251
Views
3
CrossRef citations to date
0
Altmetric
Articles

Snow-avalanche boulder fans in Jotunheimen, southern Norway: Schmidt-hammer exposure-age dating, geomorphometrics, dynamics and evolution

ORCID Icon, , ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 118-140 | Received 29 Dec 2019, Accepted 16 Mar 2020, Published online: 13 May 2020

References

  • Ackroyd P. 1986. Debris transport by avalanche, torlesse range, New Zealand. Zeitschrift für Geomorphologie NF. 30:1–14.
  • André MF. 1996. Rock weathering rates in Arctic and subarctic environments (Abisko Mts, Swedish Lapland). Zeitschrift für Geomorphologie NF. 40:499–517.
  • Andreassen LM, Winsvold H. 2012. Inventory of Norwegian glaciers. Norwegian Oslo: Water Resources and Energy Directorate (NVE).
  • Ballantyne CK. 2018. Periglacial geomorphology. Chichester: Wiley.
  • Ballantyne CK, Harris C. 1994. The periglaciation of Great Britain. Cambridge: Cambridge University Press.
  • Ballantyne CK, Wilson P, Gheorghiu D, Rodés À. 2014. Enhanced rock-slope failure following ice-sheet deglaciation: timing and causes. Earth Surf Processes Landforms. 39:900–913. doi: 10.1002/esp.3495
  • Barnett C, Dumayne-Peaty L, Matthews JA. 2000. Holocene climatic change and tree-line response in Leirdalen, central Jotunheimen. Rev Palaeobot Palynol. 117:119–137. doi: 10.1016/S0034-6667(01)00081-1
  • Battey MH. 1965. Layered structures in rocks of the Jotunheimen Complex, Norway. Mineral Mag. 34:35–51.
  • Battey MH, McRitchie WD. 1973. A geological traverse across the pyroxene-granulites of Jotunheimen in the Norwegian Caledonides. Norsk Geologiske Tidsskrift. 53:237–265.
  • Battey MH, McRitchie WD. 1975. The petrology of the pyroxene-granulite facies rocks of Jotunheimen. Norsk Geologiske Tidsskrift. 55:1–49.
  • Bell I, Gardner J, de Scally F. 1990. An estimate of snow avalanche debris transport, Kaghan valley, Himalaya, Pakistan. Arct Alp Res. 22:317–321. doi: 10.2307/1551594
  • Blikra LH, Nemec W. 1998. Postglacial colluvium in western Norway: depositional processes, facies and palaeoclimatic record. Sedimentology. 45:909–959. doi: 10.1046/j.1365-3091.1998.00200.x
  • Blikra LH, Selvik SF. 1998. Climatic signals recorded in snow avalanche-dominated colluvium in western Norway: depositional facies successions and pollen records. The Holocene. 8:631–658. doi: 10.1191/095968398674390284
  • Cossart E, Braucher R, Fort M, Bourlés DL, Carcaillet J. 2008. Slope instability in relation to glacial debuttressing in alpine areas (upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology. 95:3–26. doi: 10.1016/j.geomorph.2006.12.022
  • Dahl S, Nesje A. 1996. A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. The Holocene. 6:381–398. doi: 10.1177/095968369600600401
  • Dahl SO, Nesje A, Lie Ø, Fjordheim K, Matthews JA. 2002. Timing, equilibrium-line altitudes and climatic implications of two early-Holocene glacial re-advances during the Erdalen Event at Jostedalsbreen, western Norway. The Holocene. 12:17–25. doi: 10.1191/0959683602hl516rp
  • Decaulne A. 2001. Dynamique des versants et risques naturels dans les fjords d’Islande du nord-ouest, l’impact géomorphologique et humain des avalanches et des debris flows. [PhD thesis]. University of Clermont II, France.
