667
Views
18
CrossRef citations to date
0
Altmetric
Reviews

Raman Spectroscopy Based Techniques in Tissue Engineering—An Overview

, &

References

  • Martin, I., Smith, T., and Wendt, D. (2009) Bioreactor-based roadmap for the translation of tissue engineering strategies into clinical products. Trends Biotechnol., 27 (9): 495–502.
  • Lim, M., Ye, H., Panoskaltsis, N., Drakakis, E.M., Yue, X., Cass, A.E.G., Radomska, A., and Mantalaris, A. (2007) Intelligent bioprocessing for haemotopoietic cell cultures using monitoring and design of experiments. Biotechnol. Adv., 25 (4): 353–368.
  • Plazcek, M.R., Chung, I.-M., Macedo, H.M., Ismail, S., Mortera-Blanco, T., Lim, M., Cha, J.M., Fauzi, I., Kang, Y., Yeo, D.C.L., et al (2008) Stem cell bioprocessing: Fundamentals and principles. J. R. Soc. Interface, 6 (32): 209–232.
  • Jell, G., Swain, R., and M. Stevens, M. (2010) Raman spectroscopy: A tool for tissue engineering. In Emerging Raman Applications and Techniques in Biomedical and Pharmaceutical Fields, Matousek, P. and Morris, M.D., Eds. Springer: Berlin, pp. 419–437.
  • Mather, M.L., Morgan, S.P., and Crowe, J.A. (2007) Meeting the needs of monitoring in tissue engineering. Regenerative Medicine, 2 (2): 145–160.
  • Owen, C.A., Notingher, I., Hill, R., Stevens, M., and Hench, L.L. (2006) Progress in Raman spectroscopy in the fields of tissue engineering, diagnostics and toxicological testing. J. Mater. Sci. Mater. Med., 17 (11): 1019–1023.
  • Scadden, D.T. (2006) The stem-cell niche as an entity of action. Nature, 441 (7097): 1075–1079.
  • Ferraro, J.R., Nakamoto, K., and Brown, C.W. (2003) Introductory Raman Spectroscopy. 2nd ed. Academic Press: Amsterdam, The Netherlands.
  • Ellis, D.I. and Goodacre, R. (2006) Metabolic fingerprinting in disease diagnosis: biomedical applications of infrared and Raman spectroscopy. Analyst, 131 (8): 875–885.
  • Mukerji, I. (2001) Resonance Raman spectroscopy. In eLS. John Wiley & Sons.
  • Wachsmann-Hogiu, S., Weeks, T., and Huser, T. (2009) Chemical analysis in vivo and in vitro by Raman spectroscopy—From single cells to humans. Curr. Opin. Biotechnol., 20 (1): 63–73.
  • Chen, S., Ong, Y.H., and Liu, Q. (2013) Fast reconstruction of Raman spectra from narrow-band measurements based on Wiener estimation. J. Raman Spectros., 44 (6): 875–881.
  • Thomas, G.J., Jr. (1999) Raman spectroscopy of protein and nucleic acid assemblies. Annu. Rev. Biophys. Biomol. Struct., 28: 1–27.
  • Tuma, R. (2005) Raman spectroscopy of proteins: from peptides to large assemblies. J. Raman Spectros., 36 (4): 307–319.
  • Dukor, R.K. (2002) Vibrational spectroscopy in the detection of cancer. In Handbook of Vibrational Spectroscopy, Chalmers, J.M. and Griffiths, P.R., Eds. John Wiley & Sons : Chichester, UK, pp. 3335–3361.
  • Movasaghi, Z., Rehman, S., and Rehman, I.U. (2012) Raman spectroscopy can detect and monitor cancer at cellular level: Analysis of resistant and sensitive subtypes of testicular cancer cell lines. Appl. Spectros. Rev., 47 (7): 571–581.
  • Pascut, F.C., Kalra, S., George, V., Welch, N., Denning, C., and Notingher, I. (2013) Non-invasive label-free monitoring the cardiac differentiation of human embryonic stem cells in-vitro by Raman spectroscopy. Biochim. Biophys. Acta, 1830 (6): 3517–3524.
  • Pascut, F.C., Goh, H.T., Welch, N., Buttery, L.D., Denning, C., and Notingher, I. (2011) Noninvasive detection and imaging of molecular markers in live cardiomyocytes derived from human embryonic stem cells. Biophys. J., 100 (1): 251–259.
