97
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The opportunity for and intensity of sexual selection in a seed bug depend on host plant dispersion

ORCID Icon &
Pages 145-166 | Received 26 Jun 2021, Accepted 29 Oct 2021, Published online: 24 Jan 2022

REFERENCES

  • Aldrich JR, Oliver JE, Taghizadeh T, Ferreira JTB, Liewwehr D. 1999. Pheromones and colonization: reassessment of the milkweed bug migration model (Heteroptera: Lygaeidae: Lygaeinae). Chemoecology. 9:63–71. doi:10.1007/s000490050035
  • Andersson MB. 1994. Sexual selection. Princeton (NJ): Princeton University Press.
  • Andersson P, Löfstedt C, Hambäck PA. 2013. Insect density-plant density relationships: a modified view of insect responses to resource concentrations. Oecologia. 173:1333–1344. doi:10.1007/s00442-013-2737-1
  • Arnold SJ. 1983. Performance surfaces and adaptive landscapes. Integr Comp Biol. 43:367–375. doi:10.1093/icb/43.3.367
  • Atwell A, Wagner WE Jr. 2014. Female mate choice plasticity is affected by the interaction between male density and female age in a field cricket. Anim Behav. 98:177–183. doi:10.1016/j.anbehav.2014.10.007
  • Baena ML, Macίas-Ordóñez R. 2012. Phenology of scramble polygyny in a wild population of chrysomelid beetles: the opportunity for and the strength of sexual selection. PLoS ONE. 7:e38315. doi:10.1371/journal.pone.0038315
  • Bengtsson JM, Chinta SP, Wolde-Hawariat Y, Negsh M, Seyoum E, Hansson BS, Schlyter F, Schulz S, Hillbur Y. 2010. Male-based mating and aggregation in the sorghum chafer, Pachnoda interrupta. J Chem Ecol. 36:768–777. doi:10.1007/s10886-010-9814-2
  • Bleu J, Bessa-Gomes C, Laloi D. 2012. Evolution of female choosiness and mating frequency: effects of mating cost, density, and sex ratio. Anim Behav. 83:131–136. doi:10.1016/j.anbehav.2011.10.017
  • Bonduriansky R, Brooks RJ. 1999. Male anlter flies (Protopiophila litigata; Diptera: Piophilidae) are more selective than females in mate choice. Can J Zool. 76:1277–1285. doi:10.1139/z98-069
  • Bonsignore CP, Jones TM. 2014. Aggregation and mating success of Capnodies tenebrionis (Coleoptera: Buprestidae). Insect Sci. 21:203–212. doi:10.1111/1744-7917.12035
  • Bowyer RT, McCullough DR, Rachlow JL, Ciuti S, Whiting JC. 2020. Evolution of ungulate mating systems: integrating social and environmental factors. Ecol Evol. 10:5160–5178. doi:10.1002/ece3.6246
  • Brashares JS, Arcese P. 2002. Role of foliage, habitat, and predation in the behavioural plasticity of a small African antelope. J Anim Ecol. 71:626–638. doi:10.1046/j.1365-2656.2002.00633.x
  • Burdfield-Steel ER, Shuker DM. 2014. The evolutionary ecology of the Lygaeidae. Evol Ecol. 4:2278–2301.
  • Carmona-Isunza MC, Küpper C, Serrano-Meneses MJ, Székely T. 2015. Courtship behavior differs between monogamous and polygamous plovers. Behav Ecol Sociobiol. 69:2035–2042. doi:10.1007/s00265-015-2014-x
  • Carrasco D, Larsson M, Anderson P. 2015. Insect host plant selection in complex environments. Curr Opinion Insect Sci. 8:1–7. doi:10.1016/j.cois.2015.01.014
  • Čelik T. 2012. Adult demography, spatial distribution and movements of Zerynthia polyxena (Lepidoptera: Papilionidae) in a dense network of permanent habitats. Eur J Entomol. 109:217–227. doi:10.14411/eje.2012.028
  • Chew FS, Courtney SP. 1991. Plant apparency and evolutionary escape from insect herbivory. Am Nat. 138:729–750. doi:10.1086/285246
  • Christy JH, Salmon M. 1984. Ecology and evolution of mating systems of fiddler crabs (genus Uca). Biol Rev. 59:483–509. doi:10.1111/j.1469-185X.1984.tb00412.x
  • Clutton-Brock TH. 1988. Introduction. In: Clutton-Brock TH, editor. Reproductive success. Chicago (IL): University of Chicago Press; p. 1–10.
