50
Views
0
CrossRef citations to date
0
Altmetric
Medical Electronics

Morph-Rec: A Novel Computer-Aided Liver Segmentation Model based on Morphological Reconstruction Operation

ORCID Icon & ORCID Icon

REFERENCES

  • T. Nadarevic, V. Giljaca, and A. Colli, “Computed tomography for the diagnosis of hepatocellular carcinoma in chronic advanced liver disease,” Cochrane Database Syst. Rev. 2019. DOI: 10.1002/14651858.CD013362.
  • L.-Q. Zhou, J.-Y. Wang, S.-Y. Yu, “Artificial intelligence in medical imaging of the liver,” WJG, Vol. 25, pp. 672–682, 2019. DOI: 10.3748/wjg.v25.i6.672.
  • R. Kelsch. Radiology for the USMLE: Abdominal anatomy. Available: https://www.medschooltutors.com/blog/radiology-for-the-usmle-abdominal-anatomy. Accessed 17 Jun. 2021.
  • K. Mala, V. Sadasivam, and S. Alagappan, “Neural network based texture analysis of CT images for fatty and cirrhosis liver classification,” Appl. Soft. Comput., Vol. 32, pp. 80–86, 2015. DOI: 10.1016/j.asoc.2015.02.034.
  • S. S. Kumar, and D. R. S. Moni. Diagnosis of liver tumor from CT images using curvelet transform. 02:6, 2010.
  • G. I. Sayed, et al., “A hybrid segmentation approach based on Neutrosophic sets and modified watershed: A case of abdominal CT Liver parenchyma,” in 2015 11th International Computer Engineering Conference (ICENCO), Cairo, Egypt: IEEE, 2015, pp. 144–149.
  • F. Smarandache. A unifying field in logics: Neutrosophic logic: neutrosophy, neutrosophic set, neutrosophic probability and statistics, 4th ed. Rehoboth, NM: American Research Press, 2005.
  • S. K. Siri, and M. V. Latte, “A novel approach to extract exact liver image boundary from abdominal CT scan using neutrosophic set and fast marching method,” J. Intell. Syst., Vol. 28, pp. 517–532, 2019. DOI: 10.1515/jisys-2017-0144.
  • A. Das, U. R. Acharya, S. S. Panda, and S. Sabut, “Deep learning based liver cancer detection using watershed transform and Gaussian mixture model techniques,” Cogn. Syst. Res., Vol. 54, pp. 165–175, 2019. DOI: 10.1016/j.cogsys.2018.12.009.
  • A. Zidan, N. I. Ghali, A. e. Hassamen, and H. Hefny, “Level set-based CT liver image segmentation with watershed and artificial neural networks,” in 2012 12th International Conference on Hybrid Intelligent Systems (HIS). A conditional statistical shape model with integrated error estimation of the conditions; Application to liver segmentation in non-contrast CT images, 2012.
  • A. Mostafa, et al., “Evaluating swarm optimization algorithms for segmentation of liver images,” in Barstugan Barstugan, AE Hassanien and DA Oliva, Eds. Cham: Springer International Publishing, 2018, pp. 41–62.
  • M. Barstugan, R. Ceylan, M. Sivri, and H. Erdogan, “Automatic liver segmentation in abdomen CT images using SLIC and AdaBoost algorithms,” in Proceedings of the 2018 8th International Conference on Bioscience, Biochemistry and Bioinformatics – ICBBB 2018, Tokyo, Japan: ACM Press, 2018, pp. 129–133.
  • A. Mostafa, M. A. Elfattah, and A. Fouad, “Region growing segmentation with iterative K-means for CT liver images,” in 2015 4th International Conference on Advanced Information Technology and Sensor Application (AITS), Harbin, China: IEEE, 2015, pp. 88–91.
  • B. Prencipe, N. Altini, and G. D. Cascarano, “A novel approach based on region growing algorithm for liver and spleen segmentation from CT scans,” in Intelligent Computing Theories and Application, D-S Huang, V Bevilacqua, and A Hussain, Eds. Cham: Springer International Publishing, 2020, pp. 398–410.
  • Z. Zhou, Z. Xue-chang, and Z. Si-ming, “Semi-automatic liver segmentation in CT images through intensity separation and region growing,” Procedia. Comput. Sci., Vol. 131, pp. 220–225, 2018. DOI: 10.1016/j.procs.2018.04.206.
