26
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Development of Microwave Components Using Additive Manufacturing: A Review

&

REFERENCES

  • Y.-G. Park, I. Yun, W. G. Chung, W. Park, D. H. Lee, and J.-U. Park, “High-resolution 3D printing for electronics,” Adv. Sci., Vol. 9, no. 8, pp. 1–29, 2022. DOI:10.1002/advs.202104623.
  • L. Wu, C. Wang, S. Peng, and Y. Guo, “3-D printed wideband millimeter-wave horn antenna with conical radiation pattern,” IEEE Antennas Wirel. Propag. Lett., Vol. 19, pp. 453–6, 2020.
  • M. E. Carkaci, and M. Secmen, “The prototype of a wideband Ku-band conical corrugated horn antenna with 3-D printing technology,” Adv. Electromag., Vol. 8, no. 2, pp. 39–47, 2019.
  • F. M. Taydas, G. Bozdag, H. Yigit, and H. Aniktar. “Additively manufactured mechanically tunable horn antenna design,” in 28th Signal Processing and Communications Applications Conference, SIU 2020 - Proceedings, 2020. DOI:10.1109/siu49456.2020.9302277.
  • P. Njogu, B. Sanz-Izquierdo, A. Elibiary, S. Y. Jun, Z. Chen, and D. Bird, “3D printed fingernail antennas for 5G applications,” IEEE. Access., Vol. 8, pp. 1–9, 2020.
  • M. Kilian, C. Hartwanger, M. Schneider, and M. Hatzenbichler, “Waveguide components for space applications manufactured by additive manufacturing technology,” Microw. Comp. Antennas Based Adv. Manuf. Tech., IET Microw. Antennas Propag., Vol. 11, no. 14, pp. 1949–54, 2017.
  • S. S. Gill, J. Hemant Arora, and V. Sheth, “On the development of antenna feed array for space applications by additive manufacturing technique,” Addit. Manuf., Vol. 17, pp. 39–46, 2017.
  • J. D. Lundquist, L. Linkous, U. Hasni, and A. E. Topsakal, “Indirect applications of additive manufacturing for antennas,” IEEE Open J. Antenna Propag., Vol. 4, pp. 434–45, 2023.
  • B. Liu, Y. Wang, Z. Lin, and T. Zhang, “Creating metal parts by fused deposition modeling and sintering,” Mater. Lett., Vol. 263, pp. 127252, 2020.
  • R. Sorrentino, P. Martin-Iglesias, O. A. Peverini, and T. M. Weller, “Additive manufacturing of radio-frequency components,” Proc. IEEE, Vol. 105, no. 4, pp. 589–92, 2017.
  • D. Betancourt, K. Wolf, D. Plettemeier, and F. Ellinger, “Additive manufactured double-ridged horn antenna for UWB applications,” Prog. Electromag. Res. C, Vol. 73, pp. 47–53, 2017.
  • S. Zhang, D. Cadman, W. Whittow, D. Wang, G. Chi-Tangyie, A. Ghosh, et al. “3D antennas, metamaterials, and additive manufacturing,” in IEEE MTT-S International Microwave Symposium Digest, 2019, pp. 1–3.
  • A. Reinhardt, M. M¨obius-Labinski, C. Asmus, A. Bauereiss, and M. H¨oft. “Additive manufacturing of 300 GHz corrugated horn antennas,” in IEEE MTT-S International Microwave Symposium Digest, 2019, pp. 40–2.
  • V. Bharambea, D. P. Parekhb, C. Laddb, K. Moussac, M. D. Dickeyb, and J. J. Adamsa, “Vacuum-filling of liquid metals for 3D printed RF antennas,” Addit. Manuf., Vol. 18, pp. 221–7, 2017.
  • L. Gregurić. History of 3D PRINTING: When was 3D printing invented? Available: https://all3dp.com/2/history-of-3d-printing-when-was-3d-printing-invented, 2018.
  • “Inventor of FDM 3D printing and co-founder of stratasys, Scott Crump, inducted in to the TCT Hall of Fame|Stratasys,” Stratasys, 2017.
