353
Views
3
CrossRef citations to date
0
Altmetric
Control Engineering

A New Model Reduction Technique for the Simplification and Controller Design of Large-Scale Systems

ORCID Icon &

REFERENCES

  • Y. G. I. Acle, F. D. Freitas, N. Martins, and J. Rommes, “Parameter preserving model order reduction of large sparse small-signal electromechanical stability power system models,” IEEE Trans. Power Syst, Vol. 34, no. 4, pp. 2814–24, 2019.
  • G. Vasu, M. Sivakumar, and M. Ramalingaraju, “Optimal model approximation of linear time-invariant systems using the enhanced DE algorithm and improved MPPA method,” Circuits, Syst. Signal Process, Vol. 39, pp. 2376–411, 2020.
  • Z. Li, J. Shan, and U. Gabbert, “Inverse compensator for a simplified discrete Preisach model using model-order reduction approach,” IEEE Trans. Ind. Electron, Vol. 66, no. 8, pp. 6170–78, 2019.
  • A. K. Choudhary, and S. K. Nagar, “Order reduction in z-domain for interval system using an arithmetic operator,” Circuits Syst. Signal Process., Vol. 38, no. 3, pp. 1023–38, 2019.
  • R. K. Gautam, N. Singh, N. K. Choudhary, and A. Narain, “Model order reduction using factor division algorithm and fuzzy c-means clustering technique,” Trans. Inst. Meas. Control, Vol. 41, no. 2, pp. 468–75, 2019.
  • A. K. Prajapati, and R. Prasad, ““Reduced-order modelling of LTI systems by using Routh approximation and factor division methods,” Circuits, Syst. Signal Process, Vol. 38, no. 7, pp. 3340–55, 2019.
  • G. Vasu, M. Sivakumar, and M. Ramalingaraju, “Optimal IMC-PID controller design for large-scale power systems via EDE algorithm-based model approximation method,” Trans. Inst. Meas. Control, Vol. 43, no. 1, pp. 59–77, 2021.
  • S. Timme, K. J. Badcock, and A. Da Ronch, “Gust analysis using computational fluid dynamics derived reduced order models,” J. Fluids Struct, Vol. 71, pp. 116–25, 2017.
  • S. S. Sazhin, E. Shchepakina, and V. Sobolev, “Order reduction in models of spray ignition and combustion,” Combust. Flame, Vol. 187, pp. 122–8, 2018.
  • D. Kumar, and S. K. Nagar, “Reducing power system models by Hankel norm approximation technique,” Int. J. Model. Simul, Vol. 33, no. 3, pp. 139–43, 2013.
  • A. Ramirez, “Application of balanced realizations for model-order reduction of dynamic power system equivalents,” IEEE Trans. Power Deliv, Vol. 31, no. 5, pp. 2304–12, 2016.
  • D. Butti, S. K. Mangipudi, and S. Rayapudi, “Model order reduction based power system stabilizer design using improved whale optimization algorithm,” IETE J. Res, 1–21, 2021. DOI:10.1080/03772063.2021.1886875
  • V. Ganji, and C. B. N. Ramraj, “Load frequency control of time-delayed power systems using optimal IMC-PID design and model approximation approach,” Int. J. Model. Simul, Vol. 42, no. 5, pp. 725–742, 2021.
  • S. Haider, A. Ghafoor, M. Imran, and F. M. Malik, “Time-limited Gramians-based model order reduction for second-order form systems,” Trans. Inst. Meas. Control, Vol. 41, no. 8, pp. 2310–18, 2019.
  • O. Alsmadi, A. Al-Smadi, and E. Gharaibeh, “Firefly artificial intelligence technique for model order reduction with substructure preservation,” Trans. Inst. Meas. Control, Vol. 41, no. 10, pp. 2875–85, 2019.
  • A. K. Prajapati, V. G. D. Rayudu, A. Sikander, and R. Prasad, “A new technique for the reduced-order modelling of linear dynamic systems and design of controller,” Circuits, Syst. Signal Process, Vol. 39, no. 10, pp. 4849–67, 2020.