  • Chan, J.W., Lieu, D.K., Huser, T., and Li, R.A. (2009) Label-free separation of human embryonic stem cells (hESCs) and their cardiac derivatives using Raman spectroscopy. Anal. Chem., 81 (4): 1324–1331.
  • Schulze, H.G., Konorov, S.O., Caron, N.J., Piret, J.M., Blades, M.W., and Turner, R.F. B. (2010) Assessing differentiation status of human embryonic stem cells noninvasively using Raman microspectroscopy. Anal. Chem., 82 (12): 5020–5027.
  • Downes, A., Mouras, R., Bagnaninchi, P., and Elfick, A. (2011) Raman spectroscopy and CARS microscopy of stem cells and their derivatives. J. Raman Spectros., 42 (10): 1864–1870.
  • Uzunbajakava, N., Lenferink, A., Kraan, Y., Volokhina, E., Vrensen, G., Greve, J., and Otto, C. (2003) Nonresonant confocal Raman imaging of DNA and protein distribution in apoptotic cells. Biophys. J., 84 (6): 3968–3981.
  • Uzunbajakava, N., Lenferink, A., Kraan, Y., Willekens, B., Vrensen, G., Greve, J., and Otto, C. (2003) Nonresonant Raman imaging of protein distribution in single human cells. Biopolymers, 72 (1): 1–9.
  • Shamsaie, A., Jonczyk, M., Sturgis, J., Paul Robinson, J., and Irudayaraj, J. (2007) Intracellularly grown gold nanoparticles as potential surface-enhanced Raman scattering probes. J. Biomed. Optic., 12 (2): . 020502–020502-3.
  • Liu, Z., Hu, C., Li, S., Zhang, W., and Guo, Z. (2012) Rapid intracellular growth of gold nanostructures assisted by functionalized graphene oxide and its application for surface-enhanced Raman spectroscopy. Anal. Chem., 84 (23): 10338–10344.
  • Miller, C.E., Thompson, R.P., Bigelow, M.R., Gittinger, G., Trusk, T.C., and Sedmera, D. (2005) Confocal imaging of the embryonic heart: How deep? Microsc. Microanal., 11 (3): 216–223.
  • Bonnier, F., Knief, P., Meade, A.D., Dorney, J., Bhattacharya, K., Lyng, F.M., and Byrne, H.J. (2011) Collagen matrices as an improved model for in vitro study of live cells using Raman microspectroscopy. Proc. SPIE 8087, Clinical and Biomedical Spectroscopy and Imaging II, 80870F. Munich, Germany, . May 24–26.
  • Jones, J.R., Vats, A., Notingher, I., Gough, J.E., Tolley, N.S., Polak, J.M., and Hench, L.L. (2005) In situ monitoring of chondrocyte response to bioactive scaffolds using Raman spectroscopy. Key Engineering Materials, 284–286: . 623–626.
  • Kunstar, A., Otto, C., Karperien, M., van Blitterswijk, C., and van Apeldoorn, A. (2011) Raman microspectroscopy: A noninvasive analysis tool for monitoring of collagen-containing extracellular matrix formation in a medium-throughput culture system. Tissue Eng., 17 (7): 737–744.
  • Kunstar, A., Leferink, A.M., Okagbare, P.I., Morris, M.D., Roessler, B.J., Otto, C., Karperien, M., van Blitterswijk, C.A., Moroni, L., and van Apeldoorn, A.A. (2013) Label-free Raman monitoring of extracellular matrix formation in three-dimensional polymeric scaffolds. J. R. Soc. Interface, 10 (86). : 20130464–20130464.
  • Nandagawali, S.T., Yerramshetty, J.S., and Akkus, O. (2007) Raman imaging for quantification of the volume fraction of biodegradable polymers in histological preparations. J. Biomed. Mater. Res., 82 (3): 611–617.
  • Moimas, L., De Rosa, G., Sergo, V., and Schmid, C. (2006) Bioactive porous scaffolds for tissue engineering applications: Investigation on the degradation process by Raman spectroscopy and scanning electron microscopy. J. Appl. Biomater. Biomech., 4 (2): 102–109.
