78
Views
1
CrossRef citations to date
0
Altmetric
Medical Electronics

An Efficient Liver Disease Prediction Using Mask-Regional Convolutional Neural Network and Pelican Optimization Algorithm

, , &

References

  • S. Ambesange, A. Vijayalaxmi, R. Uppin, S. Patil, and V. Patil, “Optimizing liver disease prediction with random forest by various data balancing techniques,” in 2020 IEEE international conference on cloud computing in emerging markets (CCEM), IEEE, 2020, pp. 98–102.
  • N. Li, Y. Jiang, G. Gong, G. Han, and J. Ma, “Non-Invasive assessment model of liver disease severity by serum markers using cloud computing and internet of things,” IEEE Access, Vol. 6, pp. 33969–33976, 2018. doi:10.1109/ACCESS.2018.2849016
  • A. Sivasangari, B. J. K. Reddy, A. Kiran, and P. Ajitha, “Diagnosis of liver disease using machine learning models,” in 2020 fourth international conference on I-SMAC (IoT in social, mobile, analytics, and cloud)(I-SMAC), IEEE, 2020, pp. 627–630.
  • N. Razali, A. Mustapha, M. H. Abd Wahab, S. A. Mostafa, and S. K. Rostam, “A data mining approach to the prediction of liver diseases,” J. Phys: Conf. Ser., Vol. 1529, no. 3, pp. 032002, 2020. doi:10.1088/1742-6596/1529/3/032002
  • N. Nahar, F. Ara, M. A. I. Nelly, V. Barua, M. S. Hossain, and K. Andersson, “A comparative analysis of the ensemble method for liver disease prediction,” in 2019 2nd international conference on innovation in engineering and technology (ICIET), IEEE, 2019, pp. 1–6.
  • G. Shobana, and K. Umamaheswari, “Prediction of liver disease using gradient boost machine learning techniques with feature scaling,” in 2021 5th international conference on computing methodologies and communication (ICCMC), IEEE, 2021, pp. 1223–1229.
  • D. Devikanniga, A. Ramu, and A. Haldorai, “Efficient diagnosis of liver disease using support vector machine optimized with crows search algorithm,” EAI Endorsed Transactions on Energy Web, Vol. 7, 2020.
  • A. S. Singh, M. Irfan, and A. Chowdhury, “Prediction of liver disease using classification algorithms,” in 2018 4th international conference on computing communication and automation (ICCCA), IEEE, 2018, pp. 1–3.
  • Z. Yao, J. Li, Z. Guan, Y. Ye, and Y. Chen, “Liver disease screening based on densely connected deep neural networks,” Neural Netw., Vol. 123, pp. 299–304, 2020. doi:10.1016/j.neunet.2019.11.005
  • N. Nahar, and F. Ara, “Liver disease prediction by using different decision tree techniques,” Int. J. Data Mining & Knowledge Management Process, Vol. 8, no. 2, pp. 1–9, 2018. doi:10.5121/ijdkp.2018.8201
  • M. Bansal, M. Kumar, M. Sachdeva, and A. Mittal, “Transfer learning for image classification using VGG19: Caltech-101 image data set,” J. Ambient. Intell. Humaniz. Comput., 1–12, 2021.
  • K. Shaheed, A. Mao, I. Qureshi, M. Kumar, S. Hussain, and X. Zhang, “Recent advancements in finger vein recognition technology: methodology, challenges, and opportunities,” Inf. Fusion, Vol. 79, pp. 84–109, 2022. doi:10.1016/j.inffus.2021.10.004
  • S. Gupta, N. Mohan, and M. Kumar, “A study on source device attribution using still images,” Archives of Computational Methods in Engineering, Vol. 28, no. 4, pp. 2209–2223, 2021. doi:10.1007/s11831-020-09452-y
  • S. Walia, K. Kumar, M. Kumar, and X. Z. Gao, “Fusion of handcrafted and deep features for forgery detection in digital images,” IEEE Access, Vol. 9, pp. 99742–99755, 2021. doi:10.1109/ACCESS.2021.3096240
  • H. Kaur, and M. Kumar, “Offline handwritten gurumukhi word recognition using eXtreme gradient boosting methodology,” Soft. comput., Vol. 25, no. 6, pp. 4451–4464, 2021. doi:10.1007/s00500-020-05455-w
  • G. Chen, et al., “Prediction of chronic kidney disease using adaptive hybridized deep convolutional neural network on the internet of medical things platform,” IEEE Access, Vol. 8, pp. 100497–100508. doi:10.1109/ACCESS.2020.2995310