  • G. Vasu, M. Siva Kumar, and M. Ramalinga Raju, “Internal model control design based on approximation of linear discrete dynamical systems,” Appl. Math. Model, Vol. 97, pp. 683–700, 2021.
  • Y. Shamash, “Stable reduced-order models using Padé-type approximation,” IEEE Trans. Automat. Contr, Vol. 19, no. 5, pp. 615–6, 1974.
  • V. Zakian, “Simplification of linear time-invariant systems by moment approximants,” Int. J. Control, Vol. 18, no. 3, pp. 455–60, 1973.
  • V. Krishnamurthy, and V. Seshadri, “Model reduction using the Routh stability criterion,” IEEE Trans. Automat. Contr, Vol. 23, no. 4, pp. 729–31, 1978.
  • M. Hutton, and B. Friedland, “Routh approximations for reducing order of linear, time-invariant systems,” IEEE Trans. Automat. Contr, Vol. 20, no. 3, pp. 329–37, 1975.
  • T. C. Chen, C. Y. Chang, and K. W. Han, “Reduction of transfer functions by the stability-equation method,” J. Franklin Inst, Vol. 308, no. 4, pp. 389–404, 1979.
  • A. K. Sinha, and J. Pal, “Simulation based reduced order modelling using a clustering technique,” Comput. Electr. Eng, Vol. 16, no. 3, pp. 159–69, 1990.
  • B. C. Moore, “Principal component analysis in linear systems: Controllability, observability, and model reduction,” IEEE Trans. Automat. Contr, Vol. 26, no. 1, pp. 17–32, 1981.
  • P. V. Kokotovic, R. E. O’Malley, and P. Sannuti, “Singular perturbations and order reduction in control theory - An overview,” Automatica. (Oxf), Vol. 12, no. 2, pp. 123–32, 1976.
  • M. Aoki, “Control of large-scale dynamic systems by aggregation,” IEEE Trans. Automat. Contr, Vol. 13, no. 3, pp. 246–53, 1968.
  • D. Chaniotis, and M. A. Pai, “Model reduction in power systems using Krylov subspace methods,” IEEE Trans. Power Syst, Vol. 20, no. 2, pp. 888–94, 2005.
  • M. Jamshidi. Large-Scale Systems: Modeling, Control, and Fuzzy Logic, First Edit. Upper Saddle River, NJ: Prentice Hall PTR, 1998.
  • L. Fortuna, G. Nunnari, and A. Gallo. Model Order Reduction Techniques with Applications in Electrical Engineering. First Edit. London, UK: Springer-Verlag London Limited, 1992.
  • M. S. Kumar, N. V. Anand, and R. S. Rao, “Impulse energy approximation of higher-order interval systems using Kharitonov’s polynomials,” Trans. Inst. Meas. Control, Vol. 38, no. 10, pp. 1225–35, 2016.
  • G. Vasu, M. Sivakumar, and M. Ramalingaraju, “A novel model reduction approach for linear time-invariant systems via enhanced PSO-DV algorithm and improved MPPA method,” Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng, Vol. 234, no. 2, pp. 240–256, 2019.
  • S. R. Potturu, and R. Prasad, “Qualitative analysis of stable reduced order models for interval systems using mixed methods,” IETE J. Res, Vol. 67, no. 1, pp. 108–16, 2018.
  • A. Narain, D. Chandra, and R. k. Singh, “Model order reduction using fuzzy C-means clustering,” Trans. Inst. Meas. Control, Vol. 36, no. 8, pp. 992–8, 2014.
  • D. K. Kranthi, S. K. Nagar, and J. P. Tiwari, “A new algorithm for model order reduction of interval systems,” Bonfring Int. J. Data Min, Vol. 3, no. 1, pp. 6–11, 2013.
