451
Views
8
CrossRef citations to date
0
Altmetric
Reviews

Towards a common terminology for arthropod spatial orientation

ORCID Icon, ORCID Icon & ORCID Icon
Pages 338-358 | Received 22 Jan 2021, Accepted 11 Mar 2021, Published online: 26 Apr 2021

References

  • Able KP. 2001. The concepts and terminology of bird navigation. J Avian Biol. 32:174–183. doi:10.1034/j.1600-048X.2001.320211.x
  • Adams CF, Paul AJ. 1999. Phototaxis and geotaxis of light-adapted zoeae of the golden king crab Lithodes aequispinus (Anomura: Lithodidae) in the laboratory. J Crustac Biol. 19:106–110. doi:10.2307/1549552
  • Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B. 2016. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput Biol. 12:1–22. doi:10.1371/journal.pcbi.1004683
  • Arendse MC. 1979. Non-visual orientation in the sandhopper Talitrus saltator (Mont). Neth J Zool. 30:535–554. doi:10.1163/002829679X00179
  • Arendse MC, Kruyswijk CJ. 1981. Orientation of Talitrus saltator to magnetic fields. Neth J Sea Res. 15:23–32. doi:10.1016/0077-7579(81)90003-X
  • Boles LC, Lohmann KJ. 2003. True navigation and magnetic maps in spiny lobsters. Nature. 421:60–63. doi:10.1038/nature01226
  • Brandt H. 1934. Die Lichtorientierung der Mehlmotte Ephestia kuehniella Zeller [The light orientation of the flour moth Ephestia kuehniella Zeller]. Z Vgl Physiol. 20:646–673. German. doi:10.1007/BF00339158
  • Brierley AS. 2014. Diel vertical migration. Curr Biol. 24:R1074–R1076. doi:10.1016/j.cub.2014.08.054
  • Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven JE. 2020. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr Biol. 30:3438–3443. doi:10.1016/j.cub.2020.07.013
  • Cannicci S, Dahdouh-Guebas F, Anyona D, Vannini M. 1995. Homing in the mangrove swimming crab Thalamita crenata (Decapoda: Portunidae). Ethology. 100:242–252.
  • Cheeseman JF, Millar CD, Greggers U, Lehmann K, Pawley MDM, Gallistel CR, Warman GR, Menzel R. 2014. Way-finding in displaced clock-shifted bees proves bees use a cognitive map. Proc Natl Acad Sci. 111:8949–8954. doi:10.1073/pnas.1408039111
  • Cheung A, Collett M, Collett TS, Dewar A, Dyer F, Graham P, Mangan M, Narendra A, Philippides A, Stürzl W. 2014. Still no convincing evidence for cognitive map use by honeybees. Proc Natl Acad Sci. 11:E4396–E4397. doi:10.1073/pnas.1413581111
  • Cheung A, Stürzl W, Zeil J, Cheng K. 2008. The information content of panoramic images II: view-based navigation in nonrectangular experimental arenas. J Exp Psychol Anim Behav Process. 34:15–30. doi:10.1037/0097-7403.34.1.15
  • Collett M, Collett TS. 2018. How does the insect central complex use mushroom body output for steering? Curr Biol. 28:R733–R734. doi:10.1016/j.cub.2018.05.060
  • Collins CW, Potts SF. 1932. Attractants for the flying gipsy moths as an aid in locating new infestations. Tech Bull. 336:1–42.