  • B. Khan, R. Naseem, F. Muhammad, G. Abbas, and S. Kim, “An empirical evaluation of machine learning techniques for chronic kidney disease prophecy,” IEEE. Access, Vol. 8, pp. 55012–55022, 2020. doi:10.1109/ACCESS.2020.2981689
  • G. R. Vasquez-Morales, S. M. Martinez-Monterrubio, P. Moreno-Ger, and JA, Recio-Garcia, “Explainable prediction of chronic renal disease in the Colombian population using neural networks and case-based reasoning,” IEEE Access, Vol. 7, pp. 152900–152910, 2019. doi:10.1109/ACCESS.2019.2948430
  • D. Malathi, R. Logesh, V. Subramaniyaswamy, V. Vijayakumar, and A. K. Sangaiah, “Hybrid reasoning-based privacy-aware disease prediction support system,” Comput. Electr. Eng., Vol. 73, pp. 114–127, 2019. doi:10.1016/j.compeleceng.2018.11.009
  • J. Aswini, B. Yamini, R. Jatothu, K. S. Nayaki, and M. Nalini, “An efficient cloud-based healthcare services paradigm for chronic kidney disease prediction application using boosted support vector machine,” Concurrency and Computation: Practice and Experience, Vol. 34, no. 10, pp. e6722–e2022.
  • E. M. Senan, et al., “Diagnosis of chronic kidney disease using effective classification algorithms and recursive feature elimination techniques,” J. Healthc. Eng. 2021.
  • N. Bhaskar, M. Suchetha, and N. Y. Philip, “Time series classification-based correlational neural network with bidirectional LSTM for automated detection of kidney disease,” IEEE Sensors J., Vol. 21, no. 4, pp. 4811–4818, 2021. doi:10.1109/JSEN.2020.3028738
  • S. Hashem, et al., “Machine learning prediction models for diagnosing hepatocellular carcinoma with HCV-related chronic liver disease,” Comput. Methods Programs Biomed., Vol. 196, pp. 105551, 2020. doi:10.1016/j.cmpb.2020.105551
  • T. A. Assegie, R. Subhashni, N. K. Kumar, J. P. Manivannan, P. Duraisamy, and M. F. Engidaye, “Random forest and support vector machine based hybrid liver disease detection,” Bulletin of Electrical Engineering and Informatics, Vol. 11, no. 3, pp. 1650–1656, 2022. doi:10.11591/eei.v11i3.3787
  • T. M. Ghazal, “Hep-pred: hepatitis c staging prediction using fine Gaussian svm,” Computers, Materials & Continua, Vol. 69, no. 1, pp. 191–203, 2021. doi:10.32604/cmc.2021.015436
  • Z. U. Rehman, M. A. Khan, F. Ahmed, R. Damaševičius, S. R. Naqvi, W. Nisar, and K. Javed, “Recognizing apple leaf diseases using a novel parallel real-time processing framework based on MASK RCNN and transfer learning: An application for smart agriculture,” IET Image Proc., Vol. 15, no. 10, pp. 2157–2168, 2021. doi:10.1049/ipr2.12183
  • Y. Zhan, W. Liu, and Y. Maruyama, “Damaged building extraction using modified mask R-CNN model using post-event aerial images of the 2016 kumamoto earthquake,” Remote. Sens. (Basel), Vol. 14, no. 4, pp. 1002, 2022. doi:10.3390/rs14041002
  • M. A. Khan, T. Akram, Y. D. Zhang, and M. Sharif, “Attributes based skin lesion detection and recognition: A mask RCNN and transfer learning-based deep learning framework,” Pattern Recognit. Lett., Vol. 143, pp. 58–66, 2021. doi:10.1016/j.patrec.2020.12.015
  • P. Trojovský, and M. Dehghani, “Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications,” Sensors, Vol. 22, no. 3, pp. 855, 2022. doi:10.3390/s22030855
  • T. R. Fleming, and D. P. Harrington. Counting processes and survival analysis, John Wiley & Sons, 2011.
  • A. Frank. Uci machine learning repository. Irvine, CA: University of California, School of Information and Computer Science, 2010. http://archive. ics. uci. edu/ml.
  • G. Hoffmann, A. Bietenbeck, R. Lichtinghagen, and F. Klawonn, “Using machine learning techniques to generate laboratory diagnostic pathways—a case study,” J Laboratory and Precision Medicine, Vol. 3, pp. 58, 2018. doi:10.21037/jlpm.2018.06.01
  • P. Trojovský, and M. Dehghani, “Pelican optimization algorithm: A novel nature-inspired algorithm for engineering applications,” Sensors, Vol. 22, no. 3, pp. 855, 2022. doi:10.3390/s22030855

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.