  • Decaulne A, Saemundsson T. 2006. Geomorphic evidence for present-day snow-avalanche and debris-flow impact in the Icelandic Westfjords. Geomorphology. 80:80–93. doi: 10.1016/j.geomorph.2005.09.007
  • de Haas T, Kleinhans MG, Carbonneau PE, Rubensdotter L, Hauber E. 2015. Surface morphology of fans in the high-Arctic periglacial environment of Svalbard: controls and processes. Earth Sci Rev. 146:163–182. doi: 10.1016/j.earscirev.2015.04.004
  • Deline P, Gruber S, Delaloye R, Fischer L, Geertseema M, Giardino M, Hasler A, Kirkbride M, Krautblatter M, Magnin F, et al. 2015. Ice loss and slope stability in high-mountain regions. In: Haeberli W, Whitman C, editor. Snow and Ice-related Hazards, Risks and Disasters. Amsterdam: Elsevier; p. 521–561.
  • Eckerstorfer M, Christiansen HH. 2011. Topographical and meteorological control on snow avalanching in the Longyearbyen area, central Svalbard 2006-2009. Geomorphology. 134:186–196. doi: 10.1016/j.geomorph.2011.07.001
  • Eckerstorfer M, Christiansen HH, Rubensdotter L, Vogel S. 2013. The geomorphological effect of cornice fall avalanches in the Longyeardalen valley, Svalbard. The Cryosphere. 7:1361–1374. doi: 10.5194/tc-7-1361-2013
  • Eldevik T, Risebrobakken B, Bjune AE, Andersson C, Birks HJB, Dokken TM, Drange H, Glessmer MS, Li C, Nilsen JEØ, et al. 2014. A brief history of climate – the northern seas from the last glacial maximum to global warming. Quat Sci Rev. 106:225–246. doi: 10.1016/j.quascirev.2014.06.028
  • ESRI. 2017. ArcGIS Pro 2.1. Redlands, CA: Environmental System Research Institute Inc.
  • Farbrot H, Hipp TF, Etzelmüller B, Isaksen K, Ødegård RS, Schuler TV, Humlum O. 2011. Air and ground temperature variations observed along elevation and continentality gradients in southern Norway. Permafrost and Periglacial Processes. 22:343–360. doi: 10.1002/ppp.733
  • Fischer L, Kååb A, Huggel C, Noetzli J. 2006. Geology, glacier retreat and permafrost degradation as controlling factors of slope stability in a high mountain rock wall. Nat Hazards Earth Syst Sci. 6:761–772. doi: 10.5194/nhess-6-761-2006
  • Freppaz M, Gordone D, Filippa G, Maggioni M, Lunardi S, Williams MW, Zanini E. 2010. Soil erosion caused by snow avalanches: a case study in the Aosta valley (NW Italy). Arct Antarct Alp Res. 42:412–421. doi: 10.1657/1938-4246-42.4.412
  • Garner J. 1970. Geomorphic significance of avalanches in the Lake Louise area, Alberta, Canada. Arct Alp Res. 2:135–144. doi: 10.2307/1550348
  • Goehring BM, Brook EJ, Linge H, Raisbeck GM, Yiou F. 2008. Beryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quat Sci Rev. 27:320–336. doi: 10.1016/j.quascirev.2007.11.004
  • Gruber S, Haeberli W. 2007. Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res. 112:1–10. doi: 10.1029/2006JF000547
  • Haines-Young RH. 1983. Size variation of Rhizocarpon on moraine slopes in southern Norway. Arct Alp Res. 15:295–305. doi: 10.2307/1550826
  • Haines-Young RH. 1988. Size-frequency and size-density relationships in populations from the Rhizocarpon subgenus Cern. On moraine slopes in southern Norway. J Biogeogr. 15:863–878. doi: 10.2307/2845346
  • Hättestrand C, Stroeven AP. 2002. A relict landscape in the centre of the Fennoscandian glaciation: geomorphological evidence of minimal Quaternary glacial erosion. Geomorphology. 44:127–143. doi: 10.1016/S0169-555X(01)00149-0
  • Hipp T, Etzelmüller B, Westermann S. 2014. Permafrost in alpine rock faces from Jotunheimen and Hurrungane, southern Norway. Permafrost Periglacial Processes. 25:1–13. doi: 10.1002/ppp.1799
  • Hormes A, Blaaauw M, Dahl SO, Nesje A, Possnert G. 2009. Radiocarbon wiggle-match dating of proglacial lake sediments – implications for the 8.2 ka event. Quat Geochronol. 4:267–277. doi: 10.1016/j.quageo.2008.12.004
