2018. doi:10.1007/s11071-018-4213-2.
  • H. Li. “Analysis on the nonlinear dynamics of deep neural networks: Topological entropy and chaos,” arXiv preprint arXiv:1804.03987; 2018.
  • D. Masti, and A. Bemporad. “Learning nonlinear state-space models using deep autoencoders,” In Proceedings of the IEEE Conference on Decision and Control, 2018, vol. 2018-December, 3862–3867. doi:10.1109/CDC.2018.8619475.
  • D. Gedon, N. Wahlström, T. B. Schön, and L. Ljung. “Deep state space models for nonlinear system identification,” In IFAC-PapersOnLine, 2021, vol. 54, no. 7, 481–486. doi:10.1016/j.ifacol.2021.08.406.
  • A. Akramizadeh, A. A. Farjami, and H. Khaloozadeh. “Nonlinear Hammerstein model identification using genetic algorithm,” 2002, 351–356. doi:10.1109/ICAIS.2002.1048126.
  • Z. L. Lai, X. D. Liu, and J. Geng, “Hammerstein-based model of piezoceramic actuator and its identification,” Opt. Precis. Eng., Vol. 20, no. 9, pp. 2087–2094, 2012. doi:10.3788/OPE.20122009.2087.
  • Z. Qi, Q. Sun, W. Ge, and Y. He, “Nonlinear modeling of PEMFC based on fractional order subspace identification,” Asian J. Contr., Vol. 22, no. 5, pp. 1892–1900, 2020. doi:10.1002/asjc.2092.
  • M. Jahani Moghaddam, H. Mojallali, and M. Teshnehlab, “Recursive identification of multiple-input single-output fractional-order Hammerstein model with time delay,” Appl. Soft Comput., Vol. 70, pp. 486–500, 2018. doi:10.1016/j.asoc.2018.05.046.
  • S. Sivagamasundari, and D. Sivakumar, “Estimation of valve stiction using particle swarm optimization,” Sens. Transduc., Vol. 129, no. 6, 2011.
  • S. J. Nanda, G. Panda, and B. Majhi, “Improved identification of Hammerstein plants using new CPSO and IPSO algorithms,” Expert Syst. Applic., Vol. 37, no. 10, pp. 6818–6831, 2010. doi:10.1016/j.eswa.2010.03.043.
  • E. Cuevas, P. Díaz, O. Avalos, D. Zaldívar, and M. Pérez-Cisneros, “Nonlinear system identification based on ANFIS-Hammerstein model using Gravitational search algorithm,” Appl. Intell., Vol. 48, no. 1, pp. 182–203, 2018. doi:10.1007/s10489-017-0969-1.
  • H. L. Prasad, L. A. Prashanth, S. Bhatnagar, and N. Desai, “Adaptive smoothed functional algorithms for optimal staffing levels in service systems Service Sci., 2013 5, 1, 29–55, doi:10.1287/serv.1120.0035.
  • S. Bhatnagar, H. L. Prasad, and L. A. Prashanth, “Stochastic recursive algorithms for optimization,” Simult. Perturb. Meth., Vol. 434, pp. 17–28, 2013.
  • S. Bhatnagar, and V. S. Borkar, “Multiscale chaotic SPSA and smoothed functional algorithms for simulation optimization,” Simulation, Vol. 79, no. 10, pp. 568–580, 2003. doi:10.1177/0037549703039988.
  • S. Bhatnagar, and V. S. Borkar, “A two timescale stochastic approximation scheme for simulation-based parametric optimization,” Probab. Eng. Inform. Sci., Vol. 12, no. 4, pp. 519–531, 1998. doi:10.1017/s0269964800005362.
  • D. Ghoshdastidar, A. Dukkipati, and S. Bhatnagar, “Smoothed functional algorithms for stochastic optimization usingq-Gaussian distributions,” ACM Trans. Model. Comput. Simul., Vol. 24, no. 3, pp. 1–26, 2014.
  • K. Lakshmanan, and S. Bhatnagar, “Quasi-Newton smoothed functional algorithms for unconstrained and constrained simulation optimization,” Comput. Optimiz. Applic., Vol. 66, no. 3, pp. 533–556, 2017. doi:10.1007/s10589-016-9875-4.
  • A. Sharma, K. Lakshmanan, R. Gupta, and A. Gupta, “Multi-Time scale smoothed functional With nesterov’s acceleration,” IEEE. Access, Vol. 9, pp. 113489–113499, 2021. doi:10.1109/ACCESS.2021.3103767.
  • D. Ghoshdastidar, A. Dukkipati, and S. Bhatnagar. “Q-Gaussian based Smoothed Functional algorithms for stochastic optimization,” 2012, 1059–1063. doi:10.1109/ISIT.2012.6283013.
  • I. Baba, S. Azuma, and T. Sugie, “Controller design for optimizing fuel consumption of hybrid electric vehicles,” Trans. Soc. Instrum. Contr. Eng., Vol. 49, no. 9, pp. 887–894, 2013. doi:10.9746/sicetr.49.887.
  • Y. Tanaka, S. I. Azuma, and T. Sugie, “Simultaneous perturbation stochastic approximation with norm-limited update vector,” Asian J. Contr., Vol. 17, no. 6, pp. 2083–2090, 2015. doi:10.1002/asjc.1153.
  • M. A. Ahmad, S. I. Azuma, and T. Sugie, “Identification of continuous-time Hammerstein systems by simultaneous perturbation stochastic approximation,” Expert Syst. Applic., Vol. 43, pp. 51–58, 2016. doi:10.1016/j.eswa.2015.08.041.
  • J. C. Spall, “Multivariate stochastic approximation using a simultaneous perturbation gradient approximation,” IEEE Trans. Autom. Contr., Vol. 37, no. 3, pp. 332–341, 1992. doi:10.1109/9.119632.
  • M. Crowder, “Stochastic approximation: A dynamical systems viewpoint by vivek S. borkar,” Intern. Stat. Rev., Vol. 77, no. 2, pp. 306–306, 2009. doi:10.1111/j.1751-5823.2009.00085_7.x.
  • J. E. Dennis, Jr, and J. J. Moré, “Quasi-Newton methods, motivation and theory,” SIAM Rev., Vol. 19, no. 1, pp. 46–89, 1977. doi:10.1137/1019005.
  • J. J. Jui, and M. A. Ahmad, “A hybrid metaheuristic algorithm for identification of continuous-time Hammerstein systems,” Appl. Math. Model., Vol. 95, pp. 339–360, 2021. doi:10.1016/j.apm.2021.01.023.
  • Low-noise electronic system design. Choice Reviews Online 31, 5, 1994, 31-2710–31-2710.
  • Y. M. Blanter, and M. Büttiker, “Shot noise in mesoscopic conductors,” Phys. Rep., Vol. 336, no. 1-2, pp. 1–166, 2000. doi:10.1016/S0370-1573(99)00123-4.
  • S. Pham, and A. Dinh, “Adaptive-Cognitive kalman filter and neural network for an upgraded nondispersive thermopile device to detect and analyze fusarium spores,” Sensors, Vol. 19, no. 22, pp. 4900, 2019. doi:10.3390/s19224900.
  • S. Bhatnagar, “Adaptive multivariate three-timescale stochastic approximation algorithms for simulation based optimization,” ACM Trans. Model. Comput. Simul., Vol. 15, no. 1, pp. 74–107, 2005. doi:10.1145/1044322.1044326.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.