  • A. K. Praejapati, A. Sikander, and R. Prasad. “A comprehensive study of time moments and Markov parameters in system reduction,” in Energy Systems, Drives and Automations: Lecture Notes in electrical Engineering, 664, Afzal Sikander, Dulal Acharjee, Chandan Kumar Chandra, Pranab Kumar Mondal, and Piyush Verma, Ed. Singapore: Springer, Singapore, 2020, pp. 113–28.
  • Y. Shamash, “Failure of the Routh-Hurwitz method of reduction,” IEEE Trans. Automat. Contr, Vol. 25, no. 2, pp. 313–4, 1980.
  • G. Langholz, and D. Feinmesser, “Model reduction by Routh approximations,” Int. J. Syst. Sci, Vol. 9, no. 5, pp. 493–6, 1978.
  • A. K. Prajapati, and R. Prasad, “Order reduction of linear dynamic systems by improved Routh approximation method,” IETE J. Res, Vol. 65, no. 5, pp. 702–15, 2018.
  • C. Hwang, and Y. P. Shin, “Routh approximations for reducing order of discrete systems,” J. Dyn. Syst. Meas. Control, Vol. 104, no. 1, pp. 107–109, 2009.
  • A. K. Choudhary, and S. K. Nagar, “Order reduction techniques via Routh approximation: A critical survey,” IETE J. Res, Vol. 65, no. 3, pp. 365–379, 2018.
  • A. Sikander, and R. Prasad, “Soft computing approach for model order reduction of linear time invariant systems,” Circuits, Syst. Signal Process, Vol. 34, no. 11, pp. 3471–87, 2015.
  • D. Sambariya, and G. Arvind, “High order diminution of LTI system using stability equation method,” Br. J. Math. Comput. Sci, Vol. 13, no. 5, pp. 1–15, 2016.
  • A. Narwal, and R. Prasad, “A novel order reduction approach for LTI systems using cuckoo search optimization and stability equation,” IETE J. Res, Vol. 62, no. 2, pp. 154–63, 2016.
  • A. Sikander, and R. Prasad, “Linear time-invariant system reduction using a mixed methods approach,” Appl. Math. Model, Vol. 39, no. 16, pp. 4848–58, 2015.
  • T. C. Chen, C. Y. Chang, and K. W. Han, “Model reduction using the stability-equation method and the Padé approximation method,” J. Franklin Inst, Vol. 309, no. 6, pp. 473–90, 1980.
  • J. Pal, “Improved Padé approximants using stability equation method,” Electron. Lett, Vol. 19, no. 11, pp. 426–7, 1983.
  • D. A. Wilson, “Model reduction for multivariable systems,” Int. J. Control, Vol. 20, no. 1, pp. 57–64, 1974.
  • G. Obinata, and H. Inooka, “Authors reply to comments on model reduction by minimizing the equation error,” IEEE Trans. Automat. Contr, Vol. 28, no. 1, pp. 124–5, 1983.
  • E. Eitelberg, “Model reduction by minimizing the weighted equation error,” Int. J. Control, Vol. 34, no. 6, pp. 1113–23, 1981.
  • D. E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learning. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc, 1989.
  • J. Kennedy, and R. Eberhart, “Particle swarm optimization,” in IEEE International Conference Neural Network (ICNN-95), 1995, pp. 1942–8.
  • K. S. Lee, and Z. W. Geem, “A new structural optimization method based on the harmony search algorithm,” Comput. Struct, Vol. 82, no. 9–10, pp. 781–98, 2004.
  • O. K. Erol, and I. Eksin, “A new optimization method: Big Bang–Big crunch,” Adv. Eng. Softw, Vol. 37, no. 2, pp. 106–11, 2006.
  • C. B. Vishwakarma, and R. Prasad, “MIMO system reduction using modified pole clustering and genetic algorithm,” Model. Simul. Eng, Vol. 2009, no. 1, pp. 1–5, 2009.
  • A. Narwal, and R. Prasad, “Optimization of LTI systems using modified clustering algorithm,” IETE Tech. Rev, Vol. 34, no. 2, pp. 201–13, 2017.