  • Cruse H, Wehner R. 2011. No need for a cognitive map: decentralized memory for insect navigation. PLoS Comput Biol. 7:e1002009. doi:10.1371/journal.pcbi.1002009
  • Dacke M, Baird E, Byrne M, Scholtz CH, Warrant EJ. 2013. Dung beetles use the milky way for orientation. Curr Biol. 23:298–300. doi:10.1016/j.cub.2012.12.034
  • Dacke M, Baird E, el Jundi B, Warrant EJ, Byrne M. 2021. How dung beetles steer straight. Annu Rev Entomol. 66:1–14. doi:10.1146/annurev-ento-042020-102149
  • Dacke M, Bell ATA, Foster JJ, Baird EJ, Strube-Bloss MF, Byrne MJ, el Jundi B. 2019. Multimodal cue integration in the dung beetle compass. Proc Natl Acad Sci. 116:14248–14253. doi:10.1073/pnas.1904308116
  • Dacke M, Byrne MJ, Scholtz CH, Warrant EJ. 2004. Lunar orientation in a beetle. Proc R Soc Lond B. 271:361–365. doi:10.1098/rspb.2003.2594
  • Dacke M, el Jundi B. 2018. The dung beetle compass. Curr Biol. 28:R993–R997. doi:10.1016/j.cub.2018.04.052
  • Dacke M, el Jundi B, Smolka J, Byrne M, Baird E. 2014. The role of the sun in the celestial compass of dung beetles. Philos Trans R Soc Lond B. 369:1–7. doi:10.1098/rstb.2013.0036
  • Dacke M, Nilsson DE, Scholtz CH, Byrne M, Warrant EJ. 2003. Insect orientation to polarized moonlight. Nature. 424:33. doi:10.1038/424033a
  • Deeti S, Fujii K, Cheng K. 2020. The effect of spatially restricted experience on extrapolating learned views in desert ants, Melophorus bagoti. Anim Cogn. 23:1063–1070. doi:10.1007/s10071-020-01359-2
  • Dyer FC. 1991. Bees acquire route-based memories but not cognitive maps in a familiar landscape. Anim Behav. 41:239–246. doi:10.1016/S0003-3472(05)80475-0
  • Dyer FC, Berry NA, Richard AS. 1993. Honey bee spatial memory: use of route-based memories after displacement. Anim Behav. 45:1028–1030. doi:10.1006/anbe.1993.1121
  • el Jundi B, Baird E, Byrne MJ, Dacke M. 2019. The brain behind straight-line orientation in dung beetles. J Exp Biol. 222:7. doi:10.1242/jeb.192450
  • el Jundi B, Foster JJ, Khaldy L, Byrne MJ, Dacke M, Baird E. 2016. A snapshot-based mechanism for celestial orientation. Curr Biol. 26:1456–1462. doi:10.1016/j.cub.2016.03.030
  • el Jundi B, Smolka J, Baird E, Byrne MJ, Dacke M. 2014. Diurnal dung beetles use the intensity gradient and the polarization pattern of the sky for orientation. J Exp Biol. 217:2422–2429. doi:10.1242/jeb.101154
  • el Jundi B, Warrant EJ, Byrne MJ, Khaldy L, Baird E, Smolka J, Dacke M. 2015. Neural coding underlying the cue preference for celestial orientation. Proc Natl Acad Sci. 112:11395–11400. doi:10.1073/pnas.1501272112
  • Fisher YE, Lu J, D’Alessandro I, Wilson RI. 2019. Sensorimotor experience remaps visual input to a heading-direction network. Nature. 576:121–125. doi:10.1038/s41586-019-1772-4
  • Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W. 2018a. The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr Biol. 28:1440–1444. doi:10.1016/j.cub.2018.03.043
  • Fleischmann PN, Grob R, Rössler W. 2020a. Kompass im Kopf: Wie Wüstenameisen lernen heimzukehren [Compass in head: how desert ants learn to return home]. Biol Unserer Zeit. 50:100–109. German. doi:10.1002/biuz.202010699
