157
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Determinants of arctic-alpine pasture resources: the need for a spatially and functionally fine-scaled perspective

&
Pages 353-370 | Received 18 Nov 2016, Accepted 19 Jul 2017, Published online: 06 Sep 2017

References

  • Abdi H. 2010. Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdiscip Rev Comput Stat. 2:97–106. doi: 10.1002/wics.51
  • Austin MP, Smith TM. 1989. A new model for the continuum concept. Vegetatio. 83:35–47. doi: 10.1007/BF00031679
  • Bär A, Pape R, Bräuning A, Löffler J. 2008. Growth-ring variations of dwarf shrubs reflect regional climate signals in alpine environments rather than topoclimatic differences. J Biogeogr. 35:625–636. doi: 10.1111/j.1365-2699.2007.01804.x
  • Berdanier AB, Klein JA. 2011. Growing season length and soil moisture interactively constrain high elevation aboveground net primary production. Ecosystems. 14:963–974. doi: 10.1007/s10021-011-9459-1
  • Bernes C, Bråthen KA, Forbes BC, Speed JD, Moen J. 2015. What are the impacts of reindeer/caribou (Rangifer tarandus L.) on arctic and alpine vegetation? A systematic review. Environ Evid. 4(1):50.
  • Billings WD. 1973. Arctic and alpine vegetations: similarities, differences, and susceptibility to disturbances. BioScience. 23:697–704. doi: 10.2307/1296827
  • Billings WD, Bliss LC. 1959. An alpine snowbank environment and its effects on vegetation, plant development, and productivity. Ecology. 40:388–397. doi: 10.2307/1929755
  • Bliss LC. 1962. Caloric and lipid content in alpine tundra plants. Ecology. 43:753–757. doi: 10.2307/1933473
  • Böhner J, Köthe R, Conrad O, Gross J, Ringeler A, Selige T. 2002. Soil regionalisation by means of terrain analysis and process parameterisation. In: E. Micheli, F. Nachtergaele, L. Montanarella, editors. Soil classification research report 7. Luxembourg: European Soil Bureau; p. 213–222.
  • Callaghan TV, Tweedie CE, Åkerman J, Andrews C, Bergstedt J, Butler MG, Christensen TR, Cooley D, Dahlberg U, Danby RK, et al. 2011. Multi-decadal changes in tundra environments and ecosystems: synthesis of the International Polar Year-Back to the Future Project (IPY-BTF). Ambio. 40:705–716. doi: 10.1007/s13280-011-0179-8
  • Carrascal LM, Galván I, Gordo O. 2009. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos. 118:681–690. doi: 10.1111/j.1600-0706.2008.16881.x
  • Carroll ML, DiMiceli CM, Sohlberg RA, Townshend JRG. 2010. 250 m MODIS normalized difference vegetation index. College Park (MD): University of Maryland.
  • Chae Y, Kang SM, Jeong S-J, Kim B, Frierson DMW. 2015. Arctic greening can cause earlier seasonality of arctic amplification. Geophys Res Lett. 42:536–541. doi: 10.1002/2014GL061841
  • Dahl, E., 1956. Rondane. Mountain vegetation in south Norway and its relation to the environment. Skrifter utgittav det Norske Videnskaps-Akademi i Oslo, Mathematisk-Naturvidenskapelig Klasse 3:1–374.
  • Danby RK, Hik DS. 2007. Responses of white spruce (Picea glauca) to experimental warming at a subarctic alpine treeline. Glb Chg Bio. 13:437–451. doi: 10.1111/j.1365-2486.2006.01302.x
  • Darling MS. 1976. Interpretation of global differences in plant calorific values. Oecologia. 23:127–139. doi: 10.1007/BF00557851
  • De Jong S. 1993. SIMPLS: an alternative approach to partial least squares regression. Chemom Intell Lab Syst. 18:251–263. doi: 10.1016/0169-7439(93)85002-X
  • DNMI (Norwegian Meteorological Institute). 2014. Monthly air temperatures [accessed 1 Nov 2014]. www.eklima.met.no.