  • V. Ganji, S. Mangipudi, and R. Manyala, “A novel model order reduction technique for linear continuous-time systems using PSO-DV algorithm,” J. Control. Autom. Electr. Syst, Vol. 28, no. 1, pp. 68–77, 2017.
  • X. Wang, C. Wang, and M. Yu, “Swarm intelligence algorithm for interconnect model order reduction with sub-block structure preserving,” Int. J. Syst. Sci, Vol. 47, no. 9, pp. 2178–92, 2016.
  • K. Salah, “A novel model order reduction technique based on artificial intelligence,” Microelectronics. J., Vol. 65, pp. 58–71, 2017.
  • R. Komarasamy, N. Albhonso, and G. Gurusamy, “Order reduction of linear systems with an improved pole clustering,” J. Vib. Control, Vol. 18, no. 12, pp. 1876–85, 2011.
  • A. K. Prajapati, and R. Prasad, “Order reduction in linear dynamical systems by using improved balanced realization technique,” Circuits, Syst. Signal Process, Vol. 38, no. 11, pp. 5298–303, 2019.
  • A. K. Prajapati, and R. Prasad, “A new model reduction method for the linear dynamic systems and its application for the design of compensator,” Circuits, Syst. Signal Process, Vol. 39, no. 5, pp. 2328–48, 2019.
  • A. K. Choudhary, and S. K. Nagar, “Model order reduction of discrete-time interval system based on Mikhailov stability criterion,” Int. J. Dyn. Control, Vol. 6, no. 4, pp. 1558–66, 2018.
  • P. Laakkonen, and L. Paunonen, “Reduced-order internal models in the frequency domain,” IEEE Trans. Automat. Contr, Vol. 63, no. 6, pp. 1806–12, 2018.
  • P. Yang, and Y. L. Jiang, “Truncated model reduction methods for linear time-invariant systems via eigenvalue computation,” Trans. Inst. Meas. Control, Vol. 42, no. 10, pp. 1908–20, 2020.
  • V. R. Dehkordi, and B. Boulet, “Robust controller order reduction,” Int. J. Control, Vol. 84, no. 5, pp. 985–97, 2011.
  • A. K. Prajapati, and R. Prasad, “A novel order reduction method for linear dynamic systems and its application for designing of PID and lead/lag compensators,” Trans. Inst. Meas. Control, Vol. 43, no. 5, pp. 1226–38, 2021.
  • A. K. Prajapati, and R. Prasad, “A new model reduction technique for the design of controller by using moment matching algorithm,” IETE Tech. Rev, Vol. 39, no. 6, pp. 1419–1440, 2021.
  • A. El Anes, K. Bouzrara, and J. Ragot, “Reduced model of linear systems via Laguerre filters,” Trans. Inst. Meas. Control, Vol. 40, no. 5, pp. 1510–20, 2018.
  • B. Bandyopadhyay, H. Unbehauen, and B. M. Patre, “A new algorithm for compensator design for higher-order system via reduced model,” Automatica. (Oxf), Vol. 34, no. 7, pp. 917–20, 1998.
  • D. E. Rivera, and M. Morari, “Control-relevant model reduction problems for SISO H 2, H ∞, and µ-controller synthesis,” Int. J. Control, Vol. 46, no. 2, pp. 505–27, 1987.
  • W. C. Peterson, and A. H. Nassar, “On the synthesis of optimum linear feedback control systems,” J. Franklin Inst, Vol. 306, no. 3, pp. 237–56, 1978.
  • A. K. Prajapati, and R. Prasad, “Reduction of linear dynamic systems using generalized approach of pole clustering method,” Trans. Inst. Meas. Control, Vol. 44, no. 9, pp. 1755–1769, 2021.
  • J. C. Basilio, and S. R. Matos, “Design of PI and PID controllers with transient performance specification,” IEEE Trans. Educ, Vol. 45, no. 4, pp. 364–70, 2002.
  • G. Parmar, S. Mukherjee, and R. Prasad, “System reduction using Eigen spectrum analysis and Padé approximation technique,” Int. J. Comput. Math, Vol. 84, no. 12, pp. 1871–80, 2007.