  • Fleischmann PN, Grob R, Rössler W. 2020b. Magnetoreception in Hymenoptera: importance for navigation. Anim Cogn. 23:1051–1061. doi:10.1007/s10071-020-01431-x
  • Fleischmann PN, Rössler W, Wehner R. 2018b. Early foraging life: spatial and temporal aspects of landmark learning in the ant Cataglyphis noda. J Comp Physiol A. 204:579–592. doi:10.1007/s00359-018-1260-6
  • Freas CA, Congdon JV, Plowes NJR, Spetch ML. 2020. Pheromone cue triggers switch between vectors in the desert harvest ant, Veromessor pergandei. Anim Cogn. 23:1087–1105. doi:10.1007/s10071-020-01354-7
  • Fresneau D. 1985. Individual foraging and path fidelity in a ponerine ant. Insectes Soc. 32:109–116. doi:10.1007/BF02224226
  • Giraldo YM, Leitch KJ, Ros IG, Warren TL, Weir PT, Dickinson MH. 2018. Sun navigation requires compass neurons in Drosophila. Curr Biol. 28:2845–2852. doi:10.1016/j.cub.2018.07.002
  • Gorostiza EA, Colomb J, Brembs B. 2016. A decision underlies phototaxis in an insect. Open Biol. 6:160229. doi:10.1098/rsob.160229
  • Gould JL. 1986. The locale map of honey bees: do insects have cognitive maps? Science. 232:861–863. doi:10.1126/science.232.4752.861
  • Gould JL, Towne WF. 1989. On the evolution of the dance language: response to Dyer and Seeley. Am Nat. 134:156–159. Available from: http://www.jstor.org/stable/2462282
  • Green J, Adachi A, Shah KK, Hirokawa JD, Magani PS, Maimon G. 2017. A neural circuit architecture for angular integration in Drosophila. Nature. 546:101–106. doi:10.1038/nature22343
  • Green J, Vijayan V, Mussells Pires P, Adachi A, Maimon G. 2019. A neural heading estimate is compared with an internal goal to guide oriented navigation. Nat Neurosci. 22:1460–1468. doi:10.1038/s41593-019-0444-x
  • Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W. 2017. The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies. Front Behav Neurosci. 11:1–14. doi:10.3389/fnbeh.2017.00226
  • Grob R, Fleischmann PN, Rössler W. 2019. Learning to navigate – how desert ants calibrate their compass systems. Neuroforum. 25:109–120. doi:10.1515/nf-2018-0011
  • Guerra PA, Merlin C, Gegear RJ, Reppert SM. 2012. Discordant timing between antennae disrupts sun compass orientation in migratory monarch butterflies. Nat Commun. 3:958. doi:10.1038/ncomms1965
  • Hafting T, Fyhn M, Molden S, Moser MB, Moser EI. 2005. Microstructure of a spatial map in the entorhinal cortex. Nature. 436:801–806. doi:10.1038/nature03721
  • Heinze S. 2017. Unraveling the neural basis of insect navigation. Curr Opin Insect Sci. 24:58–67. doi:10.1016/j.cois.2017.09.001
  • Heinze S, Homberg U. 2007. Maplike representation of celestial E-vector orientations in the brain of an insect. Science. 315:995–997. doi:10.1126/science.1135531
  • Heinze S, Reppert SM. 2011. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron. 69:345–358. doi:10.1016/j.neuron.2010.12.025
  • Hoinville T, Wehner R. 2018. Optimal multiguidance integration in insect navigation. Proc Natl Acad Sci. 115:2824–2829. doi:10.1073/pnas.1721668115
  • Hölldobler B, Wilson EO. 1990. The ants. Cambridge (MA): Belknap Press of Harvard University Press.
