533
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The effect of sex and mating opportunity on ecological immunity in Brood X cicadas

, , & ORCID Icon
Pages 439-456 | Received 18 Jul 2023, Accepted 11 Jan 2024, Published online: 28 Feb 2024

REFERENCES

  • Adamo SA. 2004. How should behavioural ecologists interpret measurements of immunity? Anim Behav. 68(6):1443–1449. doi:10.1016/j.anbehav.2004.05.005
  • Adamo SA, Jensen M, Younger M. 2001. Changes in lifetime immunocompetence in male and female Gryllus texensis (formerly G. integer): trade-offs between immunity and reproduction. Anim Behav. 62(3):417–425. doi:10.1006/anbe.2001.1786
  • Ahmed AM, Baggott SL, Maingon R, Hurd H. 2002. The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos. 97(3):371–377. doi:10.1034/j.1600-0706.2002.970307.x
  • Alexander RD, Moore TE. 1962. The evolutionary relationships of 17-year and 13-year cicadas, and three new species (Homoptera, Cicadidae, Magicicada). Misc Publ Mus Zool Univ Mich. 121:1–59.
  • Armitage SA, Boomsma JJ. 2010. The effects of age and social interactions on innate immunity in a leaf-cutting ant. J Insect Physiol. 56(7):780–787. doi:10.1016/j.jinsphys.2010.01.009
  • Bagchi B, Corbel Q, Khan I, Payne E, Banerji D, Liljestrand-Rönn J, Martinossi-Allibert I, Baur J, Sayadi A, Immonen E, Arnqvist G. 2021. Sexual conflict drives micro- and macroevolution of sexual dimorphism in immunity. BMC Biol. 19(1):114. doi:10.1186/s12915-021-01049-6
  • Bascuñán-García AP, Lara C, Córdoba-Aguilar A. 2010. Immune investment impairs growth, female reproduction and survival in the house cricket, Acheta domesticus. J Insect Physiol. 56(2):204–211. doi:10.1016/j.jinsphys.2009.10.005
  • Blanckenhorn WU, Hosken DJ, Martin OY, Reim C, Teuschl Y, Ward PI. 2002. The costs of copulating in the dung fly Sepsis cynipsea. Behav Ecol. 13(3):353–358. doi:10.1093/beheco/13.3.353
  • Brown JH, Burger JR, Hou C, Hall CA. 2022. The pace of life: metabolic energy, biological time, and life history. Integr Comp Biol. 62(5):1479–1491. doi:10.1093/icb/icac058
  • Castella G, Christe P, Chapuisat M. 2009. Mating triggers dynamic immune regulations in wood ant queens. J Evol Biol. 22(3):564–570. doi:10.1111/j.1420-9101.2008.01664.x
  • Chapman T, Arnqvist G, Bangham J, Rowe L. 2003. Sexual conflict. Trends Ecol Evol. 18(1):41–47. doi:10.1016/S0169-5347(02)00004-6
  • Chapman T, Neubaum DM, Wolfner MF, Partridge L. 2000. The role of male accessory gland protein Acp36DE in sperm competition in Drosophila melanogaster. Proc R Soc Lond B. 267(1448):1097–1105. doi:10.1098/rspb.2000.1114
  • Cooley JR, Kritsky G, Edwards MJ, Zyla JD, Marshall DC, Hill KBR, Simon C. 2009. The distribution of periodical cicada. Am Entomol. 55(2):106–112. doi:10.1093/ae/55.2.106
  • Cooley JR, Marshall DC, Hill KB. 2018. A specialized fungal parasite (Massospora cicadina) hijacks the sexual signals of periodical cicadas (Hemiptera: Cicadidae: Magicicada). Sci Rep. 8(1):1432. doi:10.1038/s41598-018-19813-0
  • Cooper D, Eleftherianos I. 2017. Memory and specificity in the insect immune system: current perspectives and future challenges. Front Immunol. 8:539. doi:10.3389/fimmu.2017.00539
  • Cremer S, Armitage SA, Schmid-Hempel P. 2007. Social immunity. Curr Biol. 17(16):R693–R702. doi:10.1016/j.cub.2007.06.008
  • Crudgington HS, Siva-Jothy MT. 2000. Genital damage, kicking and early death. Nature. 47(6806):855–856. doi:10.1038/35038154
  • Doums C, Moret Y, Benelli E, Schmid-Hempel P. 2002. Senescence of immune defence in Bombus workers. Ecol Entomol. 27(2):138–144. doi:10.1046/j.1365-2311.2002.00388.x
  • Fedorka KM, Linder JE, Winterhalter W, Promislow D. 2007. Post-mating disparity between potential and realized immune response in Drosophila melanogaster. Proc Biol Sci. 274(1614):1211–1217. doi:10.1098/rspb.2006.0394
  • Fowler K, Partridge L. 1989. A cost of mating in female fruitflies. Nature. 338(6218):760–761. doi:10.1038/338760a0
  • Gems D, Riddle DL. 1996. Longevity in Caenorhabditis elegans reduced by mating but not gamete production. Nature. 379(6567):723–725. doi:10.1038/379723a0
