948
Views
3
CrossRef citations to date
0
Altmetric
Articles

Morphological traits and vertical distribution of hyporheic chironomid larvae in Atlantic Forest streams

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 119-134 | Received 11 Apr 2018, Accepted 28 Jun 2019, Published online: 27 Aug 2019

References

  • Anderson JK, Wondzell SM, Gooseff MN, Haggerty R. 2005. Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA. Hydrological Process. 19(15):2931–2949.
  • Bencala KE. 2000. Hyporheic zone hydrological processes. Hydrological Process. 14:2797–2798.
  • Bencala KE. 2005. Hyporheic exchange flows. In: Anderson MG, McDonnell JJ, editors. Encyclopedia of hydrological sciences. New Jersey: John Wiley and Sons; vol. 3, Chapter 113, p. 733–740.
  • Berg HB. 1995. Larval food and feeding behaviour. In: Armitage PD, Cranston PS, Pinder LCV, editors. The Chironomidae: biology and ecology of non-biting midges. London: Chapman and Hall; p. 136–168.
  • Bo T, Cucco M. Fenoglio S, Malacarne G. 2006. Colonization patterns and vertical movements of stream invertebrates in the interstitial zone: a case study in the Apennines, NW Italy. Hydrobiology. 568(1):67–78.
  • Boulton AJ, Datry T, Kasahara T, Mutz M, Stanford JA. 2010. Ecology and management of the hyporheic zone: stream-groundwater interactions of running waters and their floodplains. Journal of the North American Benthological Society. 29(1):26–40.
  • Boulton AJ, Dole-Olivier MJ, Marmonier P. 2004. Effects of sample volume and taxonomic resolution on assessment of hyporheic assemblage composition sampled using a Bou-Rouch pump. Archiv für Hydrobiologie. 159:327–355.
  • Boulton AJ, Marmonier P. 2007. Hyporheic invertebrate community composition in streams of varying salinity in southwestern Australia. River Resource and Application. 594:579–594.
  • Brasil. 1987. Projeto Radambrasil. Levantamento de recursos naturais. Vol. 32. Brasilia, BR: Ministerio das Minas e Energia.
  • Brunke M, Gonser T. 1997. The ecological significance of exchange processes between rivers and groundwater. Freshwater Biology. 37(1):1–33.
  • Buffagni A, Erba S, Armanini DG. 2010. The lentic-lotic character of Mediterranean rivers and its importance to aquatic invertebrate communities. Aquatic Science. 72:45–60.
  • Claret C, Marmonier P, Dole-Olivier M-J, Creuzé des Châtelliers M, Boulton AJ, Castella E. 1999. A functional classification of interstitial invertebrates: supplementing measures of biodiversity using species traits and habitat affinities. Archiv für Hydrobiologie. 145:385–403.
  • Coffman WP, Ferrington LC Jr. 1996. Chironomidae. In: Merritt RW, Cummins KW, editors. An introduction to the aquatic insects of North America, 3rd ed. Dubuque, IA: Kendall/Hunt; p. 635–754.
  • Colwell RK. 2013. EstimateS: statistical estimation of species richness and shared species from samples. Version 9. User’s Guide and application. Published at: http://purl.oclc.org/estimates.
  • Culver D, Pipan T. 2009. The biology of caves and other subterranean habitats. Oxford: Oxford University Press; 256 p.
  • Dahm CN, Valett HM. 1996. Hyporheic zones. In: Hauer FR, Lamberti GA, editors. Methods in stream ecology. San Diego, CA: Academic Press; p. 107–119.
  • Dent CL, Schade JD, Grimm NB, Fisher SG. 2000. Subsurface influences on surface biology. In: Jones JB, Mulholland PJ, editors. Streams and ground waters. San Diego, CA: Academic San Diego Press; p. 381–404.
  • DeWalt RE, Stewart KW. 1995. Life histories of stoneflies (Plecoptera) in the Rio Conejos of Southern Colorado. The Great Basin Naturalist, 55(1):1–18.
  • Dole-Oliver MJ, Marmonier P, Beffy JL. 1997. Response of invertebrate to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology. 37:257–276.
  • Epler JH. 2001. Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. Special Publication SJ2001-SP13. North Carolina Department of Environment and Natural Resources, Raleigh, NC, and St. Johns River Water Management District, Palatka, FL; 526 p.