  • van Apeldoorn, A.A., van Manen, H.J., Bezemer, J.M., de Bruijn, J.D., van Blitterswijk, C.A., and Otto, C. (2004) Raman imaging of PLGA microsphere degradation inside macrophages. J. Am. Chem. Soc., 126 (41): 13226–13227.
  • Luk, J.Z., Cooper-White, J., Rintoul, L., Taran, E., and Grondahl, L. (2013) Functionalised polycaprolactone films and 3D scaffolds via gamma irradiation–induced grafting. J. Mater. Chem., 1 (33): 4171–4181.
  • Rim, N.G., Kim, S.J., Shin, Y.M., Jun, I., Lim, D.W., Park, J.H., and Shin, H. (2012) Mussel-inspired surface modification of poly(l-lactide) electrospun fibers for modulation of osteogenic differentiation of human mesenchymal stem cells. Colloids and Surfaces B: Biointerfaces, 91: 189–197.
  • Jain, S., Sharma, A., and Basu, B. (2013) In vitro cytocompatibility assessment of amorphous carbon structures using neuroblastoma and Schwann cells. J. Biomed. Mater. Res. B Appl. Biomater., 101 (4): 520–531.
  • Han, X.X., Kitahama, Y., Tanaka, Y., Guo, J., Xu, W.Q., Zhao, B., and Ozaki, Y. (2008) Simplified protocol for detection of protein–ligand interactions via surface-enhanced resonance Raman scattering and surface-enhanced fluorescence. Anal. Chem., 80 (17): 6567–6572.
  • Han, X.X., Chen, L., Guo, J., Zhao, B., and Ozaki, Y. (2010) Coomassie brilliant dyes as surface-enhanced Raman scattering probes for protein–ligand recognitions. Anal. Chem., 82 (10): 4102–4106.
  • Movasaghi, Z., Rehman, S., and Rehman, I.U. (2007) Raman spectroscopy of biological tissues. Appl. Spectros. Rev., 42 (5): 493–541.
  • Gong, Q., Wang, J., Ahmad, K.M., Csordas, A.T., Zhou, J., Nie, J., Stewart, R., Thomson, J.A., Rossi, J.J., and Soh, H.T. (2012) Selection strategy to generate aptamer pairs that bind to distinct sites on protein targets. Anal. Chem., 84 (12): 5365–5371.
  • Wang, Y., Wei, H., Li, B., Ren, W., Guo, S., Dong, S., and Wang, E. (2007) SERS opens a new way in aptasensor for protein recognition with high sensitivity and selectivity. Chem. Comm., (48): 5220–5222.
  • Fabris, L., Dante, M., Nguyen, T.-Q., Tok, J.B.H., and Bazan, G.C. (2008) SERS aptatags: New responsive metallic nanostructures for heterogeneous protein detection by surface enhanced Raman spectroscopy. Adv. Funct. Mater., 18 (17): 2518–2525.
  • Fabris, L., Schierhorn, M., Moskovits, M., and Bazan, G.C. (2010) Aptatag-based multiplexed assay for protein detection by surface-enhanced Raman spectroscopy. Small, 6 (14): 1550–1557.
  • Pagba, C.V., Lane, S.M., Cho, H., and Wachsmann-Hogiu, S. (2010) Direct detection of aptamer–thrombin binding via surface-enhanced Raman spectroscopy. J. Biomed. Optic., 15 (4). : 047006–047006-8.
  • He, L., Lamont, E., Veeregowda, B., Sreevatsan, S., Haynes, C.L., Diez-Gonzalez, F., and Labuza, T.P. (2011) Aptamer-based surface-enhanced Raman scattering detection of ricin in liquid foods. Chem. Sci., 2 (8): 1579–1582.
  • Su, X., Zhang, J., Sun, L., Koo, T.W., Chan, S., Sundararajan, N., Yamakawa, M., and Berlin, A.A. (2005) Composite organic–inorganic nanoparticles (COINs) with chemically encoded optical signatures. Nano Letters, 5 (1): 49–54.
  • Sun, L., Sung, K.B., Dentinger, C., Lutz, B., Nguyen, L., Zhang, J., Qin, H., Yamakawa, M., Cao, M., Lu, Y., et al (2007) Composite organic–inorganic nanoparticles as Raman labels for tissue analysis. Nano Letters, 7 (2): 351–356.