  • Clutton-Brock TH. 1989. Mammalian mating systems. Proc R Soc Lond B. 236:339–372.
  • Clutton-Brock TH. 2007. Sexual selection in males and females. Science. 318:1882–1885. doi:10.1126/science.1133311
  • Cotton S, Fowler K, Pomiankowski A. 2004. Condition dependence of sexual ornament size and variation in the stalk-eyed fly Cyrtodiopsis dalmanni (Diptera: Diopsidae). Evolution. 58:1038–1046. doi:10.1111/j.0014-3820.2004.tb00437.x
  • de Gaudemar B. 1998. Sexual selection and breeding patterns: insights from salmonids (Salmonidae). Acta Biotheoretica. 46:235–251. doi:10.1023/A:1001737227076
  • Edwards AL. 1985. Multiple regression and the analysis of variance and covariance. New York (NY): WH Freeman & Co.
  • Emlen ST, Oring LW. 1977. Ecology, sexual selection, and the evolution of mating systems. Science. 197:215–223. doi:10.1126/science.327542
  • Falconer DS. 1981. Introduction to quantitative genetics. London (UK): Longman.
  • Fei LY, Hai X, Wang Z, Yan A, Liu B, Bi Y. 2015. Integration of visual and olfactory cues in host plant identification by the Asian longhorned beetle, Anoplophora glabripennis (Motschulsky) (Coleoptera: Cerambycidae). PLoS ONE. 10:e0142752.
  • Finch S, Collier RH. 2000. Host-plant selection by insects – a theory based on ‘appropriate/inappropriate landings’ by pest insects on cruciferous plants. Entomol Exp Appl. 96:91–102. doi:10.1046/j.1570-7458.2000.00684.x
  • Fourcade Y, Öckinger E. 2017. Host plant density and patch isolation drive occupancy and abundance at a butterfly’s northern range margin. Ecol Evol. 7:331–345. doi:10.1002/ece3.2597
  • Fowler-Finn KD, Rodriguez RL. 2011. Experience-mediated plasticity in mate preferences: mating assurance in a variable environment. Evolution. 66:459–468. doi:10.1111/j.1558-5646.2011.01446.x
  • Gasciogne J, Beree L, Gregory S, Courchamp F. 2009. Dangerously few liaisons: a review of mate-finding Allee effects. Pop Ecol. 51:355–372. doi:10.1007/s10144-009-0146-4
  • Härdling R, Gosden T, Aguilée R. 2008. Male mating constraints affect mutual mate choice: prudent male courting and sperm-limited females. Am Nat. 172:259–271. doi:10.1086/589452
  • Harmon JP, Hayden A, Andow DA. 2008. Absence makes the heart grow fonder: isolation enhances the frequency of mating in Coleomegilla maculata (Coleoptera: Coccinellidae). J Insect Behav. 21:495–504. doi:10.1007/s10905-008-9145-0
  • Hartmann T, Ober D. 2008. Defense by pyrrolizidine alkaloids: developed by plants and recruited by insects. In: Schaller A, editor. Induced plant resistance to herbivory. Berlin (Germany): Springer; p. 213–231.
  • Hasenbank M, Hartley S. 2015. Weaker resource diffusion effect at coarser spatial scales observed for egg distribution of cabbage white butterflies. Oecologia. 177:423–430. doi:10.1007/s00442-014-3103-7
  • Heike P. 2002. Population differences in female resource abundance, adult sex ratio, and male mating success in Dendrobates pumilio. Behav Ecol. 13:175–185. doi:10.1093/beheco/13.2.175
  • Hubbell SP, Johnson LK. 1987. Environmental variance in lifetime mating success, mate choice, and sexual selection. Am Nat. 130:91–112. doi:10.1086/284700
  • Irschick DJ, Herrel A, Vanhooydonck B, Van Damme R. 2007. A functional approach to sexual selection. Funct Ecol. 21:621–626. doi:10.1111/j.1365-2435.2007.01281.x
  • Jaenike J. 1978. On optimal oviposition behavior in phytophagous insets. Theor Pop Biol. 14:350–356. doi:10.1016/0040-5809(78)90012-6
  • Johnson DDP, Kays R, Blackwell PG, McDonald DW. 2002. Does the resource dispersion hypothesis explain group living? TREE. 17:563–570.