  • B. Redwood, F. Schoöffer, and B. Garret. The 3D printing handbook. Amsterdam: 3D Hubs, 2017.
  • S. C. Joshi, and A. A. Sheikh, “3D printing in aerospace and its long-term sustainability,” Virtual. Phys. Prototyp., Vol. 10, no. 4, pp. 175–85, 2015.
  • H. Bensoussan. “The history of 3D printing: From the 80s to Today,” 3D Printing Blog: Tutorials, News, Trends and Resources - Sculpteo, 2016. [Online]. Available: https://www.sculpteo.com/blog/2016/12/14/thehistory-of-3D-printing-3D-printing-technologies-from-the-80s-to-today/. Accessed on: Feb. 07, 2019.
  • R. Xu, et al., “A review of broadband low-cost and high-gain low-terahertz antennas for wireless communications applications,” IEEE. Access., Vol. 8, pp. 57615–29, 2020.
  • C. Tomassoni, O. A. Peverini, G. Venanzoni, G. Addamo, F. Paonessa, and G. Virone, “3D printing of microwave and millimeter-wave filters,” IEEE Microwave Mag., Vol. 21, no. 6, pp. 24–45, 2020.
  • N. Guo, and M. C. Leu, “Additive manufacturing: Technology, applications and research needs,” Front. Mech. Eng, Vol. 8, no. 3, pp. 215–43, 2013.
  • B. Lyons, “Additive manufacturing in aerospace: Examples and research outlook,” Bridge: Link. Eng. Soc., Vol. 42, no. 1, pp. 13–9, 2012.
  • C. C. Sandström, “Adopting 3D printing for manufacturing—evidence from the hearing aid industry,” Technol. Forecast. Soc. Change., Vol. 102, pp. 160–8, 2015.
  • F. Mashambanhaka. “3D printing in medicine: The best applications in 2019 - All3DP,” All3DP, 2019. [Online]. Available: https://all3dp.com/2/3d-printing-in-medicine-the-best-applications/.
  • M. S. Tareq, T. Rahman, M. Hossain, and P. Dorrington, “Additive manufacturing and the COVID-19 challenges: An in-depth study,” J. Manuf. Syst., Vol. 60, pp. 787–98, 2021.
  • A. Equbal, S. Akhter, A. K. Sood, and I. Equbal, “The usefulness of additive manufacturing (AM) in COVID-19,” Ann. 3D Print. Med., Vol. 2, pp. 2666–9641, 2021.
  • J. Olivová, M. Popela, M. Richterová, and E. Štef, “Use of 3D printing for horn antenna manufacturing,” Electronics, Vol. 11, pp. 1–15, 2022.
  • G. McKerricher, D. Titterington, and A. Shamim, “A fully inkjet printed 3D honeycomb inspired patch antenna,” IEEE Antennas Wirel. Propag. Lett., Vol. 15, pp. 544–7, 2016.
  • B. Zhang, and H. Zirath, “Metallic 3-D printed rectangular waveguides for millimeter-wave applications,” IEEE Trans. Comp. Packag. Manuf. Technol., Vol. 6, no. 5, pp. 796–804, 2016.
  • R. Nazempour, Q. Zhang, R. Fu, and X. Sheng, “Biocompatible and implantable optical fibers and waveguides for biomedicine,” Materials, Vol. 11, pp. 1–21, 2018.
  • Z. Wang, B. Zhang, and K. Huang, “A metallic 3D printed K-band quasi-pyramidal-horn antenna array,” Int. J. RF Microw. Comput.-Aid. Eng., Vol. 30, no. 7, pp. 1–10, 2020.
  • F. Tchoffo Talom, and S. Turpault, “Additive manufacturing for RF microwave devices: Design, performances and treatments improvement evaluations,” in International Conference on Electromagnetics in Advanced Applications (ICEAA), 2017, pp. 1473–6.
