13
Views
0
CrossRef citations to date
0
Altmetric
Research Article

A Quasi-Ballistic Model for Short Channel Monolayer Graphene Field Effect Transistor Including Scattering Effects

, , &

REFERENCES

  • A. K. Geim, and K. S. Novoselov, “The rise of graphene,” Nat. Mater., Vol. 6, pp. 183–191, 2007. DOI:10.1038/nmat1849.
  • I. Katsnelson, “Graphene: carbon in two dimensions,” Mater. Today, Vol. 10, pp. 20–7, 2007. DOI: 10.1016/S1369-7021(06)71788-6
  • I. Meric, “Current saturation in zero-bandgap, top-gated graphene field-effect transistors,” Nature Nanotechnol., Vol. 3, pp. 654–9, 2008. DOI:10.1038/nnano.2008.268
  • F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature,” Nano Lett., Vol. 10, pp. 715–8, 2010. DOI:10.1021/nl9039636
  • O. Habibpour, S. Cherednichenko, J. Vukusic, K. Yhland, and J. Stake, “A subharmonic graphene FET mixer,” IEEE Electron Device Lett., Vol. 33, pp. 71–3, 2012. DOI:10.1109/LED.2011.2170655
  • I. J. Umoh, “A dual-gate graphene FET model for circuit simulation—SPICE implementation,” IEEE Trans. Nanotechnol., Vol. 12, no. 3, pp. 427–35, 2013. DOI: 10.1109/TNANO.2013.2253490
  • H.-Y. Chen, and J. Appenzeller, “Graphene-based frequency tripler,” Nano Lett., Vol. 12, no. 4, pp. 2067–70, 2012. DOI:10.1021/nl300230k
  • L. Chandrasekar, and K. P. Pradhan, “Computationally efficient region-wise potential- based extremely closed-form analytical modeling of B/N substitution doped GFETs,” IEEE Trans. Electron Devices, Vol. 69, no. 8, pp. 4708–16, 2022. DOI: 10.1109/TED.2022.3185950
  • S. A. Thiele, J. A. Schaefer, and F. Schwierz, “Modeling of graphene metal oxide semiconductor field-effect transistors with gapless large area graphene channels,” J. Appl. Phys., Vol. 107, no. 9, pp. 094505-1–094505-8, 2010. 10. DOI:10.1063/1.3357398
  • K. L. Shepard, I. Meric, and P. Kim. “Characterization and modeling of graphene field-effect devices,” In: IEEE Press, pp. 406-411, 2008.
  • S. Fregonese, M. Magallo, C. Maneux, H. Happy, and T. Zimmer, “Scalable electrical compact modeling for graphene fet transistors,” IEEE Trans. Nanotechnol., Vol. 12, no. 4, pp. 539–46, 2013. DOI:10.1109/TNANO.2013.2257832
  • G. I. Zebrev, A. A. Tselykovskiy, D. K. Batmanova, and E. V. Melnik, “Small-signal capacitance and current parameter modeling in large-scale high-frequency graphene field-effect transistors,” IEEE Trans. Electron Devices, Vol. 60, no. 6, pp. 1799–806, 2013. DOI:10.1109/TED.2013.2257793
  • I. Meric, “Channel length scaling in graphene field-effect transistors studied with pulsed current-voltage measurements,” Nano Lett., Vol. 11, pp. 1093–7, 2011. DOI:10.1021/nl103993z
  • D. Frank, S. Laux, and M. Fischetti, “Monte carlo simulation of a 30 nm dual-gate mosfet: How short can si go?,” IEDM Tech. Dig, pp. 553–556, 1992.
  • J. Bude. “MOSFET modeling into the ballistic regime,” In: IEEE., pp. 23-26, 2000.
  • P. M. Solomon, and S. E. Laux, “The ballistic fet: design, capacitance and speed limit,” in Electron Devices Meeting, 2001, IEDM'01. Technical Digest. International. IEEE, 2001, pp. 5-1.
  • M. R. Pinto, E. Sangiorgi, and J. Bude, “Silicon mos transconductance scaling into the overshoot regime,” IEEE Electron Device Lett., Vol. 14, no. 8, pp. 375–8, 1993. DOI:10.1109/55.225584
  • M. Wang, J. Pu, Y. Hu, Y. Zi, Z. G. Wu, and W. Huang, “Functional graphdiyne for emerging applications: recent advances and future challenges,” Adv. Funct. Mater., Vol. 34, pp. 2308601, 2023.