  • Kelly CD. 2008. The interrelationships between resource-holding potential, resource value and reproductive success in territorial males: how much variation can we explain? Behav Ecol Sociobiol. 62:855–871. doi:10.1007/s00265-007-0518-8
  • Kelly CD. 2018. The causes and evolutionary consequences of variation in female mate choice in insects: the effects of individual state, genotypes and environments. Curr Opinion Insect Sci. 27:1–8. doi:10.1016/j.cois.2018.01.010
  • Knell RJ. 2009. Population density and the evolution of male aggression. J Zool. 278:83–90. doi:10.1111/j.1469-7998.2009.00566.x
  • Knell RJ, Fuhauf N, Norris KA. 1999. Conditional expression of a sexually selected trait in the stalk-eyed fly Diasemopsis aethiopica. Ecol Entomol. 24:323–328. doi:10.1046/j.1365-2311.1999.00200.x
  • Komers PE, Brotherton PNM. 1997. Female space use is the best predictor of monogamy in mammals. Proc R Soc Lond B. 264:1261–1270. doi:10.1098/rspb.1997.0174
  • Krupke CH, Jones VP, Brunner JF. 2011. Evaluating aggregation membership and copulatory success in the stink bug, Euschistus conspersus, using field and laboratory experiments. J Insect Sci. 11:2. doi:10.1673/031.011.0102
  • Lailvaux SP, Hathway J, Pomfret J, Knell RJ. 2005. Horn size predicts physical performance in the beetle Euonicticellus intermedius (Coleoptera: Scarabaeidae). Funct Ecol. 19:632–639. doi:10.1111/j.1365-2435.2005.01024.x
  • Lande R, Arnold SJ. 1983. The measurement of sexual selection on correlated characters. Evolution. 37:1210–1226. doi:10.1111/j.1558-5646.1983.tb00236.x
  • Landolt PJ, Phillips TW. 1997. Host plant influences on sex pheromone behavior of phytophagous insects. Annu Rev Entomol. 42:371–391. doi:10.1146/annurev.ento.42.1.371
  • Langel D, Ober D, Pelser PB. 2011. The evolution of pyrrolizidine alkaloid biosynthesis and diversity in the Senecioneae. Phytochem Rev. 10:3–74. doi:10.1007/s11101-010-9184-y
  • Lappin AK, Husak JF. 2005. Weapon performance, not size, determines mating success and potential reproductive output in the collard lizard (Crotaphytus collaris). Am Nat. 166:426–436. doi:10.1086/432564
  • Lehmann GUC. 2007. Density-dependent plasticity of sequential mate choice in a bushcricket (Orthoptera: Tettigonidae). Aust J Zool. 55:123–130. doi:10.1071/ZO06105
  • Leisler B, Winkler H, Wink M, Murphy M. 2002. Evolution of breeding systems in acrocephaline warblers. Auk. 119:379–390. doi:10.1093/auk/119.2.379
  • Macel M. 2011. Attract and deter: a dual role for pyrrolizidine alkaloids in plant-insect interactions. Phytochem Rev. 10:75–82. doi:10.1007/s11101-010-9181-1
  • Macel M, Vrieling K. 2003. Pyrrolizidine alkaloids as oviposition stimulants for the cinnabar moth, Tyria jacobaeae. J Chem Ecol. 29:1435–1446. doi:10.1023/A:1024269621284
  • MacManes MD. 2013. On the accurate description of social and genetic mating systems. PeerJ. Preprints. 1:e10v1. https://doi.org/10.7287/peerj.preprints.10v1
  • Maher CR, Burger JR. 2011. Intraspecific variation in space use, group size, and mating systems of caviomorph rodents. J Mammal. 92:54–64. doi:10.1644/09-MAMM-S-317.1
  • Martinez G, Soler R, Dicke M. 2013. Behavioral ecology of oviposition-site selection in herbivorous true bugs. Adv Study Behav. 45:175–207.
