236
Views
4
CrossRef citations to date
0
Altmetric
Reviews

Monitoring radiation induced alterations in biological systems, from molecules to tissues, through infrared spectroscopy

&
Pages 839-863 | Received 20 Mar 2016, Accepted 22 May 2016, Published online: 25 May 2016

References

  • Ng, K. H. (2003) Non-ionizing radiations—Sources, biological effects, emissions and exposures. Proceedings of the International Conference on Non-Ionizing Radiation at UNITEN (ICNIR2003) Electromagnetic Fields and Our Health, Kuala Lumpur, Malaysia, October 20–22.
  • Schmid, E. and Schrader, T. (2007) Different biological effectiveness of ionising and non-ionising radiations in mammalian cells. Adv. Radio Sci. 5 (1):1–4.
  • Carpenter, D. O. (2013) Human disease resulting from exposure to electromagnetic fields. Rev. Environ. Health 28 (4):159–172.
  • Bolus, N. E. (2001) Basic review of radiation biology and terminology. J. Nucl. Med. Technol. 29 (2):67–73.
  • Ozben, T. (2007) Oxidative stress and apoptosis: Impact on cancer therapy. J. Pharm. Sci. 96 (9):2181–2196.
  • Somosy, Z. (2000) Radiation response of cell organelles. Micron. 31 (2):165–181.
  • Dias, D. A., Veloso, M. N., de Castro, P. A., Lima, C. A., and Zezell, D. M. (2015) Biochemical evaluation of bone submitted to ionizing radiation using ATR-FTIR spectroscopy associated to cluster analysis. 2015 International Nuclear Atlantic Conference—INAC 2015, Sao Paulo, Brazil, October 4–9.
  • Lima, C. A., Goulart, V. P., de Castro, P. A., Correa, L., Benetti, C., and Zezell, D. M. (2015) Biochemical changes in cutaneous squamous cell carcinoma submitted to PDT using ATR-FTIR spectroscopy. Paper presented at SPIE Biophotonics South America, June 19, pp. 95311J–95311J.
  • Sharma, M., Crosbie, J. C., Puskar, L. and Rogers, P. A. (2013) Microbeam-irradiated tumour tissue possesses a different infrared absorbance profile compared to broad beam and sham-irradiated tissue. Int. J. Radiat. Biol. 89 (2):79–87.
  • Calabrò, E., Condello, S., Currò, M., Ferlazzo, N., Vecchio, M., Caccamo, D., Magazù, S., and Ientile, R. (2013) 50 Hz electromagnetic field produced changes in FTIR spectroscopy associated with mitochondrial transmembrane potential reduction in neuronal-like SH-SY5Y cells. Oxid. Med. Cell. Longev. 2013:414393.
  • Zhang, X., Xu, L., Huang, X., Wei, S., and Zhai, M. (2012) Structural study and preliminary biological evaluation on the collagen hydrogel crosslinked by γ‐irradiation. J. Biomed. Mater. Res. A. 100 (11):2960–2969.
  • Aly, E. M., and Mohamed, E. S. (2011) Effect of infrared radiation on the lens. Indian J. Ophthalmol 59 (2):97–101.
  • Magazù, S. and Calabrò, E. (2011) Studying the electromagnetic-induced changes of the secondary structure of bovine serum albumin and the bioprotective effectiveness of trehalose by fourier transform infrared spectroscopy. J. Phys. Chem. B. 115 (21):6818–6826.
  • Magazù, S., Calabrò, E., and Campo, S. (2010) FTIR spectroscopy studies on the bioprotective effectiveness of trehalose on human hemoglobin aqueous solutions under 50 Hz electromagnetic field exposure. J. Phys. Chem. B. 114 (37):12144–12149.
  • Meade, A. D., Clarke, C., Byrne, H. J., and Lyng, F. M. (2010) Fourier transform infrared microspectroscopy and multivariate methods for radiobiological dosimetry. Radiat. Res. 173 (2):225–237.
  • Di Giambattista, L., Grimaldi, P., Gaudenzi, S., Pozzi, D., Grandi, M., Morrone, S., Silvestri, I., and Castellano, A. C. (2009) UVB radiation induced effects on cells studied by FTIR spectroscopy. Eur. Biophys. J. 39 (6):929–934.
  • Liu, C. J., Wang, C. H., Chien, C. C., Yang, T. Y., Chen, S. T., Leng, W. H., Lee, C. F., Lee, K. H., Hwu, Y., Lee, Y. C., Cheng, C. L., Yang, C. S., Chen, Y. J., Je, J. H., and Margaritondo, G. (2008) Enhanced x-ray irradiation-induced cancer cell damage by gold nanoparticles treated by a new synthesis method of polyethylene glycol modification. Nanotechnol. 19 (29):1–5.
  • Rabotyagova, O. S., Cebe, P. and Kaplan, D. L. (2008) Collagen structural hierarchy and susceptibility to degradation by ultraviolet radiation. Mater. Sci. Eng. C Mater. Biol. Appl. 28 (8):1420–1429.
  • Maghraby, A.M., and Maha, A. A. (2007) Spectroscopic study of gamma irradiated bovine hemoglobin. Radiat. Phys. Chem. 76 (10):1600–1605.
  • Crupi, V., Interdonato, S., Majolino, D., Mondello, M. R., and Venuti, V. (2006) Spectroscopic evidence of the effects induced by non-ionizing radiation on tissue samples. Vibrat. Spectrosc. 42 (2):369–374.
  • Jiang, S. J., Chen, J. Y., Lu, Z. F., Yao, J., Che, D. F., and Zhou, X. J. (2006) Biophysical and morphological changes in the stratum corneum lipids induced by UVB irradiation. J. Dermatol. Sci. 44 (1):29–36.