  • M. Wang, Y. Hu, J. Pu, Y. Zi, and W. Huang, “Emerging xene-based single-atom catalysts: theory, synthesis, and catalytic applications,” Adv. Mater., Vol. 49, pp. 2303492, 2023.
  • W. Huang, M. Wang, L. Hu, C. Wang, Z. Xie, and H. Zhang, “Recent advances in semiconducting monoelemental selenium nanostructures for device applications,” Adv. Funct. Mater., Vol. 30, no. 42, pp. 2003301, 2020. DOI:10.1002/adfm.202003301
  • W. Huang, L. Hu, Y. Tang, Z. Xie, and H. Zhang, “Recent advances in functional 2D MXene-based nanostructures for next-generation devices,” Adv. Funct. Mater., Vol. 30, no. 49, pp. 2005223, 2020. DOI:10.1002/adfm.202005223
  • W. Huang, et al., “Emerging mono-elemental bismuth nanostructures: controlled synthesis and their versatile applications,” Adv. Funct. Mater., Vol. 31, no. 10, pp. 2007584, 2021. DOI:10.1002/adfm.202007584
  • S. Rakheja, Y. Wu, H. Wang, T. Palacios, P. Avouris, and D. A. Antoniadis, “An ambipolar virtual-source-based charge-current compact model for nanoscale graphene transistors,” IEEE Trans. Nanotechnol., Vol. 13, no. 5, pp. 1005–13, 2014. DOI:10.1109/TNANO.2014.2344437
  • G. Nastasi, and V. Romano, “An efficient GFET structure,” IEEE Trans. Electron Devices, Vol. 68, no. 9, pp. 4729–34, Sept. 2021.  DOI:10.1109/TED.2021.3096492
  • H. Wang, A. Hsu, J. Kong, D. A. Antoniadis, and T. Palacios, “Compact virtual-source current–voltage model for Top- and back-gated graphene field-effect transistors,” IEEE Trans. Electron Devices, Vol. 58, no. 5, pp. 1523–33, 2011. DOI:10.1109/TED.2011.2118759
  • A. K. Upadhyay, A. K. Kushwaha, and S. K. Vishvakarma, “A unified scalable quasi-ballistic transport model of gfet for circuit simulations,” IEEE Trans. Electron Devices, Vol. 65, no. 2, pp. 739–46, 2018. DOI:10.1109/TED.2017.2782658
  • M. Lundstrom, and Z. Ren, “Essential physics of carrier transport in nanoscale mosfets,” IEEE Trans. Electron Devices, Vol. 49, no. 1, pp. 133–41, 2002. DOI:10.1109/16.974760
  • M. S. Lundstrom, and D. A. Antoniadis, “Compact models and the physics of nanoscale fets,” IEEE Trans. Electron Devices, Vol. 61, no. 2, pp. 225–33, 2014. DOI:10.1109/TED.2013.2283253
  • A. Khaki_rooz, O. M. Nayfeh, and D. Antoniadis, “A simple semiempirical short-channel mosfet current-voltage model continuous across all regions of operation and employing only physical parameters,” IEEE Trans. Electron Devices, Vol. 56, no. 8, pp. 1674–80, 2009. DOI:10.1109/TED.2009.2024022
  • S. Datta. Lessons from nanoelectronics: a new perspective on transport, Vol. 1. World Scientific Publishing Company, Singapore, 2012.
  • Y. Wu, et al., “State-of-the-art graphene high-frequency electronics,” Nano Lett., Vol. 12, no. 6, pp. 3062–7, 2012. DOI:10.1021/nl300904k
  • M. Lundstrom, “Elementary scattering theory of the si mosfet,” IEEE Electron Device Lett., Vol. 18, no. 7, pp. 361–3, 1997. DOI:10.1109/55.596937
  • S.-J. Han, Z. Chen, A. A. Bol, and Y. Sun, “Channel-Length-Dependent transport behaviors of graphene field-effect transistors,” IEEE Electron Device Lett., Vol. 32, no. 6, pp. 812–4, 2011. DOI:10.1109/LED.2011.2131113
  • W. Wei, et al., “Graphene FETs With aluminum bottom-gate electrodes and Its natural oxide as dielectrics,” IEEE Trans. Electron Devices, Vol. 62, no. 9, pp. 2769–73, 2015. DOI:10.1109/TED.2015.2459657
  • Y.-M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H.-Y. Chiu, A. Grill, and P. Avouris, “100-ghz transistors from wafer-scale epitaxial graphene,” Science, Vol. 327, no. 5966, pp. 662–, 2010. DOI:10.1126/science.1184289
  • M. S. Lundstrom, and C. Jeong. Near-equilibrium transport: fundamentals and applications. World Scientific, Singapore, 2013.