  • Huber TP. 1982. The geomorphology of subalpine snow avalanche runout zones: San Juan Mountains, Colorado. Earth Surf Processes Landforms. 7:109–116. doi: 10.1002/esp.3290070205
  • Hughes ALC, Gyllencreutz R, Lohne Ø, Mangerud J, Svendsen JL. 2016. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas. 45:1–45. doi: 10.1111/bor.12142
  • Hungr O, Evans SG. 2004. Entrainment of debris in rock avalanches: analysis of a long run-out mechanism. Geol Soc Am Bull. 116:1240–1252. doi: 10.1130/B25362.1
  • Isaksen K, Hauck C, Gudevang E, Ødegård RS, Sollid JL. 2002. Mountain permafrost distribution in Dovrefjell and Jotunheimen, southern Norway, based on BTS and DC resistivity tomography data. Norsk Geografisk Tidsskrift. 56:122–136. doi: 10.1080/002919502760056459
  • Jansen E, Andersson C, Moros M, Nisancioglu KH, Nyland BF, Telford RJ. 2008. The early to mid-Holocene thermal optimum in the north Atlantic. In: Battarbee RW, Binney HA, editor. Natural Climate variability and global warming: a Holocene Perspective. Chichester: Wiley-Blackwell; p. 128–137.
  • Jomelli V, Bertran P. 2001. Wet snow avalanches in the French Alps: structure and sedimentology. Geografiska Annaler, Series A (Physical Geography). 83A:15–28. doi: 10.1111/1468-0459.00141
  • Jomelli V, Francou B. 2000. Comparing the characteristics of rockfall talus and snow avalanche landforms in an alpine environment using a new methodological approach: Massif des Ecrins, French Alps. Geomorphology. 35:181–192. doi: 10.1016/S0169-555X(00)00035-0
  • Jomelli V, Pech P. 2004. Effects of the little Ice Age on avalanche boulder tongues in the French Alps (massif des Ecrins). Earth Surf Processes Landforms. 29:553–564. doi: 10.1002/esp.1050
  • Juliussen H, Humlum O. 2007. Preservation of blockfields beneath Pleistocene ice sheets on Solen and Elgahogna, central eastern Norway. Zeitschrift für Geomorphologie Supplementband N.F. 51:113–138. doi: 10.1127/0372-8854/2007/0051S2-0113
  • Karlén W, Matthews JA. 1992. Reconstructing Holocene glacier variations from glacial lake sediments: studies from Nordvestlandet and Jostedalsbreen-Jotunheimen, southern Norway. Geografiska Annaler, Series A (Physical Geography). 74A:327–348. doi: 10.1080/04353676.1992.11880374
  • Keylock C. 1997. Snow avalanches. Prog Phys Geogr. 21:481–500. doi: 10.1177/030913339702100401
  • Kleman J. 1994. Preservation of landforms under ice sheets and ice caps. Geomorphology. 9:19–32. doi: 10.1016/0169-555X(94)90028-0
  • Korup O, Rixen C. 2014. Soil erosion and organic carbon export by wet snow avalanches. Cryosphere Discuss. 8:1–19. doi: 10.5194/tcd-8-1-2014
  • Laute K, Beylich AA. 2014. Morphometric and meteorological controls on recent snow avalanche distribution and activity on hillslopes in steep mountain valleys in western Norway. Geomorphology. 218:16–34. doi: 10.1016/j.geomorph.2013.06.006
  • Lilleøren KS, Etzelmüller B, Schuler TV, Ginås K, Humlum O. 2012. The relative age of permafrost – estimation of Holocene permafrost limits in Norway. Glob Planet Change. 92-93:209–223. doi: 10.1016/j.gloplacha.2012.05.016
  • Luckman BH. 1977. The geomorphic activity of snow avalanches. Geografiska Annaler, Series A (Physical Geography). 59A:31–48. doi: 10.1080/04353676.1977.11879945
  • Luckman BH. 1992. Debris flows and snow avalanche landforms in the Lairig Ghru, Cairngorm Mountains, Scotland. Geografiska Annaler, Series A (Physical Geography). 74A:109–121. doi: 10.1080/04353676.1992.11880355
  • Luckman BH. 2013. Talus slopes. In: Elias SA, Mock CJ, editor. Encyclopedia of Quaternary Science. 2nd ed. Volume 3 Amsterdam: Elsevier; p. 566–573.