  • Gershman SN, Barnett CA, Pettinger AM, Weddle CB, Hunt J, Sakaluk SK. 2010. Inbred decorated crickets exhibit higher measures of macroparasitic immunity than outbred individuals. Heredity. 105(3):282–289. doi:10.1038/hdy.2010.1
  • González-Santoyo I, Córdoba-Aguilar A. 2012. Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl. 142(1):1–6. doi:10.1111/j.1570-7458.2011.01187.x
  • Gordon KE, Wolfner MF, Lazzaro BP. 2022. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. J Insect Physiol. 140:104414. doi:10.1016/j.jinsphys.2022.104414
  • Gray DA. 1998. Sex differences in susceptibility of house crickets, Acheta domesticus, to experimental infection with Serratia liquefaciens. J Invert Pathol. 71(3):288–289. doi:10.1006/jipa.1997.4742
  • Jervis MA, Ferns PN. 2004. The timing of egg maturation in insects: ovigeny index and initial egg load as measures of fitness and of resource allocation. Oikos. 107(3):449–461. doi:10.1111/j.0030-1299.2004.13453.x
  • Karban R. 1981. Effects of local density on fecundity and mating speed for periodical cicadas. Oecologia. 51(2):260–264. doi:10.1007/BF00540611
  • Karban R. 1983. Sexual selection, body size and sex-related mortality in the cicada Magicicada cassini. Am Midl Nat. 1(2):324–330. doi:10.2307/2425413
  • Karban R. 2022. Why cicadas (Hemiptera: Cicadidae) develop so slowly. Biol J Linn Soc. 135(2):291–298. doi:10.1093/biolinnean/blab152
  • Kelly CD. 2011. Reproductive and physiological costs of repeated immune challenges in female Wellington tree weta (Orthoptera: Anostostomatidae). Biol J Linn Soc. 104(1):38–46. doi:10.1111/j.1095-8312.2011.01714.x
  • Kelly CD, Stoehr AM, Nunn C, Smyth KN, Prokop ZM, Hosken D. 2018. Sexual dimorphism in immunity across animals: a meta‐analysis. Ecol Lett. 21(12):1885–1894. doi:10.1111/ele.13164
  • Kerr AM, Gershman SN, Sakaluk SK. 2010. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets. Behav Ecol. 21(3):647–654. doi:10.1093/beheco/arq035
  • Klein SL. 2000. Hormones and mating system affect sex and species differences in immune function among vertebrates. Behav Proc. 51(1–3):149–166. doi:10.1016/S0376-6357(00)00125-X
  • Koyama T, Ito H, Kakishima S, Yoshimura J, Cooley JR, Simon C, Sota T. 2015. Geographic body size variation in the periodical cicadas Magicicada: implications for life cycle divergence and local adaptation. J Evol Biol. 28(6):1270–1277. doi:10.1111/jeb.12653
  • Kritsky G. 2021. One for the books: the 2021 emergence of the periodical Cicada Brood X. Am Entomol. 67(4):40–46. doi:10.1093/ae/tmab059
  • Lawniczak MK, Barnes AI, Linklater JR, Boone JM, Wigby S, Chapman T. 2007. Mating and immunity in invertebrates. Trends Ecol Evol. 22(1):48–55. doi:10.1016/j.tree.2006.09.012
  • Leman JC, Weddle CB, Gershman SN, Kerr AM, Ower GD, St John JM, Vogel LA, Sakaluk SK. 2009. Lovesick: immunological costs of mating to male sagebrush crickets. J Evol Biol. 22(1):163–171. doi:10.1111/j.1420-9101.2008.01636.x
  • Letendre C, Rios‐Villamil A, Williams A, Rapkin J, Sakaluk SK, House CM, Hunt J. 2022. Evolution of immune function in response to dietary macronutrients in male and female decorated crickets. J Evol Biol. 35(11):1465–1474. doi:10.1111/jeb.14093
  • Lloyd M, Dybas HS. 1966a. The periodical cicada problem. I. Population ecology. Evolution. 20(2):133–149. doi:10.1111/j.1558-5646.1966.tb03350.x
  • Lloyd M, Dybas HS. 1966b. The periodical cicada problem. II. Evolution. Evolution. 20:466–505. doi:10.2307/2406585
  • Mackenzie DK, Bussière LF, Tinsley MC. 2011. Senescence of the cellular immune response in Drosophila melanogaster. Exp Gerontol. 46(11):853–859. doi:10.1016/j.exger.2011.07.004
  • Marshall DC. 2022. On the spelling of the name of Cassin’s 17-year Cicada, Magicicada cassini (Fisher, 1852) (Hemiptera: Cicadidae). Zootaxa. 5125(2):241–245. doi:10.11646/zootaxa.5125.2.8
  • Nakhleh J, El Moussawi L, Osta MA. 2017. The melanization response in insect immunity. Adv Insect Physiol. 52:83–109.