  • L. Sun, K. Xu, and Y. Jiang, “Model order reduction based on discrete-time Laguerre functions for discrete linear periodic time-varying systems,” Trans. Inst. Meas. Control, Vol. 42, no. 16, pp. 3281–89, 2020.
  • A. Kumari, and C. B. Vishwakarma, “Order abatement of linear dynamic systems using renovated pole clustering and Cauer second form techniques,” Circuits, Syst. Signal Process, Vol. 40, pp. 4212–29, 2021.
  • J. Singh, C. B. Vishwakarma, and K. Chatterjee, “Biased reduction method by combining improved modified pole clustering and improved Padé approximations,” Appl. Math. Model, Vol. 40, no. 2, pp. 1418–26, 2016.
  • E. R. Samuel, and K. K. Deveerasetty, “Laguerre expansion series based reduced order interval systems,” IEEE Trans. Circuits Syst. II Express Briefs, Vol. 68, no. 6, pp. 2022–26, 2021.
  • K. Kumar Deveerasetty, and S. K. Nagar, “Model order reduction of interval systems using an arithmetic operation,” Int. J. Syst. Sci, Vol. 51, no. 5, pp. 886–902, 2020.
  • A. K. Prajapati, and R. Prasad, “A new model order reduction method for the design of compensator by using moment matching algorithm,” Trans. Inst. Meas. Control, Vol. 42, no. 3, pp. 472–84, 2019.
  • S. K. Suman, and A. Kumar, “Model reduction of flexible-missile control plant using BST via Schur method,” in First Virtual International Conference on Latest Advancements & Future Trends In Engineering, Science, Humanities & Management, 2020, pp. 426–33.
  • Y. Shamash, “Model reduction using the Routh stability criterion and the Padé approximation technique,” Int. J. Control, Vol. 21, no. 3, pp. 475–84, 1975.
  • N. Singh, R. Prasad, and H. O. Gupta, “Reduction of linear dynamic systems using Routh Hurwitz array and factor division method,” IETE J. Educ, Vol. 47, no. 1, pp. 25–29, 2006.
  • R. Singh, and J. Singh, “Model order reduction via Routh Hurwitz array and improved Pade approximations,” in 2018 International Conference on Power Energy, Environment and Intelligent Control (PEEIC), 2018, pp. 755–8.
  • A. Lepschy, and U. Viaro, “An improvement in the Routh-Padé approximation techniques,” Int. J. Control, Vol. 36, no. 4, pp. 643–61, 1982.
  • R. Agarwal, A. R. Tipare, R. Gumber, V. P. Meena, and V. P. Singh, “Order reduction of zeta converter using direct truncation and Routh approximation method,” in 2022 IEEE Students Conference on Engineering and Systems (SCES 2022), 2022, pp. 7–11.
  • Y. Shamash, “Truncation method of reduction: A viable alternative,” Electron. Lett, Vol. 17, no. 2, pp. 97–99, 1981.
  • P. Gutman, C. F. Mannerfelt, and P. Molander, “Contributions to the model reduction problem,” IEEE Trans. Automat. Contr, Vol. 27, no. 2, pp. 454–5, 1982.
  • A. P. Padhy, V. Singh, and V. P. Singh, “Model order reduction of discrete time interval system based on time moment matching,” Autom. Control Comput. Sci, Vol. 55, pp. 77–88, 2021.
  • T. C. Chen, C. Y. Chang, and K. W. Han, “Model reduction using the stability-equation method and the continued fraction method,” Int. J. Control, Vol. 32, no. 1, pp. 81–94, 1980.
  • A. K. Prajapati, and R. Prasad, “Model order reduction by using the balanced truncation and factor division methods,” IETE J. Res, Vol. 65, no. 6, pp. 827–42, 2018.
  • S. K. Suman, and A. Kumar, “Model reduction of power system by modified balanced truncation method,” Univers. J. Control Autom, Vol. 8, no. 3, pp. 41–52, 2020.