  • Lutro O, Tveten E. 1996. Geologiske kart over Norge, bergrunnskart Årdal, 1:250,000. Trondheim: Norges Geologiske Undersøkelse.
  • Magnin F, Etzelmüller B, Westermann S, Isaksen K, Hilger P, Hermanns RL. 2019. Permafrost distribution in steep rock slopes in Norway: measurements, statistical modeling and implications for geomorphological processes. Earth Surf Dyn. 7:1019–1040. doi: 10.5194/esurf-7-1019-2019
  • Mangerud J, Gyllencreutz R, Lohne Ø, Svendsen JI. 2011. Glacial history of Norway. In: Ehlers J, Gibbard PL, Hughes PD, editor. Quaternary Glaciations – extent and Chronology: a Closer Look. Amsterdam: Elsevier; p. 279–298.
  • Marr P, Winkler S, Löffler J. 2018. Investigations on blockfields and related landforms at Blåhø (southern Norway) using Schmidt hammer exposure-age dating: palaeoclimatic and morphodynamic implications. Geografiska Annaler, Series A (Physical Geography). 100A:285–306. doi: 10.1080/04353676.2018.1474350
  • Matthews JA. 1994. Lichenometric dating: a review with particular reference to ‘little Ice age’ moraines in southern Norway. In: Beck C, editor. Dating in exposed and surface Contexts. Albuquerque: University of New Mexico Press; p. 185–212.
  • Matthews JA. 2005. ‘Little Ice age’ glacier variations in Jotunheimen, southern Norway: a study in regionally-controlled lichenometric dating of recessional moraines with implications for climate and lichen growth rates. The Holocene. 15:1–19. doi: 10.1191/0959683605hl779rp
  • Matthews JA, Berrisford MS, Dresser PQ, Nesje A, Dahl SO, Bakke J, Birks HJB, Lie Ø, Dumayne-Peaty L, Barnett C. 2005. Holocene glacier history of Bjørnbreen and climatic reconstruction in central Jotunheimen, southern Norway, based on proximal glaciofluvial stream-bank mires. Quat Sci Rev. 24:67–90. doi: 10.1016/j.quascirev.2004.07.003
  • Matthews JA, Briffa KR. 2005. The ‘little Ice age’: re-evaluation of an evolving concept. Geografiska Annaler, Series A (Physical Geography). 87A:17–36. doi: 10.1111/j.0435-3676.2005.00242.x
  • Matthews JA, Dahl SO, Dresser PQ, Berrisford MS, Lie Ø, Nesje A, Owen G. 2009. Radiocarbon chronology of Holocene colluvial (debris-flow) activity at Sletthamn, Jotunheimen, southern Norway: a window on the changing frequency of extreme climatic events and their landscape impact. The Holocene. 19:1107–1129. doi: 10.1177/0959683609344674
  • Matthews JA, Dresser PQ. 2008. Holocene glacier variation chronology of the Smørstabbtindan massif, Jotunheimen, southern Norway, and the recognition of century- to millennial-scale European Neoglacial events. The Holocene. 18:181–201. doi: 10.1177/0959683607085608
  • Matthews JA, McEwen LJ. 2013. High-precision Schmidt-hammer exposure-age dating (SHD) of flood berms, Vetlestølsdalen, alpine southern Norway: first application and some methodological issues. Geografiska Annaler, Series A (Physical Geography). 95A:185–194. doi: 10.1111/geoa.12009