  • J. R. Montejo-Garai a, J. A. Ruiz-Cruz b, and J. M. Rebollar, “Additive manufacturing of a compact Ku-band orthomode transducer,” Int. J. Electron. Commun. (AEÜ), Vol. 137, pp. 153798, 2021.
  • L. Hernandez, Y. He, A. Kaur, J. Papapolymerou, and P. Chahal. “Low-loss RF filter through a combination of additive manufacturing and thin-film process,” in 2017 IEEE Radio and Wireless Symposium (RWS), 2017, pp. 114–6.
  • D. Santiago1, M. A. G. Laso, T. Lopetegi, and I. Arregui, “Novel design method for millimeter-wave gap waveguide low-pass filters using advanced manufacturing techniques,” IEEE. Access., Vol. 11, pp. 89711–9, 2023.
  • J. Bjorgaard, M. Hoyack, E. Huber, M. Mirzaee, Y.-H. Chang, and S. Noghanian, “Design and fabrication of antennas using 3D printing,” Prog. Electromag. Res. C, Vol. 84, pp. 119–34, 2018.
  • T. H. Chio, G.-L. Huang, and S.-G. Zhou, “Application of direct metal laser sintering to waveguide-based passive microwave components, antennas, and antenna arrays,” Proc. IEEE, Vol. 105, no. 4, pp. 632–44, 2017.
  • M. D. Benge, R. C. Huck, and H. H. Sigmarsson. “X-band performance of three-dimensional, selectively laser sintered waveguides,” in IEEE Antennas and Propagation Society International Symposium (APSURSI), July 2014, pp. 13–4.
  • S. Kaddour, S. Bories, A. Bellion, and C. Delaveaud. “3D printed compact dual-polarized wideband antenna,” in 11th European Conference on Antennas and Propagation (EUCAP), Paris, 2017, pp. 3441–3.
  • S. Fager Franzen, A. Ab, et al. “Improved resolution and mechanical properties of porous coatings and cellular structures in Ti6Al4V manufactured with electron beam melting,” in The Materials and Processes for Medical Devices (MPMD) Conference and Exposition of ASM, 2011.
  • A. Arsanjani, L. Robins, R. Tesch, and W. Bosch. “Implementation of K-band mushroom meta-material filter for satellite applications”, in Proceedings of the 50th European Microwave Conference, 2021, pp. 495–8.
  • I. T. Nassar, T. M. Weller, and H. Tsang, “A 3-D printed miniaturized log-periodic dipole antenna,” in Proceedings of IEEE Antennas Propagation Society International Symposium (APSURSI), 2014, pp. 11–2.
  • C. Tomassoni, M. Bozzi, M. Dionigi, G. Venanzoni, L. Perregrini, and R. Sorrentino. “Additive manufacturing of microwave components: Different approaches and methodologies,” in International Conference on Electromagnetics in Advanced Applications (ICEAA), IEEE, 2017, pp. 848–51.
  • Z.-X. Xia, and K. W. Leung, “3D-printed wideband multi-ring dielectric resonator antenna,” IEEE Antennas Wirel. Propag. Lett., Vol. 18, pp. 2110–4, 2019.
  • G. Shivani, G. S. Karthikeya, D. Santhoshi, D. R. Krishna, and S. K. Koul. “Low cost 3D printed dual band antenna for mm wave 5G applications,” in IEEE Indian Conference on Antennas and Propogation (InCAP), 2019, pp. 5–8.
  • W. Clowera, M. J. Hartmannb, J. B. Joffriona, and C. G. Wilsona, “Additive manufactured graphene composite Sierpinski gasket tetrahedral antenna for wideband multi-frequency applications,” Addit. Manuf., Vol. 32, pp. 1–18, 2020.
  • Á. F. Vaquero, A. Rebollo, and M. Arrebola, “Additive manufacturing in compact high-gain wideband antennas operating in mm-wave frequencies,” Sci. Rep., Vol. 13, no. 10998, pp. 1–9, 2023.