  • R. M. Haralick, S. R. Sternberg, and X. Zhuang, “Image analysis using mathematical morphology,” IEEE Trans Pattern Anal Mach Intell PAMI-9, 532–550, 1987. DOI: 10.1109/TPAMI.1987.4767941.
  • E. R. Davies, “Image filtering and morphology,” in Computer vision, ER Davies, Ed., UK: Elsevier, 2018, pp. 39–92.
  • Morphological Image Processing. Avaibale: https://www.cs.auckland.ac.nz/courses/compsci773s1c/lectures/ImageProcessing-html/topic4.htm. Accessed 22 Jun. 2021.
  • L. Vincent, “Morphological grayscale reconstruction in image analysis: applications and efficient algorithms,” in IEEE Trans on Image Process 2:Level set-based CT liver image segmentation with watershed and artificial neural networks, 1993. DOI: 10.1109/83.217222
  • P. Bilic, P. F. Christ, and E. Vorontsov. (2019) The liver tumor segmentation benchmark (LiTS). arXiv:190104056 [cs].
  • 3Dircadb | IRCAD France. Available: https://www.ircad.fr/research/3dircadb/. Accessed 17 Jun. 2021.
  • LiTS – Liver tumor segmentation challenge (LiTS17). In: Academic torrents. https://academictorrents.com/details/27772adef6f563a1ecc0ae19a528b956e6c803ce. Accessed 17 Jun. 2021.
  • 3D-IRCADb 01 | IRCAD France. Available: https://www.ircad.fr/research/3d-ircadb-01/. Accessed 29 Apr. 2021.
  • Hounsfield Scale – An overview | ScienceDirect Topics. Available: https://www.sciencedirect.com/topics/medicine-and-dentistry/hounsfield-scale. Accessed 29 Apr. 2021.
  • R. Mayasari, and N. Heryana, “Reduce noise in computed tomography image using adaptive Gaussian Filter,” International Journal of Computer Techniques, Vol. 6, pp. 17–20, 2019.
  • D. Chicco, and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, Vol. 21, pp. 6, 2020. DOI: 10.1186/s12864-019-6413-7.
  • L. Zhou, et al., “Multi-stage liver segmentation in CT scans using gaussian pseudo variance level set,” IEEE. Access., Vol. 9, pp. 101414–101423, 2021. DOI: 10.1109/ACCESS.2021.3097387.
  • X. Shu, Y. Yang, and B. Wu, “Adaptive segmentation model for liver CT images based on neural network and level set method,” Neurocomputing, Vol. 453, pp. 438–452, 2021. DOI: 10.1016/j.neucom.2021.01.081.
  • S. Tomoshige, et al., “A conditional statistical shape model with integrated error estimation of the conditions; Application to liver segmentation in non-contrast CT images,” in Medical image analysis 18: Segmentation of liver and spleen based on computational anatomy models, 2014. DOI: 10.1016/j.media.2013.10.003.
  • C. Dong, et al., “Segmentation of liver and spleen based on computational anatomy models. Computers in Biology and Medicine 67:An Automated Computer-aided Diagnosis System for Abdominal CT Liver Images,” Procedia. Comput. Sci. 2015. DOI: 10.1016/j.compbiomed.2015.10.007.
  • G. I. Sayed, A. E. Hassanien, and G. Schaefer, “An automated computer-aided diagnosis system for abdominal CT liver images,” Procedia. Comput. Sci., Vol. 90, pp. 68–73, 2016. DOI: 10.1016/j.procs.2016.07.012.
  • S. K. Siri, and M. V. Latte, “Combined endeavor of neutrosophic set and Chan-Vese model to extract accurate liver image from CT scan,” Comput. Methods Programs Biomed., Vol. 151, pp. 101–109, 2017. DOI: 10.1016/j.cmpb.2017.08.020.
  • H. Jiang, S. Li, and S. Li, “Registration-based organ positioning and joint segmentation method for liver and tumor segmentation,” BioMed Res. Int., Vol. 2018, pp. 1–11, 2018. DOI: 10.1155/2018/8536854.
  • A. M. Anter, and A. E. Hassenian, “CT liver tumor segmentation hybrid approach using neutrosophic sets, fast fuzzy c-means and adaptive watershed algorithm,” Artif. Intell. Med., Vol. 97, pp. 105–117, 2019. DOI: 10.1016/j.artmed.2018.11.007.
  • S. K. Siri, S. P. Kumar, and V. M. Latte, “Threshold-based new segmentation model to separate the liver from CT scan images,” IETE. J. Res., 1–8, 2020. DOI: 10.1080/03772063.2020.1795938.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.