  • Matthews JA, McEwen L, Owen G. 2015. Schmidt-hammer exposure-age dating (SHD) of snow-avalanche impact ramparts in southern Norway: approaches, results and implications for landform age, dynamics and development. Earth Surf Processes Landforms. 40:1705–1718. doi: 10.1002/esp.3746
  • Matthews JA, Nesje A, Linge H. 2013. Relict talus-foot rock glaciers at Øyberget, upper Ottadalen, southern Norway: Schmidt hammer exposure ages and palaeoenvironmental implications. Permafrost Periglacial Processes. 24:336–346. doi: 10.1002/ppp.1794
  • Matthews JA, Owen G. 2010. Schmidt hammer exposure-age dating: development of linear age calibration curves using Holocene bedrock surfaces from the Jotunheimen-Jostedalsbreen regions of southern Norway. Boreas. 39:105–115. doi: 10.1111/j.1502-3885.2009.00107.x
  • Matthews JA, Owen G. 2011. Holocene chemical weathering, surface lowering and rock weakening rates from glacially-eroded bedrock surfaces in an alpine periglacial environment, Jotunheimen, Norway. Permafrost Periglacial Processes. 22:279–290. doi: 10.1002/ppp.697
  • Matthews JA, Owen G, Winkler S, Vater AE, Wilson P, Mourne RW, Hill JL. 2016. A rock surface microweathering index from Schmidt hammer R-values and its preliminary application to some common rock types in southern Norway. Catena. 143:35–44. doi: 10.1016/j.catena.2016.03.018
  • Matthews JA, Trenbirth HE. 2011. Growth rate of a very large crustose lichen (Rhizocarpon subgenus) and its implications for lichenometry. Geografiska Annaler, Series A (Physical Geograophy). 93A:27–39. doi: 10.1111/j.1468-0459.2011.00004.x
  • Matthews JA, Vater AE. 2015. Pioneer zone geo-ecological change: observations from a chronosequence on the Storbreen glacier foreland, Jotunheimen, southern Norway. Catena. 135:219–230. doi: 10.1016/j.catena.2015.07.016
  • Matthews JA, Wilson P. 2015. Improved Schmidt-hammer exposure ages for active and relict pronival ramparts in southern Norway, and their palaeoenvironmental implications. Geomorphology. 246:7–21. doi: 10.1016/j.geomorph.2015.06.002
  • Matthews JA, Wilson P, Mourne RW. 2017. Landform transitions from pronival ramparts to moraines and rock glaciers: a case study from the Smørbotn cirque, Romsdalsalpane, southern Norway. Geografiska Annaler, Series A (Physical Geography). 99A:15–37. doi: 10.1080/04353676.2016.1256582
  • Matthews JA, Wilson P, Winkler S, Mourne RW, Hill JL, Owen G, Hiemstra J, Hallang H, Geary AP. 2019. Age and development of active cryoplanation terraces in the alpine permafrost zone at Svartkampan, Jotunheimen, southern Norway. Quat Res. 92:641–664. doi: 10.1017/qua.2019.41
  • Matthews JA, Winkler S. 2011. Schmidt-hammer exposure-age dating (SHD): application to early-Holocene moraines and a reappraisal of the reliability of terrestrial cosmogenic-nuclide dating (TCND) at Austanbotnbreen, Jotunheimen, Norway. Boreas. 40:256–270. doi: 10.1111/j.1502-3885.2010.00178.x
  • Matthews JA, Winkler S, Wilson P. 2014. Age and origin of ice-cored moraines in Jotunheimen and Breheimen, southern Norway: Insights from Schmidt-hammer exposure-age dating. Geografiska Annaler, Series A (Physical Geography). 96A:531–548.