  • Homberg U. 2008. Evolution of the central complex in the arthropod brain with respect to the visual system. Arthropod Struct Dev. 37:347–362. doi:10.1016/j.asd.2008.01.008
  • Homberg U, Heinze S, Pfeiffer K, Kinoshita M, el Jundi B. 2011. Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B. 366:680–687. doi:10.1098/rstb.2010.0199
  • Honkanen A, Adden A, Freitas S, Heinze S. 2019. The insect central complex and the neural basis of navigational strategies. J Exp Biol. 222:188854. doi:10.1242/jeb.188854
  • Iwano M, Hill ES, Mori A, Mishima T, Mishima T, Ito K, Kanzaki R. 2010. Neurons associated with the flip-flop activity in the lateral accessory lobe and ventral protocerebrum of the silkworm moth brain. J Comp Neurol. 518:366–388. doi:10.1002/cne.22224
  • Jackson DE, Holcombe M, Ratnieks FLW. 2004. Trail geometry gives polarity to ant foraging networks. Nature. 432:907–909. doi:10.1038/nature03105
  • Jander R. 1975. Ecological aspects of spatial orientation. Annu Rev Ecol Syst. 6:171–188. doi:10.1146/annurev.es.06.110175.001131
  • Kamhi JF, Barron AB, Narendra A. 2020. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr Biol. 30:3432–3437. doi:10.1016/j.cub.2020.06.030
  • Kanzaki R, Ikeda A. 1994. Morphology and physiology of pheromone-triggered flip-flopping descending interneurons of the male silkworm moth, Bombyx mori. In: Kurihara K, et al., editors. Olfaction and taste XI. Tokyo (Japan): Springer Japan; p. 851.
  • Kim IS, Dickinson MH. 2017. Idiothetic path integration in the fruit fly Drosophila melanogaster. Curr Biol. 27:2227–2238. doi:10.1016/j.cub.2017.06.026
  • Kim SS, Hermundstad AM, Romani S, Abbott LF, Jayaraman V. 2019. Generation of stable heading representations in diverse visual scenes. Nature. 576:126–131. doi:10.1038/s41586-019-1767-1
  • Labhart T, Meyer EP. 1999. Detectors for polarized skylight in insects: a survey of ommatidial specializations in the dorsal rim area of the compound eye. Microsc Res Tech. 47:368–379. doi:10.1002/(SICI)1097-0029(19991215)47:6<368::AID-JEMT2>3.0.CO;2-Q
  • Lohmann KJ, Lohmann CMF, Putman NF. 2007. Magnetic maps in animals: nature’s GPS. J Exp Biol. 210:3697–3705. doi:10.1242/jeb.001313
  • Menzel R, Greggers U, Smith A, Berger S, Brandt R, Brunke S, Bundrock G, Hülse S, Plümpe T, Schaupp F, et al. 2005. Honey bees navigate according to a map-like spatial memory. Proc Natl Acad Sci. 102:3040–3045. doi:10.1073/pnas.0408550102
  • Merlin C, Gegear RJ, Reppert SM. 2009. Antennal circadian clocks coordinate sun compass orientation in migratory monarch butterflies. Science. 325:1700–1704. doi:10.1126/science.1176221
  • Moller P, Görner P. 1994. Homing by path integration in the spider Agelena labyrinthica Clerck. J Comp Physiol A. 174:221–229. doi:10.1007/BF00193788
  • Mouritsen H, Derbyshire R, Stalleicken J, Mouritsen O, Frost BJ, Norris DR. 2013. An experimental displacement and over 50 years of tag-recoveries show that monarch butterflies are not true navigators. Proc Natl Acad Sci. 110:7348–7353. doi:10.1073/pnas.1221701110
  • Mouritsen H, Frost BJ. 2002. Virtual migration in tethered flying monarch butterflies reveals their orientation mechanisms. Proc Natl Acad Sci. 99:10162–10166. doi:10.1073/pnas.152137299