  • S. Kumar, and S. Awadhesh, “Linear system of order reduction using a modified balanced truncation method,” Circuits, Syst. Signal Process, Vol. 40, pp. 2741–62, 2021.
  • C. Huang, K. Zhang, X. Dai, and W. Tang, “A modified balanced truncation method and its application to model reduction of power system,” in Proc. IEEE Power and Energy Society General Meeting, 2013, pp. 1–5.
  • T. C. Chen, C. Y. Chang, and K. W. Han, “Stable reduced-order Padé approximants using stability-equation method,” Electron. Lett, Vol. 16, no. 9, pp. 345–6, 1980.
  • B. K. Kushwaha, and A. Narain, “Controller design for Cuk converter using model order reduction,” in Proc. IEEE International Conference on Power, Control and Embedded Systems, 2012, pp. 1–5.
  • D. Kumar, J. P. Tiwari, and S. K. Nagar, “Reducing order of large-scale systems by extended balanced singular perturbation approximation,” Int. J. Autom. Control, Vol. 6, no. 1, pp. 21–38, 2012.
  • A. K. Prajapati, and R. Prasad, “Order reduction of linear dynamic systems with an improved Routh stability method,” in Proc. IEEE International Conference on Control, Power, Communication and Computing Technologies, 2018, pp. 362–7.
  • R. Prasad, “Padé type model order reduction for multivariable systems using Routh approximation,” Comput. Electr. Eng, Vol. 26, no. 6, pp. 445–59, 2000.
  • Y. Shamash, “Linear system reduction using Padé approximation to allow retention of dominant modes,” Int. J. Control, Vol. 21, no. 2, pp. 257–72, 1975.
  • A. K. Prajapati, and R. Prasad, “Reduced order modelling of linear time invariant systems using the factor division method to allow retention of dominant modes,” IETE Tech. Rev, Vol. 36, no. 5, pp. 449–62, 2018.
  • A. Sikander, and R. Prasad, “Soft computing approach for model order reduction of linear time invariant systems,” Circuits, Syst. Signal Process, Vol. 34, no. 11, pp. 3471–87, 2015.
  • G. Parmar, S. Mukherjee, and R. Prasad, “System reduction using factor division algorithm and Eigen spectrum analysis,” Appl. Math. Model, Vol. 31, no. 11, pp. 2542–52, 2007.
  • G. Parmar, R. Prasad, and S. Mukherjee, “Order reduction by least-squares methods about general point ‘a,,” Int. J. Electr. Comput. Energ. Electron. Commun. Eng, Vol. 1, no. 2, pp. 260–7, 2007.
  • C. B. Vishwakarma, and R. Prasad, “Clustering method for reducing order of linear system using Pade approximation,” IETE J. Res, Vol. 54, no. 5, pp. 326–30, 2008.
  • J. Pal, “Stable reduced order Padé approximants using Routh Hurwitz array,” Electron. Lett, Vol. 15, no. 8, pp. 225–6, 1979.
  • C. Vishwakarma, and R. Prasad, “Clustering method for reducing order of linear system using Padé approximation,” IETE J. Res, Vol. 54, no. 5, pp. 326–30, 2008.
  • B. W. Wan, “Linear model reduction using Mihailov criterion and Padé approximation technique,” Int. J. Control, Vol. 33, no. 6, pp. 1073–89, 1981.
  • M. G. Safonov, and R. Y. Chiang, “A Schur method for balanced-truncation model reduction,” IEEE Trans. Automat. Contr, Vol. 34, no. 7, pp. 729–33, 1989.
  • G. Gu, “All optimal Hankel-norm approximations and their L∞ error bounds in discrete-time,” Int. J. Control, Vol. 78, no. 6, pp. 408–23, 2005.
  • T. N. Lucas, “Factor division: A useful algorithm in model reduction,” IEE Proc. D Control Theory Appl, Vol. 130, no. 6, pp. 362–4, 1983.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.