  • Ferrington LC. 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiology. 595(1):447–455.
  • Ford JB. 1962. The vertical distribution of larval Chironomidae (Dipt.) in the mud of a stream. Hydrobiology. 19(3):262–262.
  • Franken JM, Storey RG, Williams DD. 2001. Biological, chemical and physical characteristics of downwelling and upwelling zones in the hyporheic zone of a north-temperate stream. Hydrobiology. 444:183–195.
  • Gibert J, Danielopol D, Stanford JA. 1994. Groundwater ecology. 1st ed. London: Academic Press; p. XVII + 571.
  • Gibert J, Dole-Olivier MJ, Marmonier P, Vervier P. 1990. Surface waterground ecotones. In: Naiman RJ, Decamps H, editors. The ecology and management of aquatic-terrestrial ecotones. London: CRC Press.
  • Godbout L, Hynes HBN. 1982. The three dimensional distribution of the fauna in a single riffle in a stream in Ontario. Hydrobiology. 97:87–96.
  • Hahn HJ. 2006. The GW-Fauna-Index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica. 36(2):119–137.
  • Hancock PJ. 2002. Human impacts on the stream-groundwater exchange zone. Environmental Management. 29(6):763–781.
  • Harvey JW, Wagner BJ. 2000. Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. In: Jones JB, Mulholland PJ, editors. Streams and ground waters. San Diego, CA: Academic Press; p. 3–44.
  • Henriques-Oliveira AL, Nessimian JL, Dorvillé LF. 2003. Feeding habits of chironomid larvae (Insecta: Diptera) from a stream in the Floresta da Tijuca, Rio de Janeiro, Brazil. Revista Brasileira de Biologia. 63(2):269–281.
  • Hurlbert SH. 1984. Pseudoreplication and the design of ecological field experiments. Ecology monograph. 54(2):187–211.
  • Hutchinson PA, Webster I.T. 1998. Solute uptake in aquatic sediments due to current-obstacle interactions. Journal of Environmental Engineering. 124:419–426.
  • Jacobsen D, Schultz R, Encalada A. 1997. Structure and diversity of stream invertebrate assemblages: the effect of temperature with altitude and latitude. Freshwater Biology. 38:247–261.
  • James AB, Suren AM. 2009. The response of invertebrates to a gradient of flow reduction–an instream channel study in a New Zealand lowland river. Freshwater Biology. 54(11):2225–2242.
  • Käser D. 2010. A new habitat of subsurface waters: the hyporheic biotope, by Traian Orghidan (1959). Fundamental and applied Limnology. 176(4):291–302.
  • Kleine P, Trivinho-Strixino S. 2005. Chironomidae and other macroinvertebrates of a first order stream: community response after habitat fragmentation. Acta Limnologica Brasiliense. 17(1):81–90.
  • Lee DR, Cherry JA. 1978. A field exercise on groundwater flow using seepage meters and mini-piezometers. Journal of Geological Education. 27:6–10.
  • Lencioni V. 2004. Survival strategies of freshwater insects in cold environments. Journal of Limnology. 63:45–55.
  • Lencioni VL, Marziali L, Rossaro B. 2008. Hyporheic chironomids in alpine streams. Boletim do Museu Municipal do Funchal. 13:127–132.
  • Magurran AE. 2004. Measuring biological diversity. African Journal of Aquatic Science. 29(2):285–286.
  • Malard F, Dole-Olivier MJ, Mathieu J, Stoch F. 2002. PASCALIS D4 Deliverable for Workpackage 4: sampling manual for the assessment of regional groundwater biodiversity. European Project Protocols for the Assessment and Conservation of Aquatic Life in the Subsurface (PASCALIS; No EVK-CT-2001-00121).
  • Marchant R. 1988. Vertical distribution of benthic invertebrates in the Bed of the Thomson River, Victoria. Marine and Freshwater Research. 39(6):775–784.
  • Martins MF. 2011. Historical biogeography of the Brazilian Atlantic forest and the Carnaval–Moritz model of Pleistocene refugia: what do phylogeographical studies tell us? Biological Journal of the Linnean Society. 104:499–509.