  • Negroni MA, Foitzik S, Feldmeyer B. 2019. Long-lived Temnothorax ant queens switch from investment in immunity to antioxidant production with age. Sci Rep. 9(1):7270. doi:10.1038/s41598-019-43796-1
  • Nunn CL, Lindenfors P, Pursall ER, Rolff J. 2009. On sexual dimorphism in immune function. Philos Trans R Soc B. 364(1513):61–69. doi:10.1098/rstb.2008.0148
  • Oku K, Price TA, Wedell N. 2019. Does mating negatively affect female immune defences in insects? Animal Biol. 69(1):117–136. doi:10.1163/15707563-20191082
  • Park Y, Kim Y, Stanley D. 2011. Cellular immunosenescence in adult male crickets, Gryllus assimilis. Arch Insect Biochem Physiol. 76(4):185–194. doi:10.1002/arch.20394
  • Qiu JF, Cui WZ, Zhang Q, Dai TM, Liu K, Li JL, Wang YJ, Sima YH, Xu SQ. 2023. Temporal transcriptome reveals that circadian clock is involved in the dynamic regulation of immune response to bacterial infection in Bombyx mori. Insect Sci. 30(1):31–46. doi:10.1111/1744-7917.13043
  • Rolff J. 2001. Effects of age and gender on immune function of dragonflies (Odonata, Lestidae) from a wild population. Can J Zool. 79(12):2176–2180. doi:10.1139/z01-190
  • Rolff J. 2002. Bateman’s principle and immunity. Proc R Soc Lond B. 269:867–872. doi:10.1098/rspb.2002.1959
  • Rolff J, Siva-Jothy MT. 2002. Copulation corrupts immunity: a mechanism for a cost of mating in insects. Proc Natl Acad Sci USA. 99(15):9916–9918. doi:10.1073/pnas.152271999
  • Roved J, Westerdahl H, Hasselquist D. 2017. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences. Hormones Behav. 88:95–105. doi:10.1016/j.yhbeh.2016.11.017
  • Sadd BM, Schmid-Hempel P. 2006. Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol. 16(12):1206–1210. doi:10.1016/j.cub.2006.04.047
  • Sanborn AF, Phillips PK. 1995. Scaling of sound pressure level and body size in cicadas (Homoptera: Cicadidae; Tibicinidae), Ann. Entomol Soc Amer. 88(4):479–484. doi:10.1093/aesa/88.4.479
  • Schwenke RA, Lazzaro BP, Wolfner MF. 2016. Reproduction–immunity trade-offs in insects. Annu Rev Entomol. 61(1):239–256. doi:10.1146/annurev-ento-010715-023924
  • Sheldon BC, Verhulst S. 1996. Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol. 11(8):317–321. doi:10.1016/0169-5347(96)10039-2
  • Simon C, Cooley JR, Karban R, Sota T. 2022. Advances in the evolution and ecology of 13- and 17-year periodical cicadas. Annu Rev Entomol. 67(1):457–482. doi:10.1146/annurev-ento-072121-061108
  • Siva-Jothy MT, Moret Y, Rolff J. 2005. Insect immunity: an evolutionary ecology perspective. Adv Insect Physiol. 32:1–48. doi:10.1016/S0065-2806(05)32001-7
  • Stoehr AM. 2007. Inter- and intra-sexual variation in immune defence in the cabbage white butterfly, Pieris rapae L. (Lepidoptera: Pieridae). Ecol Entomol. 32(2):188–193. doi:10.1111/j.1365-2311.2007.00855.x
  • Stucky BJ. 2015. Infection behavior, life history, and host parasitism rates of Emblemasoma erro (Diptera: Sarcophagidae), an acoustically hunting parasitoid of the cicada Tibicen dorsatus (Hemiptera: Cicadidae). Zool Stud. 54(1):1–7. doi:10.1186/s40555-015-0105-z
  • Williams GC. 1957. Pleiotropy, natural selection and the evolution of senescence. Evolution. 11(4):398–411. doi:10.2307/2406060
  • Zuk M, Stoehr AM. 2002. Immune defense and host life history. Am Nat. 160(S4):S9–S22. doi:10.1086/342131