  • Lutz, B., Dentinger, C., Sun, L., Nguyen, L., Zhang, J., Chmura, A., Allen, A., Chan, S., and Knudsen, B. (2008) Raman nanoparticle probes for antibody-based protein detection in tissues. J. Histochem. Cytochem., 56 (4): 371–379.
  • Shachaf, C.M., Elchuri, S.V., Koh, A.L., Zhu, J., Nguyen, L.N., Mitchell, D.J., Zhang, J., Swartz, K.B., Sun, L., Chan, S., et al (2009) A novel method for detection of phosphorylation in single cells by surface enhanced Raman scattering (SERS) using composite organic–inorganic nanoparticles (COINs). PLoS ONE, 4 (4): e5206.
  • Guarrotxena, N. and Bazan, G.C. (2011) Antibody-functionalized SERS tags with improved sensitivity. Chem. Comm., 47 (31): 8784–8786.
  • Han, X.X., Kitahama, Y., Itoh, T., Wang, C.X., Zhao, B., and Ozaki, Y. (2009) Protein-mediated sandwich strategy for surface-enhanced Raman scattering: Application to versatile protein detection. Anal. Chem., 81 (9): 3350–3355.
  • Jun, B.H., Kim, J.H., Park, H., Kim, J.S., Yu, K.N., Lee, S.M., Choi, H., Kwak, S.Y., Kim, Y.K., Jeong, D.H., et al (2007) Surface-enhanced Raman spectroscopic-encoded beads for multiplex immunoassay. J. Combin. Chem., 9 (2): 237–244.
  • Kim, J.H., Kang, H., Kim, S., Jun, B.H., Kang, T., Chae, J., Jeong, S., Kim, J., Jeong, D.H., and Lee, Y.S. (2011) Encoding peptide sequences with surface-enhanced Raman spectroscopic nanoparticles. Chem. Comm., 47 (8): 2306–2308.
  • Ong, Y.H., Lim, M., and Liu, Q. (2012) Comparison of principal component analysis and biochemical component analysis in Raman spectroscopy for the discrimination of apoptosis and necrosis in K562 leukemia cells. Optic. Express, 20 (20): 22158–22171.
  • Gunnarsson, L., Bjerneld, E.J., Xu, H., Petronis, S., Kasemo, B., and Kall, M. (2001) Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. Appl. Phys. Lett., 78 (6): 802–804.
  • Jun, B.H., Noh, M.S., Kim, G., Kang, H., Kim, J.H., Chung, W.J., Kim, M.S., Kim, Y.K., Cho, M.H., Jeong, D.H., et al (2009) Protein separation and identification using magnetic beads encoded with surface-enhanced Raman spectroscopy. Anal. Biochem., 391 (1): 24–30.
  • Jun, B.H., Kim, G., Baek, J., Kang, H., Kim, T., Hyeon, T., Jeong, D.H., and Lee, Y.S. (2011) Magnetic field induced aggregation of nanoparticles for sensitive molecular detection. Phys. Chem. Chem. Phys., 13 (16): 7298–7303.
  • Chen, L., Hong, W., Guo, Z., Sa, Y., Wang, X., Jung, Y.M., and Zhao, B. (2012) Magnetic assistance highly sensitive protein assay based on surface-enhanced resonance Raman scattering. J. Colloid Interface Sci., 368 (1): 282–286.
  • He, L., Rodda, T., Haynes, C.L., Deschaines, T., Strother, T., Diez-Gonzalez, F., and Labuza, T.P. (2011) Detection of a foreign protein in milk using surface-enhanced Raman spectroscopy coupled with antibody-modified silver dendrites. Anal. Chem., 83 (5): 1510–1513.
  • Combs, Z.A., Chang, S., Clark, T., Singamaneni, S., Anderson, K.D., and Tsukruk, V.V. (2011) Label-free Raman mapping of surface distribution of protein A and IgG biomolecules. Langmuir, 27 (6): 3198–3205.
  • Wang, M., Jing, N., Chou, I.H., Cote, G.L., and Kameoka, J. (2007) An optofluidic device for surface enhanced Raman spectroscopy. Lab Chip, 7 (5): 630–632.
  • Chou, I.H., Benford, M., Beier, H.T., Cote, G.L., Wang, M., Jing, N., Kameoka, J., and Good, T.A. (2008) Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Letters, 8 (6): 1729–1735.