  • Mayhew PJ. 1997. Adaptive patterns of host-plant selection by phytophagous insects. Oikos. 79:417–428. doi:10.2307/3546884
  • McCauley DE, Wade MJ. 1978. Female choice and the mating structure of a natural population of the soldier beetle, Chauliognathus pennsylvanicus. Evolution. 32:180–184. doi:10.1111/j.1558-5646.1978.tb04631.x
  • McDonald DW. 1983. The ecology of carnivore social behavior. Nature. 301:379–384. doi:10.1038/301379a0
  • McLain DK. 1981. Resource partitioning by three species of hemipteran herbivores on the basis of host plant density. Oecologia. 48:414–417. doi:10.1007/BF00346503
  • McLain DK. 1984. Host plant density and territorial behavior of the seed bug, Neacoryphus bicrucis (Hemiptera: Lygaeidae). Behav Ecol Sociobiol. 14:181–187. doi:10.1007/BF00299617
  • McLain DK. 1986a. Null models and the intensity of sexual selection. Evol Theory. 8:49–52.
  • McLain DK. 1986b. Resource patchiness and the intensity of sexual selection in a resource-defending polygynous insect species. Oikos. 47:19–25.
  • McLain DK. 1991. Components of variance in male lifetime copulatory and reproductive success in a seed bug. Behav Ecol Sociobiol. 29:121–126. doi:10.1007/BF00166486
  • McLain DK. 1992. Population density and the intensity of sexual selection on body length in spatially or temporally restricted natural populations of a seed bug. Behav Ecol Sociobiol. 30:347–356. doi:10.1007/BF00170602
  • McLain DK, Boromisa RD. 1987. Interrelationship between male choice, fighting ability, assortative mating and intensity of sexual selection for the milkweed longhorn beetle, Tetraopes tetaophthalmus (Coleoptera: Cerambycidae). Behav Ecol Sociobiol. 20:239–246. doi:10.1007/BF00292176
  • McLain DK, Burnette LB, Deeds DA. 1993. Within season variation in the intensity of sexual selection on body size in the bug Margus obscurator (Hemiptera Coreidae). Ethol Ecol Evol. 5:75–86. doi:10.1080/08927014.1993.9523115
  • McLain DK, Logue J, Pratt AE, McBrayer LD. 2015a. Claw pinching force of sand fiddler crabs in relation to activity and the lunar cycle. J Exp Mar Biol Ecol. 471:190–197. doi:10.1016/j.jembe.2015.06.008
  • McLain DK, Pratt AE. 1999. The cost of sexual coercion and heterospecific sexual harassment on the fecundity of a host-specific, seed-eating insect. Behav Ecol Sociobiol. 46:164–170. doi:10.1007/s002650050606
  • McLain DK, Pratt AE, Shure DJ. 2015b. Size dependence of courtship effort may promote male choice and strong assortative mating in soldier beetles. Behav Ecol Sociobiol. 69:883–994. doi:10.1007/s00265-015-1900-6
  • McLain DK, Shure DJ. 1985. Host plant toxins and unpalatability of Neacoryphus bicrucis. Ecol Entomol. 10:291–298. doi:10.1111/j.1365-2311.1985.tb00726.x
  • McLain DK, Shure DJ. 1987. Pseudo competition: interspecific displacement of insect species through misdirected courtship. Oikos. 49:291–296. doi:10.2307/3565763
  • Miller TEX. 2007. Demographic models reveal the shape of density dependence for a specialist insect herbivore on variable host plants. J Anim Ecol. 76(4):722–729. doi:10.1111/j.1365-2656.2007.01239.x
  • Milne M, Walter GH, Milne JR. 2002. Mating aggregations and mating success in the flower thrips, Frankliniella schultzei (Thysanoptera: Thripidae), and a possible role for pheromones. J Insect Behav. 15:351–368. doi:10.1023/A:1016265109231
  • Miyatake T. 2002. Multi-male mating aggregation in Notobitus meleagris (Hemiptera: Coreidae). Ann Entomol Soc Am. 95:340–344. doi:10.1603/0013-8746(2002)095[0340:MMMAIN]2.0.CO;2
  • Nerlekar AN. 2018. Seasonally dependent relationship between insect herbivores and host plant density in Jatropha nana, a tropical perennial herb. Biol Open. 7:bio035071. doi:10.1242/bio.035071
  • Peckarsky B, McIntosh A, Caudill C, Dahl J. 2002. Swarming and mating behavior of a mayfly Baetis bicaudatus suggest stabilizing selection for male body size. Behav Ecol Sociobiol. 51:530–537. doi:10.1007/s00265-002-0471-5