  • McGill BJ, Enquist BJ, Weiher E, Westoby M. 2006. Rebuilding community ecology from functional traits. Trends in Ecology and Evolution (Amsterdam). 21(4):178–185.
  • McKie BG, Pearson RG, Cranston PS. 2005. Does biogeographical history matter? Diversity and distribuition of lotic midges (Diptera: Chironomidae) in the Australian Wet Tropics. Austral Ecology. 30:1–13.
  • Morris DL, Brooker MP. 1979. The vertical distribution of macro-invertebrates in the substratum of the upper reaches of the River Wye, Wales. Freshwater Biology. 9(6):573–583.
  • Mugnai R, Messana G, Di Lorenzo T. 2015a. The hyporheic zone and its functions: revision and research status in Neotropical regions. Brazilian Journal of Biology. 75(3):524–534.
  • Mugnai R, Messana G, Di Lorenzo T. 2015b. Hyporheic invertebrate assemblages at reach scale in a Neotropical stream in Brazil. Brazilian Journal of Biology. 75(4):773–782.
  • Mugnai R, Sattamini A, dos Santos JAA. 2015c. A survey of Escherichia coli and Salmonella in the Hyporheic Zone of a subtropical stream: their bacteriological, physicochemical and environmental relationships. PloS One. 10(6):e0129382.
  • Mugnai R, Serpa-Filho AR. 2015. A new proposal for the optimization of morphological analyses of micro and macroinvertebrates in ecological freshwater studies. Pan-American Journal of Aquatic Science. 10(1):76–79.
  • Nessimian JL, Amorim RM, Henriques-Oliveira AL. 2003. Chironomidae (Diptera) do Estado do Rio de Janeiro. Levantamento dos gêneros e habitats de ocorrência. Publicações Avulsas do Museu Nacional. 98:1–16.
  • Olsen DA, Townsend CR. 2003. Hyporheic community composition in a gravel-bed stream: influence of vertical hydrological exchange, sediment structure and physicochemistry. Freshwater Biology. 48:1363–1378.
  • Olsen DA, Townsend CR, Matthaei CD. 2001. Influence of reach geomorphology on hyporheic communities in a gravel-bed stream. New Zealand Journal of Marine and Freshwater Research. 35:181–190.
  • Omesová M, Helešic J. 2007. Vertical distribution of invertebrates in bed sediments of a gravel stream in the Czech Republic. International Review of Hydrobiology. 92(4–5):480–490.
  • Omesová M, Horsák M, Helešic J. 2008. Nested patterns in hyporheic meta-communities: the role of body morphology and penetrability of sediment. Naturwissenschaften. 95(10):917–926.
  • Orghidan T. 1959. Ein neuer Lebensraum des unterirdischen Wasser: der hyporheische Biotop. Archiv für Hydrobiologie. 55:392–414.
  • Petchey OL, Gaston KJ. 2006. Functional diversity: back to basics and looking forward. Ecology Letters. 9(6):741–758.
  • Pinder LCV. 1986. Biology of freshwater Chironomidae. Annual Review of Entomology. 31:1–23.
  • Pinder LCV. 1995. The habitats of Chironomid larvae. In: Armitage PD, Cranston PS, Pinder LCV, editors. The Chironomidae. The biology and ecology of non-biting midges. London: Chapman and Hall; p. 107–135.
  • Poff NL, Olden JD, Vieira NKM, Finn DS, Simmons MP, Kondratieff BC. 2006. Functional trait niches of North American lotic insects: trait-based ecological applications in light of phylogenetic relationships. Journal of the North American Benthological Society. 25:730–755.
  • Principe RE, Boccolini MF, Corigliano MC. 2008. Structure and spatial-temporal dynamics of Chironomidae fauna (Diptera) in upland and lowland fluvial habitats of the Chocancharava River Basin (Argentina). Hydrobiologia. 93(3):342–357.
  • Pugsley CW, Hynes HBN. 1983. A modified freeze-core technique to quantify the depth distribution of fauna in stony streambeds. Canadian Journal of Fisheries and Aquatic Sciences. 40(5):637–643.
  • Puntí T, Rieradevall M, Prat N. 2009. Environmental factors, spatial variation, and specific requirements of Chironomidae in Mediterranean reference streams. Journal of the North American Benthological Society. 28(1):247–265.
  • R Development Core Team. 2013. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org.