  • Müller M, Wehner R. 1988. Path integration in desert ants, Cataglyphis fortis. Proc Natl Acad Sci. 85:5287–5290. doi:10.1073/pnas.85.14.5287
  • Namiki S, Daimon T, Iwatsuki C, Shimada T, Kanzaki R. 2014. Antennal lobe organization and pheromone usage in bombycid moths. Biol Lett. 10:2–5. doi:10.1098/rsbl.2014.0096
  • Narendra A, Gourmaud S, Zeil J. 2013. Mapping the navigational knowledge of individually foraging ants, Myrmecia croslandi. Proc R Soc Lond B. 280:20130683. doi:10.1098/rspb.2013.0683
  • O’Keefe J, Dostrovsky J. 1971. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34:171–175. http://www.ncbi.nlm.nih.gov/pubmed/5124915
  • Okubo T, Patella P, D’Alessandro I, Wilson R. 2020. A neural network for wind-guided compass navigation. Neuron. 107:924–940. doi:10.1016/j.neuron.2020.06.022
  • Olberg RM. 1983. Pheromone-triggered flip-flopping interneurons in the ventral nerve cord of the silkworm moth, Bombyx mori. J Comp Physiol. 152:297–307. doi:10.1007/BF00606236
  • Ortega-Escobar J. 2002. Evidence that the wolf-spider Lycosa tarentula (Araneae, Lycosidae) needs visual input for path integration. J Arachnol. 30:481–486. doi:10.1636/0161-8202(2002)030[0481:ETTWSL]2.0.CO;2
  • Ortega-Escobar J. 2020. Homing in the arachnid taxa Araneae and Amblypygi. Anim Cogn. 23:1189–1204. doi:10.1007/s10071-020-01424-w
  • Papi F. 1990. Homing phenomena: mechanisms and classifications. Ethol Ecol Evol. 2:3–10. doi:10.1080/08927014.1990.9525490
  • Patel RN, Cronin TW. 2020. Mantis shrimp navigate home using celestial and idiothetic path integration. Curr Biol. 30:1981–1987. doi:10.1016/j.cub.2020.03.023
  • Pegel U, Pfeiffer K, Zittrell F, Scholtyssek C, Homberg U. 2019. Two compasses in the central complex of the locust brain. J Neurosci. 39:3070–3080. doi:10.1523/JNEUROSCI.0940-18.2019
  • Perez SM, Taylor OR, Jander R. 1997. A sun compass in monarch butterflies. Nature. 387:29. doi:10.1038/387029a0
  • Pfeffer S, Wolf H. 2020. Arthropod spatial cognition. Anim Cogn. 23:1041–1049. doi:10.1007/s10071-020-01446-4
  • Prévost ED, Stemme T. 2020. Non-visual homing and the current status of navigation in scorpions. Anim Cogn. 23:1215–1234. doi:10.1007/s10071-020-01386-z
  • Reppert SM, Gegear RJ, Merlin C. 2010. Navigational mechanisms of migrating monarch butterflies. Trends Neurosci. 33:399–406. doi:10.1016/j.tins.2010.04.004
  • Rössler W. 2019. Neuroplasticity in desert ants (Hymenoptera: Formicidae) – importance for the ontogeny of navigation. Myrmecological News. 29:1–20. doi:10.25849/myrmecol.news_029:001
  • Sauman I, Briscoe AD, Zhu H, Shi D, Froy O, Stalleicken J, Yuan Q, Casselman A, Reppert SM. 2005. Connecting the navigational clock to sun compass input in monarch butterfly brain. Neuron. 46:457–467. doi:10.1016/j.neuron.2005.03.014
  • Schwarz S, Mangan M, Webb B, Wystrach A. 2020. Route-following ants respond to alterations of the view sequence. J Exp Biol. 223:218701. doi:10.1242/jeb.218701
  • Schwarz S, Wystrach A, Cheng K. 2017. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci Rep. 7:1–7. doi:10.1038/s41598-017-14036-1
  • Seelig JD, Jayaraman V. 2013. Feature detection and orientation tuning in the Drosophila central complex. Nature. 503:262–266. doi:10.1038/nature12601
  • Seelig JD, Jayaraman V. 2015. Neural dynamics for landmark orientation and angular path integration. Nature. 521:186–191. doi:10.1038/nature14446