  • Pratt AE, Shure DJ, McLain DK, Banderet K. 2017. Male and female soldier beetles relax choice for mate quality across daily courtship periods. Ethology. 123:175–187. doi:10.1111/eth.12585
  • Price GR. 1970. Selection and covariance. Nature. 227:520–521. doi:10.1038/227520a0
  • Ralph CP. 1977. Effect of host plant density on populations of a specialized, seed-sucking bug, Oncopeltus fasciatus. Ecology. 58:799–809. doi:10.2307/1936215
  • Rodrίguez RL, Rebar D, Fowler-Finn KD. 2013. The evolution and evolutionary consequences of social plasticity in mate preferences. Anim Behav. 85:1041–1047. doi:10.1016/j.anbehav.2013.01.006
  • Rohlfs M, Hoffmeister TS. 2004. Spatial aggregation across ephemeral resource patches in insect communities: an adaptive response to natural enemies? Oecologia. 140:654–661. doi:10.1007/s00442-004-1629-9
  • Scheirs J, De Bruyn L. 2002. Integrating optimal foraging and optimal oviposition theory in plant-insect research. Oikos. 96(1):187–191. doi:10.1034/j.1600-0706.2002.960121.x
  • Schultz BB. 1985. Levene’s test for relative variation. Syst Zool. 34:449–456. doi:10.2307/2413207
  • Shelly TE, Greenfield MD, Downum KR. 1987. Variation in host plant quality: influences on the mating system of a desert grasshopper. Anim Behav. 35:1200–1209. doi:10.1016/S0003-3472(87)80177-X
  • Slobodchikoff CN. 1984. Resources and the evolution of social behavior. In: Price PW, et al., editors. A new ecology: novel approaches to interactive systems. New York (NY): John Wiley and Sons; p. 227–251.
  • Snell-Rood EC. 2013. An overview of the evolutionary causes and consequences of behavioural plasticity. Anim Behav. 85:1004–1011. doi:10.1016/j.anbehav.2012.12.031
  • Streatfeild CA, Mabry KE, Keane B, Crist TO, Solomon NG. 2011. Intraspecific variability in the social and genetic mating systems of prairie voles, Microtus ochrogaster. Anim Behav. 82:1387–1397. doi:10.1016/j.anbehav.2011.09.023
  • Strong DR, Lawton JH, Southwood R. 1984. Insects on plants. Cambridge (MA): Harvard University Press.
  • Sutherland WJ. 1985. Can chance produce a sex-difference in variance in mating success and account for Bateman’s data? Anim Behav. 33:1349–1352. doi:10.1016/S0003-3472(85)80197-4
  • Sutherland WJ. 1987. Random and deterministic components of variance in mating success. In: Bradbury JW, Andersson MB, editors. Sexual selection: testing the alternatives. New York (NY): John Wiley; p. 209–220.
  • Thompson JN. 1988. Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomol Exp Appl. 47:3–14. doi:10.1111/j.1570-7458.1988.tb02275.x
  • Thornhill R, Alcock J. 1983. The evolution of insect mating systems. Cambridge (MA): Harvard University Press.
  • Tiple AD, Padwad SV, Dapporto L, Dennis RLH. 2010. Male mate location behavior and encounter sites in a community of tropical butterflies: taxonomic and site associations and distinctions. J Biosci. 35:629–646. doi:10.1007/s12038-010-0071-x
  • Travis SE, Slobodchikoff CN, Keim P. 1995. Ecological and demographic effects on intraspecific variation in the social system of prairie dogs. Ecology. 76:1794–1803. doi:10.2307/1940711
  • Trigo JR. 2011. Effects of pyrrolizidine alkaloids through different trophic levels. Phytochem Rev. 10:83–98. doi:10.1007/s11101-010-9191-z
  • Venner S, Bernstein C, Dray S, Bel-Venner M-C. 2010. Make love not war: when should less competitive males choose low-quality but defendable females? Am Nat. 175:650–661. doi:10.1086/652432
  • Wade MJ, Arnold SJ. 1980. The intensity of sexual selection in relation to male sexual behavior, female choice, and sperm precedence. Anim Behav. 28:446–461. doi:10.1016/S0003-3472(80)80052-2
  • Wetzel WC. 2014. Density-dependent recruitment structures a heterogeneous distribution of herbivores among host plants. Ecology. 95:2894–2903. doi:10.1890/14-0190.1
  • Xu H, Turlings TCJ. 2018. Plant volatiles as mate-finding cues for insects. Trends Plant Sci. 23:100–111. doi:10.1016/j.tplants.2017.11.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.