  • W. Su, S. A. Nauroze, B. Ryan, and M. M. Tentzeris. “Novel 3D printed liquid-metal-alloy microfluidics-based zigzag and helical antennas for origami reconfigurable antenna trees,” in IEEE MTT-S International Microwave Symposium (IMS), 2017, pp. 1579–82.
  • J. Yang, et al., “3D printed low loss THz waveguide based on Kagome photonic crystal structure,” Opt. Exp., Vol. 24, pp. 22454–60, 2016.
  • J. H. ClaraMáximo-Gutierrez, J. Abad-López, A. Urbina-Yeregui, and A. Alvarez-Melcon, “Compact wideband groove gap waveguide bandpass filters manufactured with 3D printing and CNC milling techniques,” Sensors, Vol. 23, no. 13, pp. 6234–51, 2023.
  • William J. Otter Member, IEEE, Stepan Lucyszyn, “Hybrid 3-D printing technology for tunable THz applications,” Proc. IEEE, Vol. 105, pp. 756–67, 2017.
  • F. Hubert, L. Tobias Bader, A. Hofmann, K. Lomakin, M. Sippel, N. Travitzky, and G. Gold, “Additive manufactured waveguide for E-band using ceramic materials,” Appl. Sci., Vol. 12, no. 1, pp. 1–11, 2022.
  • D. Klosterman*, R. Chartoff, G. Graves, N. Osborne, and B. Priore, “Interfacial characteristics of composites fabricated by laminated object manufacturing,” Compos. Part A, Vol. 29A, pp. 1165–74, 1998.
  • J. Suwanprateeb R, S. W. Suvannapruk, and T. Panyathanmaporn, “Mechanical and in vitro performance of apatite–wollastonite glass ceramic reinforced hydroxyapatite composite fabricated by 3d-printing,” J. Mater Sci., Vol. 20, pp. 1281–9, 2009.
  • P. Wu, J. Wang, and X. Wang, “A critical review of the use of 3-D printing in the construction industry,” Autom. Constr., Vol. 68, pp. 21–31, 2016.
  • B. Furet, P. Poullain, and S. Garnier, “3D printing for construction based on a complex wall of polymer-foam and concrete,” Addit. Manuf., Vol. 28, pp. 58–64, 2019.
  • H. Alhumayani, M. Gomaa, V. Soebarto, and W. Jabi, “Environmental assessment of large-scale 3D printing in construction: A comparative study between cob and concrete,” J. Cleaner Prod., Vol. 270, pp. 122463–12468, 2020.
  • M. Sakin, and Y. Kiroglu, “3D printing of buildings: Construction of the sustainable houses of the future by BIM,” Energy Procedia, Vol. 134, pp. 702–11, 2017.
  • C. Buchanan, and L. Gardner, “Metal 3D printing in construction: A review of methods, research, applications, opportunities and challenges,” Eng. Struct., Vol. 180, pp. 332–48, 2019.
  • B. Sanz-Izquierdo, and E. A. Parker, “3D printing technique for fabrication of frequency selective structures for built environment,” Electron. Lett., Vol. 49, no. 18, pp. 1117–8, 2013.
  • L. T. Nassar, and T. M. Weller. “An electrically-small, 3-D cube antenna fabricated with additive manufacturing,” in IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), 2013, pp. 91–3.
  • M. N. Ai-Mobin, R. Shankar, W. Cross, J. Kellar, K. W. Whites, and D. E. Anagnostou. “Advances in direct-write printing of RF-MEMS using M3D,” in IEEE MTT-S International Microwave Symposium Digest, 2014, pp. 1–6.
  • J. Kief, et al. “Printing multi-functionality: Additive manufacturing for CubeSats,” in Proceedings of AIAA SPACE Conference Expo., 2014, pp. 1–9.
  • T. Merkle, R. Götzen, J. Y. Choi, and S. Koch, “Polymer multichip module process using 3-D printing technologies for D-band applications,” IEEE Trans. Microw. Theory Technol., Vol. 63, no. 2, pp. 481–93, 2015.