  • A. Rahman, and M. S. Lundstrom, “A compact scattering model for the nanoscale double-gate MOSFET,” IEEE Trans. Electron Devices, Vol. 49, no. 3, pp. 481–9, 2002. DOI:10.1109/16.987120
  • T. Ando, “Screening effect and impurity scattering in monolayer graphene,” J. Phys. Soc. Jpn., Vol. 75, no. 7, pp. 070416, 2006. DOI:10.1143/JPSJ.75.074716
  • E. Hwang, and S. D. Sarma, “Screening-induced temperature-dependent transport in two-dimensional graphene,” Physical Review B, Vol. 79, no. 16, pp. 165404, 2009. DOI:10.1103/PhysRevB.79.165404
  • I. H. Rodrigues, N. Rorsman, and A. Vorobiev, “Mobility and quasi-ballistic charge carrier transport in graphene field-effect transistors,” J. Appl. Phys, Vol. 132, pp. 244303, 2022. DOI:10.1063/5.0121439
  • Z. Chen, and J. Appenzeller, “Mobility extraction and quantum capacitance impact in high performance graphene field-effect transistor devices,” in 2008 IEEE International Electron Devices Meeting, IEEE, pp. 1–4, 2008.
  • A. K. Upadhyay, A. K. Kushwaha, P. Rastogi, Y. S. Chauhan, and S. K. Vishvakarma, “Explicit model of channel charge, backscattering, and mobility for graphene FET in quasi-ballistic regime,” IEEE Trans. Electron Devices, Vol. 65, pp. 5468–74, 2018. DOI:10.1109/TED.2018.2877631
  • A. Pacheco-Sanchez, N. Mavredakis, P. C. Feijoo, and D. Jimnez, “An extraction method for mobility degradation and contact resistance of graphene transistors,” IEEE Trans. Electron Devices, Vol. 69, no. 7, pp. 4037–41, 2022. DOI:10.1109/TED.2022.3176830
  • J.-H. Chen, C. Jang, S. Xiao, M. Ishigami, and M. S. Fuhrer, “Intrinsic and extrinsic performance limits of graphene devices on SiO2,” Nat. Nanotechnol., Vol. 3, no. 4, pp. 206–9, 2008. DOI:10.1038/nnano.2008.58
  • K. Bolotin, K. Sikes, J. Hone, H. Stormer, and P. Kim, “Temperature-dependent transport in suspended graphene,” Phys. Rev. Lett., Vol. 101, no. 9, pp. 096802, 2008. DOI:10.1103/PhysRevLett.101.096802
  • E. Hwang, and S. D. Sarma, “Acoustic phonon scattering limited carrier mobility in two-dimensional extrinsic graphene,” Physical Review B, Vol. 77, no. 11, pp. 115449, 2008. DOI:10.1103/PhysRevB.77.115449
  • W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, “Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene,” Physical Review B, Vol. 80, no. 23, pp. 235402, 2009. DOI:10.1103/PhysRevB.80.235402
  • S. Fratini, and F. Guinea, “Substrate-limited electron dynamics in graphene,” Physical Review B, Vol. 77, no. 19, pp. 195415, 2008. DOI:10.1103/PhysRevB.77.195415
  • M. S. Shur, “Low ballistic mobility in submicron hemts,” IEEE Electron Device Lett., Vol. 23, no. 9, pp. 511–3, 2002. DOI:10.1109/LED.2002.802679
  • K. N. Parrish, M. E. Ram_on, S. K. Banerjee, D. Akinwande, et al., “A compact model for graphene fets for linear and non-linear circuits,” in Proc. SISPAD, 2012, pp. 75–8.
  • A. D. Franklin, S.-J. Han, A. A. Bol, and W. Haensch, “Effects of nanoscale contacts to graphene,” IEEE Electron Device Lett., Vol. 32, no. 8, pp. 1035–7, 2011. DOI:10.1109/LED.2011.2158058
  • B. Scharf, V. Perebeinos, J. Fabian, and P. Avouris, “Effects of optical and surface polar phonons on the optical conductivity of doped graphene,” Physical Review B, Vol. 87, no. 3, pp. 035414, 2013. DOI:10.1103/PhysRevB.87.035414
  • V. E. Dorgan, M.-H. Bae, and E. Pop, “Mobility and saturation velocity in graphene on SiO2,” Appl. Phys. Lett., Vol. 97, no. 8, pp. 082112, 2010. DOI:10.1063/1.3483130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.