  • Matthews JA, Winkler S, Wilson P, Tomkins M, Dortch J, Mourne R, Hill JL, Owen G, Vater A. 2018. Small rock-slope failures conditions by Holocene permafrost degradation: a new approach and conceptual model based on Schmidt-hammer exposure-age dating in Jotunheimen, southern Norway. Boreas. 47:1144–1169. doi: 10.1111/bor.12336
  • McColl ST. 2012. Paraglacial rock-slope stability. Geomorphology. 153-154:1–16. doi: 10.1016/j.geomorph.2012.02.015
  • Millar S. 2013. Mass movement processes in the periglacial environment. In: Giardino J.R., Harbour J.M, editor. Treatise on geomorphology Vol. 8, glacial; and periglacial geomorphology. San Diego CA: Academic Press; p. 374–391.
  • Moore JR, Egloff J, Nagelisen J, Hunziker M, Aerne U, Christen M. 2013. Sediment transport and bedrock erosion by wet snow avalanches in the Guggigraben, Matter Valley, Switzerland. Arct Antarct Alp Res. 45:350–362. doi: 10.1657/1938-4246-45.3.350
  • Moses C, Robinson D, Barlow J. 2014. Methods for measuring rock surface weathering and erosion: a critical review. Earth Sci Rev. 135:141–161. doi: 10.1016/j.earscirev.2014.04.006
  • Nesje A. 2009. Late Pleistocene and Holocene alpine glacier fluctuations in Scandinavia. Quat Sci Rev. 28:2119–2136. doi: 10.1016/j.quascirev.2008.12.016
  • Nesje A, Bakke J, Dahl SO, Lie Ø, Bøe AG. 2007. A continuous, high-resolution 8500-yr snow-avalanche record from western Norway. The Holocene. 17:269–277. doi: 10.1177/0959683607075855
  • Nesje A, Bakke J, Dahl SO, Lie Ø, Matthews JA. 2008. Norwegian glaciers in the past, present and future. Glob Planet Change. 60:10–27. doi: 10.1016/j.gloplacha.2006.08.004
  • Nesje A, Dahl SO. 2001. The Greenland 8200 cal yr BP event detected in loss-on-ignition profiles in Norwegian lacustrine sediment sequences. J Quat Sci. 16:155–166. doi: 10.1002/jqs.567
  • Nicholson DT. 2008. Rock control in microweathering of bedrock surfaces in a periglacial environment. Geomorphology. 101:655–665. doi: 10.1016/j.geomorph.2008.03.009
  • Nicholson DT. 2009. Holocene microweathering rates and processes on ice-eroded bedrock, Røldal area, Hardangervidda, southern Norway. In: Knight J, Harrison S, editor. Periglacial and paraglacial processes and environments. Geological Society of London, Special Publication. 320; p. 29–49.
  • Ødgård RS, Sollid JL, Liestøl O. 1992. Ground temperature measurements in mountain permafrost, Jotunheimen, southern Norway. Permafrost and Periglacial Processes. 3:231–234. doi: 10.1002/ppp.3430030310
  • Olsen T, Stahl T, Borella J. 2019. Clast transport history influences Schmidt hammer rebound values. Earth Surface Processes and Landforms. (submitted manuscript).
  • Owen G, Matthews JA, Shakesby RA, He X. 2006. Snow-avalanche impact landforms, deposits and effects at Urdvatnet, southern Norway: implications for avalanche style and process. Geografiska Annaler, Series A (Physical Geography). 88A:295–307. doi: 10.1111/j.0435-3676.2006.00302.x
  • Owens I. 2004. Snow avalanches and landforms. In: Goudie A.S, editor. Encyclopedia of geomorphology, Vol. 1. London: Routledge; p. 42–44.
  • Patton AI, Rathburn SL, Capps DM. 2019. Landslide response to climate change in permafrost regions. Geomorphology. 340:116–128. doi: 10.1016/j.geomorph.2019.04.029
  • Proceq. 2004. Operating instructions. Betonprüfhammer N/NR-L/LR. Schwerzenbach, Switzerland: Proceq SA.