  • Wang, M., Benford, M., Jing, N., Cote, G., and Kameoka, J. (2009) Optofluidic device for ultra-sensitive detection of proteins using surface-enhanced Raman spectroscopy. Microfluidics and Nanofluidics, 6 (3): 411–417.
  • Tian, W.-C. and Finehout, E. (2009) Microfluidic systems for engineering vascularized tissue constructs. In Microfluidics for Biological Applications. , Tian, W.-C. and Finehout, E., Eds. Springer: New York, pp. 223–240.
  • Sivanesan, A., Kalaivani, G., Fischer, A., Stiba, K., Leimkuhler, S., and Weidinger, I.M. (2012) Complementary surface-enhanced resonance Raman spectroscopic biodetection of mixed protein solutions by chitosan- and silica-coated plasmon-tuned silver nanoparticles. Anal. Chem., 84 (13): 5759–5764.
  • Yang, X., Gu, C., Qian, F., Li, Y., and Zhang, J.Z. (2011) Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers. Anal. Chem., 83 (15): 5888–5894.
  • Han, X.X., Huang, G.G., Zhao, B., and Ozaki, Y. (2009) Label-free highly sensitive detection of proteins in aqueous solutions using surface-enhanced Raman scattering. Anal. Chem., 81 (9): 3329–3333.
  • Zhou, Z., Han, X.X., Huang, G.G., and Ozaki, Y. (2012) Label-free detection of binary mixtures of proteins using surface-enhanced Raman scattering. J. Raman Spectros., 43 (6): 706–711.
  • Keskin, S. and Culha, M. (2012) Label-free detection of proteins from dried-suspended droplets using surface enhanced Raman scattering. Analyst, 137 (11): 2651–2657.
  • Çulha, M., Altunbek, M., Keskin, S., and Saatçi, D. (2011) Manipulation of silver nanoparticles in a droplet for label-free detection of biological molecules using surface-enhanced Raman scattering. Proc. SPIE 7911, Plasmonics in Biology and Medicine VIII 791102. San Francisco, CA, January 22–February 18.
  • Kahraman, M., Yazici, M.M., Sahin, F., and Culha, M. (2008) Convective assembly of bacteria for surface-enhanced Raman scattering. Langmuir, 24 (3): 894–901.
  • Kahraman, M., Sur, I., and Culha, M. (2010) Label-free detection of proteins from self-assembled protein–silver nanoparticle structures using surface-enhanced Raman scattering. Anal. Chem., 82 (18): 7596–7602.
  • Keskin, S., Kahraman, M., and Culha, M. (2011) Differential separation of protein mixtures using convective assembly and label-free detection with surface enhanced Raman scattering. Chem. Comm., 47 (12): 3424–3426.
  • Kahraman, M., Balz, B.N., and Wachsmann-Hogiu, S. (2013) Hydrophobicity-driven self-assembly of protein and silver nanoparticles for protein detection using surface-enhanced Raman scattering. Analyst, 138 (10): 2906–2913.
  • Han, X.X., Jia, H.Y., Wang, Y.F., Lu, Z.C., Wang, C.X., Xu, W.Q., Zhao, B., and Ozaki, Y. (2008) Analytical technique for label-free multi-protein detection based on western blot and surface-enhanced Raman scattering. Anal. Chem., 80 (8): 2799–2804.
  • Abu-Absi, N.R., Kenty, B.M., Cuellar, M.E., Borys, M.C., Sakhamuri, S., Strachan, D.J., Hausladen, M.C., and Li, Z.J. (2011) Real time monitoring of multiple parameters in mammalian cell culture bioreactors using an in-line Raman spectroscopy probe. Biotechnol. Bioeng., 108 (5): 1215–1221.
  • Whelan, J., Craven, S., and Glennon, B. (2012) In situ Raman spectroscopy for simultaneous monitoring of multiple process parameters in mammalian cell culture bioreactors. Biotechnol. Progr., 28 (5): 1355–1362.
  • Becker, T., Hitzmann, B., Muffler, K., Pörtner, R., Reardon, K., Stahl, F., and Ulber, R. (2007) Future aspects of bioprocess monitoring. In White Biotechnology, vol. 105, Ulber, R. and Sell, D., Eds. Springer: New York, pp. 249–293.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.