  • Seyfarth EA, Barth FG. 1972. Compound slit sense organs on the spider leg: mechanoreceptors involved in kinesthetic orientation. J Comp Physiol. 78:176–191. doi:10.1007/BF00693611
  • Shirley SM, Shirley TC. 1988. Behavior of red king crab larvae: phototaxis, geotaxis and rheotaxis. Mar Behav Physiol. 13:369–388. doi:10.1080/10236248809378686
  • Stone T, Webb B, Adden A, Weddig NB, Honkanen A, Templin R, Wcislo W, Scimeca L, Warrant E, Heinze S. 2017. An anatomically constrained model for path integration in the bee brain. Curr Biol. 27:3069–3085. doi:10.1016/j.cub.2017.08.052
  • Strausfeld NJ. 2009. Brain organization and the origin of insects: an assessment. Proc R Soc Lond B. 276:1929–1937. doi:10.1098/rspb.2008.1471
  • Stürzl W, Cheung A, Cheng K, Zeil J. 2008. The information content of panoramic images I: the rotational errors and the similarity of views in rectangular experimental arenas. J Exp Psychol Anim Behav Process. 34:1–14. doi:10.1037/0097-7403.34.1.1
  • Thoen HH, Marshall J, Wolff GH, Strausfeld NJ. 2017. Insect-like organization of the stomatopod central complex: functional and phylogenetic implications. Front Behav Neurosci. 11:1–18. doi:10.3389/fnbeh.2017.00012
  • Turner-Evans D, Wegener S, Rouault H, Franconville R, Wolff T, Seelig JD, Druckmann S, Jayaraman V. 2017. Angular velocity integration in a fly heading circuit. eLife. 6:e23496. doi:10.7554/eLife.23496
  • Ugolini A, Fantini T, Innocenti R. 2003. Orientation at night: an innate moon compass in sandhoppers (Amphipoda: Talitridae). Proc R Soc Lond B. 270:279–281. doi:10.1098/rspb.2002.2221
  • Vannini M, Cannicci S. 1995. Homing behaviour and possible cognitive maps in crustacean decapods. J Exp Mar Bio Ecol. 193:67–91. doi:10.1016/0022-0981(95)00111-5
  • Vollrath F, Nørgaard T, Krieger M. 2002. Radius orientation in the cross spider Araneus diadematus. In: Toft S, Scharff N, editors. European Arachnology 2000. Proceedings of the 19th European colloquium of Arachnology. Aarhus (Denmark): Aarhus University Press; p. 107–116.
  • von Frisch K. 1965. Tanzsprache und Orientierung der Bienen [Dance language and orientation of the bees]. Berlin/Heidelberg (Germany): Springer. German.
  • Webb B. 2019. The internal maps of insects. J Exp Biol. 222:188094. doi:10.1242/jeb.188094
  • Wehner R. 2020. Desert navigator: the journey of an ant. Cambridge (MA): The Belknap Press of Harvard University Press.
  • Wehner R, Boyer M, Loertscher F, Sommer S, Menzi U. 2006. Ant navigation: one-way routes rather than maps. Curr Biol. 16:75–79. doi:10.1016/j.cub.2005.11.035
  • Wehner R, Menzel R. 1990. Do insects have cognitive maps? Annu Rev Neurosci. 13:404–413. doi:10.1146/annurev.ne.13.030190.002155
  • Wehner R, Wehner S. 1990. Insect navigation: use of maps or ariadne’s thread? Ethol Ecol Evol. 2:27–48. doi:10.1080/08927014.1990.9525492
  • Wittlinger M, Wehner R, Wolf H. 2006. The ant odometer: stepping on stilts and stumps. Science. 312:1965–1967. doi:10.1126/science.1126912
  • Zittrell F, Pfeiffer K, Homberg U. 2020. Matched-filter coding of sky polarization results in an internal sun compass in the brain of the desert locust. Proc Natl Acad Sci. 117:25810–25817. doi:10.1073/pnas.2005192117

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.