  • QGIS Development Team. 2019. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.
  • Rapp A. 1959. Avalanche boulder tongues in Lappland. Geografiska Annaler. 41:34–48. doi: 10.1080/20014422.1959.11904378
  • Rapp A. 1960. Recent development of mountain slopes in Karkevagge and surroundings, northern Scandinavia. Geografiska Annaler. 42:73–200.
  • Rode M, Kellerer-Pirklbauer A. 2011. Schmidt-hammer exposure-age dating (SHD) of rock glaciers in the Schöderkogel-Eisenhut area, Schladminger Tauern Range, Austria. The Holocene. 22:761–771. doi: 10.1177/0959683611430410
  • Sanders D. 2013. Features related to snow avalanches and snow glides, Nordkette range (Northern Calcareous Alps). GeoAlp. 10:71–92.
  • Sandøy G, Oppikofer T, Nilsen B. 2017. Why did the 1756 Tjellefonna rockslide occur? A back-analysis of the largest historic rockslide in Norway. Geomorphology. 289:78–95. doi: 10.1016/j.geomorph.2016.08.016
  • Sass O, Wollny K. 2001. Investigations regarding alpine talus slopes using ground-penetrating radar (GPR) in the Bavarian Alps, Germany. Earth Surf Processes Landforms. 26:1071–1086. doi: 10.1002/esp.254
  • Sekiguchi T, Sugiyama M. 2003. Geomorphological features and distribution of avalanche furrows in heavy snowfall regions of Japan. Zeitschrift für Geomorphologie NF. 130:117–128.
  • Seppä H, Bjune AE, Telford RJ, Birks HJB, Birks HH, Veski S. 2009. Last nine-thousand years of temperature variability in Northern Europe. Climate Past. 5:523–535. doi: 10.5194/cp-5-523-2009
  • Shakesby RA, Matthews JA, Karlén W, Los SO. 2011. The Schmidt hammer as a Holocene calibrated-age dating technique: testing the form of the R-value-age relationship and defining the predicted-age errors. The Holocene. 21:615–628. doi: 10.1177/0959683610391322
  • Shakesby RA, Matthews JA, Owen G. 2006. The Schmidt hammer as a relative-age dating tool and its potential for calibrated-age dating in Holocene glaciated environments. Quat Sci Rev. 25:2846–2867. doi: 10.1016/j.quascirev.2006.07.011
  • Stahl T, Winkler S, Quigley M, Bebbington M, Duffy B, Duke D. 2013. Schmidt hammer exposure-age dating (SHD) of late Quaternary fluvial terraces in New Zealand. Earth Surf Processes Landforms. 38:1838–1850. doi: 10.1002/esp.3427
  • Stroeven AP, Hättestrand C, Kleman J, Heyman J, Fabel D, Fredin O, Goodfellow BW, Harbor JM, Jansen JD, Olsen L, et al. 2016. Deglaciation of Fennoscandia. Quat Sci Rev. 147:91–121. doi: 10.1016/j.quascirev.2015.09.016
  • Tomkins MD, Dortch JM, Hughes PD. 2016. Schmidt hammer exposure dating (SHED): establishment and implications for the retreat of the last British Ice Sheet. Quat Geochronol. 33:46–60. doi: 10.1016/j.quageo.2016.02.002
  • Tomkins MD, Dortch JM, Hughes PD, Huck JJ, Stimson AG, Delmas M, Calvet M, Pallàs R. 2018. Schmidt hammer exposure dating (SHED): rapid age assessment of glacial landforms in the Pyrenees. Quat Res. 90:26–37. doi: 10.1017/qua.2018.12
  • Trenbirth HE, Matthews JA. 2010. Lichen growth rates on glacier forelands in southern Norway: preliminary results from a 25-year monitoring programme. Geografiska Annaler, Series A (Physical Geography). 92A:19–39. doi: 10.1111/j.1468-0459.2010.00375.x
