944
Views
28
CrossRef citations to date
0
Altmetric
Reviews

In situ forming gelatin/graphene oxide hydrogels for facilitated C2C12 myoblast differentiation

, , , , , , , , & show all

References

  • Lee, T. J., Park, S., Bhang, S. H., Yoon, J. -K., Jo, I., Jeong, G. -J., Hong, B. H., and Kim, B. S. (2014) Graphene enhances the cardiomyogenic differentiation of human embryonic stem cells. Biochem. Bioph. Res. Comm. 452 (1):174–180.
  • Das, T. K. and Prusty, S. (2013) Graphene-based polymer composites and their applications. Polym. Plast. Technol. Eng. 52:319–331.
  • Paul, W. and Sharma, C. P. (2011) Blood compatibility and biomedical applications of graphene. Trends Biomater. Artif. Organs. 25 (3):91–94.
  • Lee, S. K., Kim, H., and Shim, B. S. (2013) Graphene: An emerging material for biological tissue engineering. Carbon Lett. 14 (2):63–75.
  • Liu, Z., Robinson, J. T., Sun, X., and Dai, H. J. (2008) PEGylated nano-graphene oxide for delivery of water insoluble cancer drugs. J. Am. Chem. Soc. 130 (33):10876–10877.
  • Sun, X., Liu, Z., Welsher, K., Robinson, J. T., Goodwin, A., Zaric, S., and Dai, H. (2008) Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 1:203–212.
  • Aillon, K. L., Xie, Y. M., El-Gendy, N., Berkland, C. J., and Forrest, M. L. (2009) Effects of nanomaterial physicochemical properties on in vivo toxicity. Adv. Drug Deliv. Rev. 61:457–466.
  • Yoon, O. J., Sohn, I. Y., Kim, D. J., and Lee, N. E. (2012) Enhancement of thermomechanical properties of poly (D, L-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds. Macromol. Res. 20:789–794.
  • Shin, Y. C., Lee, J. H., Jin, L., Kim, M. J., Kim, Y. J., Hyun, J. K., Jung, T. G., Hong, S. W., and Han, D. W. (2015) Stimulated myoblast differentiation on graphene oxide-impregnated PLGA-collagen hybrid fibre matrices. J. Nanobiotechnol. 13:21.
  • Sahu, A., Choi, W. I., and Tae, G. (2012) A stimuli-sensitive injectable graphene oxide composite hydrogel. Chem. Commun. 48:5801–5940.
  • Lee Y. Y., Bae, J. W., Oh, D. H., Park, K. M., Chun, Y. W., Sung, H. J., and Park, K. D. (2013) In situ forming gelatin-based tissue adhesives and their phenolic content-driven properties. J. Mater. Chem. B. 1:2407–2414.
  • Park, K. M., Jun, I., Joung, Y. K., Shin, H., and Park, K. D. (2011) In situ hydrogelation and RGD conjugation of tyramine-conjugated 4-arm PPO–PEO block copolymer for injectable bio-mimetic scaffolds. Soft Mat. 7:986–992.
  • Rothan, H. A., Djordjevic, I., Bahrani. H., Paydar, M., Ibrahim, F., Rahmanh, N. A., and Yusof, R. (2014) Three-dimensional culture environment increases the efficacy of platelet rich plasma releasate in prompting skin fibroblast differentiation and extracellular matrix formation. Int. J. Med. Sci. 11:1029–1038.
  • Cushing, M. C. and Anseth, K. S. (2007) Material science: Hydrogel cell cultures. Science 316 (5528):1133–1134.
  • Elisseeff, J., Anseth, K. S., Sims, D., McIntosh, W., Randolph, M., and Yaremchuk, M. (1999) Transdermal photopolymerization of poly (ethylene oxide)-based injectable hydrogels for tissue-engineered cartilage. Plast. Reconstr. Surg. 104:1014–1022.
  • Williams, C. G., Malik, A. N., Kim, T. K., Manson, P. N, and Elisseeff, J. H. (2005) Variable cytocompatibility of six cell lines with photoinitiators used for polymerizing hydrogels and cell encapsulation. Biomaterials 26:1211–1218.
  • Bryant, S. J. and Anseth, K. S. (2002) Hydrogel properties influence ECM production by chondrocytes photoencapsulated in poly (ethylene glycol) hydrogels. J. Biomed. Mater. Res. 59 (1):63–72.
  • Chatterjee, K., Gibson, S. L., Wallace, W. E., Parekh, S. H., Lee, Y. J., Cicerone, M. T., Young, M. F., and Simon Jr., C. G. (2010) The effect of 3D hydrogel scaffold modulus on osteoblast differentiation and mineralization revealed by combinatorial screening. Biomaterials 31:5051–5062.
  • Cox, S. C., Thornby, J. A., Gibbons, G. J., Williams, M. A., and Mallick, K. K. (2015) 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater. Sci. Eng. C. 47:237–247.