  • Elmendorf SC, Henry GHR, Hollister RD, Björk RG, Boulanger-Lapointe N, Cooper EJ, Cornelissen JHC, Day TA, Dorrepaal E, Elumeeva TG, et al. 2012. Plot-scale evidence of tundra vegetation change and links to recent summer warming. Nat Clim Chang. 2:453–457. doi: 10.1038/nclimate1465
  • Epstein HE, Raynolds MK, Walker DA, Bhatt US, Tucker CJ, Pinzon JE. 2012. Dynamics of aboveground phytomass of the circumpolar arctic tundra during the past three decades. Environ Res Lett. 7:015506. doi: 10.1088/1748-9326/7/1/015506
  • Eriksson L, Johansson E, Kettaneh-Wold N, Trygg J, Wikström C, Wold S. 2006. Multi- and megavariate data analysis. Part 1: basic principles and applications. Umeå: Umetrics.
  • ESRI. 2010. ArcGIS Desktop Release 10. Redlands (CA): Environmental Systems Research Institute.
  • Fisk MC, Schmidt SK, Seastedt TR. 1998. Topographic patterns of above- and belowground production and nitrogen cycling in alpine tundra. Ecology. 79:2253–2266. doi: 10.1890/0012-9658(1998)079[2253:TPOAAB]2.0.CO;2
  • Fletcher BJ, Press MC, Baxter R, Phoenix GK. 2010. Transition zones between vegetation patches in a heterogeneous arctic landscape: how plant growth and photosynthesis change with abundance at small scales. Oecologia. 163:47–56. doi: 10.1007/s00442-009-1532-5
  • Fraser RH, Lantz TC, Olthof I, Kokelj SV, Sims RA. 2014. Warming-induced shrub expansion and lichen decline in the western Canadian arctic. Ecosystems. 17:1151–1168. doi: 10.1007/s10021-014-9783-3
  • Fremstad E. 1997. Vegetasjonstyper i Norge [Vegetation types in Norway]. NINA Temahefte. 12:1–279. [In Norwegian].
  • Frost GV, Epstein HE, Walker DA. 2014. Regional and landscape-scale variability of Landsat-observed vegetation dynamics in northwest Siberian tundra. Environ Res Lett. 9:025004. doi: 10.1088/1748-9326/9/2/025004
  • Furberg M, Evengård B, Nilsson M. 2011. Facing the limit of resilience: perceptions of climate change among reindeer herding Sami in Sweden. Glob Health Action. 4:8417. doi: 10.3402/gha.v4i0.8417
  • Giri C, Pengra B, Long J, Loveland TR. 2013. Next generation of global land cover characterization, mapping, and monitoring. Int J Appl Earth Obs Geoinf. 25:30–37. doi: 10.1016/j.jag.2013.03.005
  • Gjærevoll O. 1956. The plant communities of the Scandinavian alpine snow-beds. Det Kunglige Norske videnskabers selskaps skrifter. 1:1–405.
  • Golley FB. 1961. Energy values of ecological materials. Ecology. 42:581–584. doi: 10.2307/1932247
  • Graae BJ, De Frenne P, Kolb A, Brunet J, Chabrerie O, Verheyen K, Pepin N, Heinken T, Zobel M, Shevtsova A, et al. 2012. On the use of weather data in ecological studies along altitudinal and latitudinal gradients. Oikos. 121:3–19. doi: 10.1111/j.1600-0706.2011.19694.x
  • Greaves HE, Vierling LA, Eitel JU, Boelman NT, Magney TS, Prager CM, Griffin KL. 2016. High-resolution mapping of aboveground shrub biomass in arctic tundra using airborne lidar and imagery. Remote Sens Environ. 184:361–373. doi: 10.1016/j.rse.2016.07.026
  • Hall DK, Salomonson VV, Riggs GA. 2006. MODIS/terra snow cover 8-Day L3 global 500 m grid. Boulder (CO): National Snow and Ice Data Centre.