  • E. D. Cullens, L. Ranzani, K. J. Vanhille, E. N. Grossman, N. Ehsan, and Z. Popovic, “Micro-Fabricated 130–180 GHz frequency scanning waveguide arrays,” IEEE Trans. Antennas Propag., Vol. 60, no. 8, pp. 3647–53, 2012.
  • B. Zhang, L. Wu, Y. Zhou, Y. Yang, H. Zhu, and Y. Wu. “A 3D printed aluminium alloy K-band square stepped doubled ridged horn antenna,” in IEEE International Conference on Computational Electromagnetics (ICCEM), 2018, pp. 1–3.
  • C. Flaviana, et al., “High-performance microwave waveguide devices produced by laser powder bed fusion process,” Proc. CIRP, Vol. 79, pp. 85–8, 2019.
  • O. A. Peverini, et al., “Additive manufacturing of Ku/K-band waveguide filters: A comparative analysis among selective-laser melting and stereo-lithography,” IET Microw. Antennas Propag., Vol. 11, no. 14, pp. 1936–42, 2017.
  • M. Salek, “W-band waveguide bandpass filters fabricated by micro laser sintering,” IEEE Trans. Cir. Syst. II Exp. Briefs, Vol. 66, no. 1, pp. 61–5, 2019.
  • R. Noorani. 3D printing technology, applications and selection. Boca Raton, FL: CRC Press, 2017. ISBN 9781315155494.
  • M. F. Farooqui, and A. Kishk, “3-D-printed tunable circularly polarized microstrip patch antenna,” IEEE Antennas Wirel. Propag. Lett., Vol. 18, no. 7, pp. 1429–32, 2019.
  • “Makerbot replicator+ datasheet,” stratasys, [Available online] https://www.makerbot.com/replicator/.
  • D. Shamvedi, C. Danilenkoff, S. Karam, P. O. Leary, and R. Raghavendra. “3D printed periodic structures in a horn antenna for side-lobe reduction using direct metal laser sintering”, in Loughborough Antennas & Propagation, 2017, pp. 7–10.
  • H. Yi, S.-W. Qu, K.-B. Ng, C. H. Chan, and X. Bai, “3-D printed millimeter-wave and terahertz lenses with fixed and frequency scanned beam,” IEEE Trans. Antennas Propag., Vol. 64, no. 2, pp. 442–9, 2016.
  • “ETS-3117 datasheet,” ETS-Lindgren Corporation, USA. Available: http://www.ets-lindgren.com/specs/3117.
  • “R&S RHF907 datasheet,” Rohde & Schwarz, Munich, Germany. Available: https://www.rohde-schwarz.com/us/product/hf907-productstartpage63493-7982.html.
  • N. Z. Tenigeer, J. Qiu, P. Zhang, and Y. Zhang, “Design of a novel broadband EMC double ridged guide horn antenna,” Progress in Electromagnetics Research C, Vol. 39, pp. 225–36, 2013.
  • V. Rodriguez, “New broadband EMC double-ridge guide horn antenna,” RF Design, Vol. 27, pp. 44–7, 2004.
  • J. Uher, J. Bornemann, and U. Rosenberg, “Waveguide components for antenna feed systems: Theory and CAD,” Microw. J., Vol. 37, no. 6, pp. 147–8, 1994.
  • C. Granet, and G. L. James, “Design of corrugated horns: A primer,” IEEE Antennas Propag. Mag., Vol. 47, no. 2, pp. 76–84, 2005.
  • M. F. Yakan Musthofa, and A. Munir. “Design of rectangular to circular waveguide converter for S-band frequency,” in Proceedings of International Conference on Electrical Engineering and Informatics, Bandung, 2011, pp. 1–5.
  • MG Chemicals, Surrey, BC, Canada. “Super shield nickel conductive coating 841 technical data sheet,” [Online]. Available: http://www.mgchemicals.com.
  • H. W. Tan, et al., “3D printed electronics: processes, materials and future trends,” Prog. Mater. Sci., Vol. 127, pp. 1–6, 2022.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.