  • Reynolds SK, Benke AC. 2006. Chironomid emergence and relative emergent biomass from two Alabama streams. Southeastern Naturalist. 5(1):165–174.
  • Reynolds SK, Benke AC. 2012. Chironomid production along a hyporheic gradient in contrasting stream types. Freshwater Science. 31(1):167–181.
  • Roque FO, Trivinho-Strixino S, Strixino G. 2003. Benthic macroinvertebrates in streams of the Jaraguá State Park (Southeast of Brazil) considering multiple spatial scales. Journal of Insect Conservation. 7(2):63–72.
  • Rosa BFJV, de Oliveira VC, Alves RDG. 2011. Structure and spatial distribution of the Chironomidae community in mesohabitats in a first order stream at the Poço D’Anta Municipal Biological Reserve in Brazil. Journal of Insect Science. 11(1):36.
  • Rossaro B. 1991. Factors that determine Chironomidae species distribution in fresh waters. Italian Journal of Zoology. 58:281–286.
  • Sabater F, Vila PB. 1992. The hyporheic zone considered as an ecotone. Homage to Ramon Margalef, or, Why there is such pleasure in studying nature. Barcelona: Universitat de Barcelona; p. 35–43.
  • Saito VS, Fonseca-Gessner AA. 2014. Taxonomic composition and feeding habits of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Acta Limnologica Brasiliensia. 26(1):35–46.
  • Sanseverino AM, Nessimian JL. 2008. Larvas de Chironomidae (Diptera) em depósitos de folhiço submerso em um riacho de primeira ordem da Mata Atlântica (Rio de Janeiro, Brasil). Revista Brasileira de Entomologia. 52(1):95–104.
  • Serra SRQ, Cobo F, Grac MAS¸ Dolédec S, Feio MJ. 2016. Synthesising the trait information of European Chironomidae (Insecta: Diptera): towards a new database. Ecological Indicators. 61:282–292.
  • Sherfy MH, Kirkpatrick RL, Richkus KD. 2000. Benthos core sampling and chironomid vertical distribution: implications for assessing shorebird food availability. Wildlife Society Bulletin. 28(1):124–130.
  • Siqueira T, Roquec FO, Trivinho-Strixino S. 2008. Species richness, abundance, and body size relationships from a neotropical chironomid assemblage: looking for patterns. Basic and Applied Ecology. 9(5):606–612.
  • Smith JWN. 2005. The hyporheic zone, definitions and conceptual models of the hyporheic zone. In: Groundwater-surface water interactions in the hyporheic zone. Bristol: Environment Agency; p. 9–13.
  • Sonoda KC, Matthaei CD, Trivinho-Strixino S. 2009. Contrasting land uses affect Chironomidae communities in two Brazilian rivers. Archiv für Hydrobiologie. 174(2):173–184.
  • Stark BP, Baumann RW, Kondratieff BC, Stewart KW. 2013. Larval and egg morphology of Paraperla frontalis (Banks 1902) and P. wilsoni Ricker 1965 (Plecoptera: Chloroperlidae). Illiesia. 9(08):101–108.
  • Strahler AN. 1957. Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union. 38:913–920.
  • Stubbington R. 2012. The hyporheic zone as an invertebrate refuge: a review of variability in space, time, taxa and behaviour. Marine and Freshwater Research. 63(4):293–311.
  • Tachet H, Richoux P, Bournaud M, Usseglio-Polatera P. 2010. Invertébrés d’eau douce, Nouvelle edition. Paris: Centre National de la Recherche Scientifique Press.
  • Thibodeaux LJ, Boyle JD. 1987. Bedform-generated convective transport in bottom sediment. Nature. 325:341–343.
  • Trivinho-Strixino S. 2011. Guia de identificação e diagnose dos gêneros de Chironomidae (Diptera). São Carlos, SP: EdUFSCar Editora; 371 p.
  • Valett HM. 1993. Surface-hyporheic interactions in a Sonoran Desert stream: hydrologic exchange and diel periodicity. Hydrobiologia. 259:133–144.
  • Vigna Taglianti A, Cottarelli V, Argano R. 1969. Messa a punto di metodiche per la raccolta della fauna interstiziale e freatica. Archivio Botanico e Biogeografico Italiano. 45(14):375–380.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.