  • Heegaard E. 2002. A model of alpine species distribution in relation to snowmelt time and altitude. J Veg Sci. 13:493–504. doi: 10.1111/j.1654-1103.2002.tb02076.x
  • Hein N, Feilhauer H, Finch O-D, Schmidtlein S, Löffler J. 2014. Snow cover determines the ecology and biogeography of spiders (Araneae) in alpine tundra ecosystems. Erdkunde. 68:157–172. doi: 10.3112/erdkunde.2014.03.01
  • Horn BKP. 1981. Hill shading and the reflectance map. Proc IEEE. 69:14–47. doi: 10.1109/PROC.1981.11918
  • Kaarlejärvi E, Baxter R, Hofgaard A, Hytteborn H, Khitun O, Molau U, Sjögersten S, Wookey P, Olofsson J. 2012. Effects of warming on shrub abundance and chemistry drive ecosystem-level changes in a forest–tundra ecotone. Ecosystems. 15:1219–1233. doi: 10.1007/s10021-012-9580-9
  • Koch B, Edwards PJ, Blanckenhorn WU, Walter T, Hofer G. 2015. Shrub encroachment affects the diversity of plants, butterflies, and grasshoppers on two Swiss subalpine pastures. Arct Antarct Alp Res. 47:345–357. doi: 10.1657/AAAR0013-093
  • Körner C. 2007. The use of ‘altitude’ in ecological research. Trends Ecol Evol. 22:569–574. doi: 10.1016/j.tree.2007.09.006
  • Köster K, Berninger F, Köster E, Pumpanen J. 2015. Influences of reindeer grazing on above- and belowground biomass and soil carbon dynamics. Arct Antarct Alp Res. 47:495–503. doi: 10.1657/AAAR0014-062
  • Kucheryavskiy S. 2015. mdatools: multivariate data analysis for chemometrics. R package version 0.7.0. https://CRAN.R-project.org/package=mdatools.
  • Kuhn M. 2016. caret: classification and regression training. R package version 6.0-70. http://CRAN.R-project.org/package=caret.
  • le Roux PC, Aalto J, Luoto M. 2013. Soil moisture’s underestimated role in climate change impact modelling in low-energy systems. Glb Chg Bio. 19:2965–2975. doi: 10.1111/gcb.12286
  • le Roux PC, Luoto M, Michalet R. 2014. Earth surface processes drive the richness, composition and occurrence of plant species in an arctic-alpine environment. J Veg Sci. 25:45–54. doi: 10.1111/jvs.12059
  • Li C, Qi J, Yang L, Wang S, Yang W, Zhu G, Zou S, Zhang F. 2014. Regional vegetation dynamics and its response to climate change – a case study in the Tao river basin in northwestern China. Environ Res Lett. 9:125003. doi: 10.1088/1748-9326/9/12/125003
  • Litaor MI, Williams M, Seastedt TR. 2008. Topographic controls on snow distribution, soil moisture, and species diversity of herbaceous alpine vegetation, Niwot Ridge, Colorado. J Geophys Res. 113:G02008. doi: 10.1029/2007JG000419
  • Löffler J. 2000. High mountain ecosystems and landscape degradation in northern Norway. Mt Res Dev. 20:356–363. doi: 10.1659/0276-4741(2000)020[0356:HMEALD]2.0.CO;2
  • Löffler J. 2005. Snow cover dynamics, soil moisture variability and vegetation ecology in high mountain catchments of central Norway. Hydrol Processes. 19:2385–2405. doi: 10.1002/hyp.5891
  • Löffler J, Pape R. 2008. Diversity patterns in relation to the environment in alpine tundra ecosystems of northern Norway. Arct Antarct Alp Res. 40:373–381. doi: 10.1657/1523-0430(06-097)[LOEFFLER]2.0.CO;2
  • Löffler J, Pape R, Wundram D. 2006. The climatologic significance of topography, altitude and region in high mountains – a survey of oceanic-continental differentiations of the Scandes. Erdkunde. 60:15–24. doi: 10.3112/erdkunde.2006.01.02
  • Lookingbill TR, Urban DL. 2005. Gradient analysis, the next generation: towards more plant-relevant explanatory variables. Can J For Res. 35:1744–1753. doi: 10.1139/x05-109
  • Mårell A, Hofgaard A, Danell K. 2006. Nutrient dynamics of reindeer forage species along snowmelt gradients at different ecological scales. Basic Appl Ecol. 7:13–30. doi: 10.1016/j.baae.2005.04.005
  • Miller PA, Smith B. 2012. Modelling tundra vegetation response to recent arctic warming. AMBIO. 41:281–291. doi: 10.1007/s13280-012-0306-1