  • Vasskog K, Nesje A, Støren EN, Waldmann N, Chapron E, Ariztegui D. 2011. A Holocene record of snow-avalanche and flood activity reconstructed from a lacustrine sedimentary sequence at Oldevatnet, western Norway. The Holocene. 21:597–614. doi: 10.1177/0959683610391316
  • Velle G, Bjune AE, Larsen J, Birks HJB. 2010. Holocene climate and environmental history of Brurskardstjørni, a lake in the catchment of Øvre Heimdalsvatnet, south-central Norway. Hydrobiologia. 642:13–34. doi: 10.1007/s10750-010-0153-7
  • Viles H, Goudie A, Grabb S, Lalley J. 2011. The use of the Schmidt hammer and Equotip for rock hardness assessment in geomorphology and heritage science: a comparative analysis. Earth Surf Processes Landforms. 36:320–333. doi: 10.1002/esp.2040
  • Walker MJC, Berkelhammer M, Björk S, Cwynar LC, Fisher DA, Long AJ, Lowe J, Newnham RM, Rasmussen SO, Weiss H. 2012. Formal subdivision of the Holocene Series/epoch: a discussion paper by a Working group of INTIMATE (Integration of ice-core, marine and terrestrial records) and the Subcommission on Quaternary Stratigraphy (International Commission on Stratigraphy). J Quat Sci. 27:649–659. doi: 10.1002/jqs.2565
  • Watson DF, Philip GM. 1987. Neighborhood based interpolation. Geobyte. 2:12–16.
  • White SE. 1981. Alpine mass movement forms (noncatastrophic): classification, description and significance. Arct Alp Res. 13:127–137. doi: 10.2307/1551190
  • Wilson P. 2009. Storurdi: a late Holocene rock-slope failure (Sturzstrom) in the Jotunheimen, southern Norway. Geografiska Annaler, Series A (Physical Geography). 91:47–58. doi: 10.1111/j.1468-0459.2009.00352.x
  • Wilson P, Linge H, Matthews JA, Mourne RW, Olsen J. 2019. Comparative numerical surface exposure-age dating (10Be and Schmidt hammer) of an early-Holocene rock avalanche at Alstadfjellet, Valldalen, southern Norway. Geografiska Annaler, Series A (Physical Geography). 101A:293–309. doi: 10.1080/04353676.2019.1644815
  • Wilson P, Matthews JA, Mourne RW. 2016. Relict blockstreams at Insteheia, Valldalen-Tafjorded, southern Norway: their nature and Schmidt-hammer exposure age. Permafrost Periglacial Processes. 28:286–297. doi: 10.1002/ppp.1915
  • Winkler S. 2014. Investigation of late-Holocene moraines in the western Southern Alps, New Zealand, applying Schmidt-hammer exposure-age dating (SHD). The Holocene. 24:48–66. doi: 10.1177/0959683613512169
  • Winkler S, Lambiel C. 2018. Age constraints of rock glaciers in the Southern Alps/New Zealand – exploring their palaeoclimatic potential. The Holocene. 28:778–790. doi: 10.1177/0959683618756802
  • Winkler S, Matthews JA. 2014. Comparison of electronic and mechanical Schmidt-hammers in the context of exposure-age dating: are Q- and R-values interconvertible? Earth Surf Processes Landforms. 39:1128–1136. doi: 10.1002/esp.3584
  • Winkler S, Matthews JA, Haselberger S, Hill JL, Mourne RW, Owen G, Wilson P. 2020. Schmidt-hammer exposure-age dating (SHD) of sorted stripes on Juvflye, Jotunheimen (central south Norway): morphodynamic and palaeoclimatic implications. Geomorphology. In press.
  • Winkler S, Matthews JA, Mourne RW, Wilson P. 2016. Schmidt-hammer exposure ages from periglacial patterned ground (sorted circles) in Jotunheimen, Norway, and their interpretive problems. Geografiska Annaler, Series A (Physical Geography). 98A:15–37.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.