  • Kim, M. S., Son, J. G, Lee, H. J, Hwang, H., Choi, C. H. and Kim, G. H. (2014) Highly porous 3D nanofibrous scaffolds processed with an electrospinning/laser process. Curr. Appl. Phys. 14 (1):1–7.
  • Lee, Y., Bae, J. W., Lee, J. W., Suh, W., and Park, K. D. (2014) Enzyme-catalyzed in situ forming gelatin hydrogels as bioactive wound dressings:effects of fibroblast delivery on wound healing efficacy. J. Mater. Chem. B. 2:7712–7718.
  • Wang, L. S., Boulaire, J, Chan, P. P. Y., Chung, J. E., and Kurikawa, M. (2010) The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31 (33):8608–8616.
  • Hummers Jr., W. S. and Offeman, R. E. (1958) Preparation of graphitic oxide. J. Am. Chem. Soc. 80:1339.
  • Stankovich, S., Dikin, D. A., Piner, R. D., Kohlhaas, K. A, Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S. T., and Ruoff, R. S. (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565.
  • Hwang, C. M., Sant, S., Masaeli, M., Kachouie, N. N., Zamanian, B., Lee, S. -H., and Khademhosseini, K. (2010) Fabrication of three-dimensional porous cell-laden hydrogel for tissue engineering. Biofabrication 2:035003.
  • Johnson, E. M., and Deen, W. M. (1996) Hydraulic permeability of agarose gels. AIChE J. 42:1220–1224.
  • Nabanita, S., Aamarjargal, S, Niladri, R, Takeshi, K, and Petr, S. (2011) Polymeric biomaterial based hydrogels for biomedical applications. J. Biomater. Nanobiotechnol. 2:85–90.
  • Kamata, H., Li, X., Chung, U. I., and Sakai, T. (2013) Design of hydrogels for biomedical applications. Adv. Healthc. Mater. 4:2360–2374.
  • Hoffman, A. S. (2012) Hydrogels for biomedical applications. Adv. Drug Deliv. Rev. 64:18–23.
  • Bogdan, C., Paul, O. S., and Mircea, T. (2010) The states of water in hydrogels synthesized from diepoxy-terminated poly (ethylene glycol)s and aliphatic polyamines. U. Politeh. Buch. Ser. B. 72:99–114.
  • Ciara, M. M., Matthew, G. H., and Fergal, J. O. B. (2010) The effect of mean pore size on cell attachment, proliferation and migration in collagen–glycosaminoglycan scaffolds for bone tissue engineering. Biomaterials 31:461–466.
  • Nadine, R. L., Kai, S., Sebastian, H., Astrid, M., Julian, S, Julia, S., Katerina, E. A., and Ben, F. (2015) Biphasic response of cell invasion to matrix stiffness in three-dimensional biopolymer networks. Acta Biomater. 13:61–67.
  • Naebe, M., Wang, J., Amini, A., Khayyam, H., Hameed, N., Li, L. H., Chen, Y., Fox, B. (2014) Mechanical property and structure of covalent functionalised graphene/epoxy nanocomposites. Sci. Rep. 4:4375.
  • Movasaghi, Z., Rehman, S., and ur Rehman, I. (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectros. Rev. 43:134–179.
  • Ferrari, A. C., and Robertson, J. (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61:14095.
  • Filho, P. F. F., Freire, P. T. C., Lima, K. C. V., Mendes Filho, J., and Melo, F. E. A. (2008) High temperature Raman spectra of L-leucine crystals. Braz. J. Phys. 38 (1):131–137.
  • Talari, A. C. S., Movasaghi, Z., Rehman, S., and ur Rehman, I. (2015) Raman spectroscopy of biological tissues. Appl. Spectros. Rev. 50 (1):46–111.
  • Engler, A. J., Sen, S., Sweeney, H. L., and Discher, D. E. (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689.
  • Amack, J. D. and Mahadevan, M. S. (2001) The myotonic dystrophy expanded CUG repeat tract is necessary but not sufficient to disrupt C2C12 myoblast differentiation. Hum. Mol. Genet. 10:1879–1887.
  • Ku, S. H. and Park, C. B. (2013) Myoblast differentiation on graphene oxide. Biomaterials 34:2017–2023.
  • Shin, Y. C., Lee, J. H., Kim, M. J., Hong, S. W., Kim, B., Hyun, J. K., Choi, Y. S., Park, J. C., and Han, D. W. (2015) Stimulating effect of graphene oxide on myogenesis of C2C12 myoblasts on RGD peptide-decorated PLGA nanofiber matrices. J. Biol. Eng. 9:22.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.