  • Moen J. 2008. Climate change: effects on the ecological basis for reindeer husbandry in Sweden. AMBIO. 37:304–311. doi: 10.1579/0044-7447(2008)37[304:CCEOTE]2.0.CO;2
  • Myers-Smith IH, Elmendorf SC, Beck PSA, Wilmking M, Hallinger M, Blok D, Tape KD, Rayback SA, Macias-Fauria M, Forbes BC, et al. 2015. Climate sensitivity of shrub growth across the tundra biome. Nat Clim Chang. 5:887–891. doi: 10.1038/nclimate2697
  • Pape R, Löffler J. 2012. Climate change, land use conflicts, predation and ecological degradation as challenges for reindeer husbandry in Northern Europe: what do we really know after half a century of research? AMBIO. 41:421–434. doi: 10.1007/s13280-012-0257-6
  • Pape R, Löffler J. 2016a. Spatial patterns of alpine phytomass, primary productivity, and related calorific resources. Ecosphere. 7(6):e01347. doi: 10.1002/ecs2.1347
  • Pape R, Löffler J. 2016b. Broad-scale assumptions on available pasture resources and reindeer’s habitat preferences shown to be decoupled from ecological reality of arctic-alpine landscapes. Erdkunde. 70:169–192. doi: 10.3112/erdkunde.2016.02.05
  • Pape R, Wundram D, Löffler J. 2009. Modelling near-surface temperature conditions in high mountain environments: an appraisal. Clim Res. 39:99–109. doi: 10.3354/cr00795
  • Pradervand J-N, Dubuis A, Pellissier L, Guisan A, Randin C. 2014. Very high resolution environmental predictors in species distribution models Prog Phys Geogr. 38:79–96. doi: 10.1177/0309133313512667
  • Rajalahti T, Arneberg R, Kroksveen AC, Berle M, Myhr K-M, Kvalheim OM. 2009. Discriminating variable test and selectivity ratio plot: quantitative tools for interpretation and variable (biomarker) selection in complex spectral or chromatographic profiles. Anal Chem. 81:2581–2590. doi: 10.1021/ac802514y
  • Raynolds MK, Walker DA, Epstein HE, Pinzon JE, Tucker CJ. 2012. A new estimate of tundra-biome phytomass from trans-arctic field data and AVHRR NDVI. Remote Sens Lett. 3:403–411. doi: 10.1080/01431161.2011.609188
  • R Core Team. 2016. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. http://www.R-project.org.
  • Riihimäki H, Heiskanen J, Luoto M. 2017. The effect of topography on arctic-alpine aboveground biomass and NDVI patterns. Int J Appl Earth Obs Geoinf. 56:44–53. doi: 10.1016/j.jag.2016.11.005
  • Ropars P, Boudreau S. 2012. Shrub expansion at the forest-tundra ecotone: spatial heterogeneity linked to local topography. Environ Res Lett. 7:015501. doi: 10.1088/1748-9326/7/1/015501
  • Ropars P, Lévesque E, Boudreau S. 2015. How do climate and topography influence the greening of the forest-tundra ecotone in northern Québec? A dendrochronological analysis of Betula glandulosa. J Ecol. 103:679–690. doi: 10.1111/1365-2745.12394
  • Schmidt S, Weber B, Winiger M. 2009. Analyses of seasonal snow disappearance in an alpine valley from micro- to mesoscale (Loetschental, Switzerland). Hydrol Process. 23:1041–1051. doi: 10.1002/hyp.7205
  • Shaver GR. 1986. Woody stem production in Alaskan tundra shrubs. Ecology. 67:660–669. doi: 10.2307/1937690
  • Shevtsova A, Ojala A, Neuvonen S, Vieno M, Haukioja E. 1997. Growth and reproduction of dwarf shrubs in a subarctic plant community: annual variation and aboveground interactions with neighbours. J Ecol. 83:263–275. doi: 10.2307/2261565
  • Sitch S, McGuire AD, Kimball J, Gedney N, Gamon J, Engstrom R, Wolf A, Zhuang Q, Clein J, McDonald KC. 2007. Assessing the carbon balance of circumpolar arctic tundra using remote sensing and process modeling. Ecol. Appl. 17:213–234.
  • Storeheier PV, Mathiesen SD, Tyler NJC, Olsen MA. 2002. Nutritive value of terricolous lichens for reindeer in winter. Lichenologist. 34:247–257. doi: 10.1006/lich.2002.0394
  • Suvanto S, le Roux PC, Luoto M. 2014. Arctic-alpine vegetation biomass is driven by fine-scale abiotic heterogeneity. Geogr Ann: Ser A, Phys Geogr. 96:549–560.
  • Tape KD, Hallinger M, Welker JM, Ruess RW. 2012. Landscape heterogeneity of shrub expansion in arctic Alaska. Ecosystems. 15:711–724. doi: 10.1007/s10021-012-9540-4
  • Turunen M, Soppela P, Kinnunen H, Sutinen M-L, Martz F. 2009. Does climate change influence the availability and quality of reindeer forage plants? Polar Biol. 32:813–832. doi: 10.1007/s00300-009-0609-2
  • Tveito OE, Førland E, Heino R, Hanssen-Bauer I, Alexandersson H, Dahlström B, Drebs A, Kern-Hansen C, Jónsson T, Vaarby Laursen E, Westman Y. 2000. Nordic temperature maps. Oslo: Norwegian Meteorological Institute. Report 09/00.
  • Tveraa T, Stien A, Bårdsen B-J, Fauchald P, Bohrer G. 2013. Population densities, vegetation green-up, and plant productivity: impacts on reproductive success and juvenile body mass in reindeer. Plos One. 8:e56450. doi: 10.1371/journal.pone.0056450
  • Tybirk K, Nilsson MC, Michelsen A, Kristensen HL, Shevtsova A, Tune Strandberg M, Johansson M, Nielsen KE, Riis-Nielsen T, Strandberg B, Johnsen I. 2000. Nordic Empetrum dominated ecosystems: function and susceptibility to environmental changes. AMBIO: J Human Env. 29(2):90–97. doi: 10.1579/0044-7447-29.2.90
  • Urban D, Goslee S, Pierce K, Lookingbill T. 2002. Extending community ecology to landscapes. Écoscience. 9:200–212. doi: 10.1080/11956860.2002.11682706
  • Venn A, Pickering C, Green K. 2014. Spatial and temporal functional changes in alpine summit vegetation are driven by increases in shrubs and graminoids. AoB Plants. 6:plu008. doi: 10.1093/aobpla/plu008
  • Virtanen T, Ek M. 2014. The fragmented nature of tundra landscape. Int J Appl Earth Obs Geoinf. 27:4–12. doi: 10.1016/j.jag.2013.05.010
  • Walker MD. 1995. Patterns and causes of arctic plant community diversity. In: F.S. Chapin, C. Körner, editors. Arctic and alpine biodiversity. New York: Springer; p. 3–20.
  • Walker DA, Epstein HE, Jia GJ, Balser A, Copass C, Edwards EJ, Gould WA, Hollingsworth J, Knudson J, Maier HA, et al. 2003. Phytomass, LAI, and NDVI in Northern Alaska: relationships to summer warmth, soil pH, plant functional types, and extrapolation to the circumpolar arctic. J Geophys Res. 108:8169. doi: 10.1029/2001JD000986
  • Wiens JA. 1989. Spatial scaling in ecology. Funct Ecol. 3:385–397. doi: 10.2307/2389612
  • Wilson MFJ, O’Connell B, Brown C, Guinan JC, Grehan AJ. 2007. Multiscale terrain analysis of multibeam bathymetry data for habitat mapping on the continental slope. Mar Geod. 30:3–35. doi: 10.1080/01490410701295962
  • Wold H. 1975. Soft modelling by latent variables: the non-linear iterative partial least squares (NIPALS) approach. In: J. Gani, editor. Perspectives in probability and statistics. New York (NY): Academic Press; p. 117–142.
  • Wold S. 1978. Cross-validatory estimation of the number of components in factor and principal components models. Technometrics. 20:397–405. doi: 10.1080/00401706.1978.10489693
  • Wold S, Sjöström M, Eriksson L. 2001. PLS-regression: a basic tool of chemometrics. Chemom Intell Lab Syst. 58:109–130. doi: 10.1016/S0169-7439(01)00155-1
  • Wundram D, Pape R, Löffler J. 2010. Alpine soil temperature variability at multiple scales. Arct Antarct Alp Res. 42:117–128. doi: 10.1657/1938-4246-42.1.117
  • Zhang E, Kimball JS, Hogg EH, Zhao M, Oechel WC, Cassano JJ, Running SW. 2008. Satellite-based model detection of recent climate-driven changes in northern high-latitude vegetation productivity. J Geophys Res. 113:G03033.
  • Zhao M, Running SW. 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science. 329:940–943. doi: 10.1126/science.1192666

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.