  • (a) Severcan, F. and Haris, P. I. (2012) Introduction to vibrational spectroscopy in screening and diagnosis. In Vibrational spectroscopy in diagnosis and screening, Severcan, F. and Haris, P.I., Eds., IOS Press, the Netherlands, pp. 1–11.
  • (b) Severcan, F., Akkas, S. B., Turker, S., and Yucel, R. (2012) Methodogical approaches from experimental to computational analysis. In Vibrational spectroscopy in diagnosis and screening, Severcan, F. and Haris, P.I., Eds., IOS Press, the Netherlands, pp. 12–52.
  • Cakmak, G., Miller, L. M., Zorlu, F., and Severcan, F. (2012) Amifostine, a radioprotectant agent, protects rat brain tissue lipids against ionizing radiation induced damage: An FTIR microspectroscopic imaging study. Arch. Biochem. Biophys. 520 (2):67–73.
  • Ozek, N. S., Tuna, S., Erson-Bensan, A. E., and Severcan, F. (2010) Characterization of microRNA-125b expression in MCF7 breast cancer cells by ATR-FTIR spectroscopy. Analyst 135 (12):3094–3102.
  • Movasaghi, Z., Rehman, S., and ur Rehman, D. I. (2008) Fourier transform infrared (FTIR) spectroscopy of biological tissues. Appl. Spectrosc. Rev. 43 (2):134–179.
  • Barth, H.D., Launey, M.E., MacDowell, A.A., Ager, J.W. and Ritchie, R.O. (2010) On the effect of X-ray irradiation on the deformation and fracture behavior of human cortical bone. Bone 46 (6):1475–1485.
  • Matthews, Q., Jirasek, A., Lum, J.J. and Brolo, A.G. (2011) Biochemical signatures of in vitro radiation response in human lung, breast and prostate tumour cells observed with Raman spectroscopy. Phys. Med. Biol. 56 (21):6839.
  • Herrling, T., Jung, K. and Fuchs, J. (2006) Measurements of UV-generated free radicals/reactive oxygen species (ROS) in skin. Spectrochim. Acta. A: 63 (4):840–845.
  • Santini, M.T., Romano, R., Rainaldi, G., Ferrante, A., Indovina, P., Motta, A. and Indovina, P. L. (2006) 1H-NMR evidence for a different response to the same dose (2 Gy) of ionizing radiation of MG-63 human osteosarcoma cells and three-dimensional spheroids. Anticancer Res. 26 (1A):267–281.
  • Meng, A., Wang, Y., Van Zant, G. and Zhou, D. (2003) Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res. 63 (17):5414–5419.
  • Leach, J.K., Van Tuyle, G., Lin, P.S., Schmidt-Ullrich, R. and Mikkelsen, R.B. (2001) Ionizing radiation-induced, mitochondria-dependent generation of reactive oxygen/nitrogen. Cancer Res. 61 (10):3894–3901.
  • Abraham, J., Kelly, J., Thibault, P. and Benchimol, S. (2000) Post-translational modification of p53 protein in response to ionizing radiation analyzed by mass spectrometry. J. Mol. Biol. 295 (4):853–864.
  • Kong, K., Kendall, C., Stone, N. and Notingher, I. (2015) Raman spectroscopy for medical diagnostics—From in-vitro biofluid assays to in-vivo cancer detection. Adv. Drug Deliver. Rev. 89:121–134.
  • Eberhardt, K., Stiebing, C., Matthäus, C., Schmitt, M. and Popp, J. (2015) Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev. Mol. Diagn. 15 (6):773–787.
  • Das, R.S. and Agrawal, Y.K. (2011) Raman spectroscopy: recent advancements, techniques and applications. Vib. Spectrosc. 57 (2):163–176.
  • Spratlin, J.L., Serkova, N.J. and Eckhardt, S.G. (2009) Clinical applications of metabolomics in oncology: a review. Clin. Cancer Res. 15 (2):431–440.
  • Chatham, J.C. and Blackband, S.J. (2001) Nuclear magnetic resonance spectroscopy and imaging in animal research. IlAR J. 42 (3):189–208.
  • Emwas, A.H.M. (2015) The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. In Metabonomics: Methods and Protocols, Bjerrum, J.T., Ed. Humana Press, New York, pp. 161–193.
  • Halliwell, B. and Gutteridge, J.M. (2015) Free radicals in biology and medicine. Oxford University Press, New York.
  • He, W., Liu, Y., Wamer, W.G. and Yin, J.J. (2014) Electron spin resonance spectroscopy for the study of nanomaterial-mediated generation of reactive oxygen species. J. Food Drug Anal. 22 (1):49–63.
  • Wertz, J. and Bolton, J.R. (2012) Electron spin resonance: elementary theory and practical applications. Springer Science & Business Media, New York.
  • Weckhuysen, B.M., Heidler, R. and Schoonheydt, R.A. (2004) Electron spin resonance spectroscopy. Mol. Sieves. 2004 (4):295–335.
  • Gerson, F. and Huber, W. (2003) Electron spin resonance spectroscopy of organic radicals. John Wiley & Sons: Weinheim, Germany.
  • Lichtman, J.W. and Conchello, J.A. (2005). Fluorescence microscopy. Nat. Methods 2 (12):910–919.
  • Moreno-Flores, S. and Toca-Herrera, J.L. (2013) Hybridizing Surface Probe Microscopies: Toward a Full Description of the Meso-and Nanoworlds. CRC Press, Boca Raton, FL.
  • Wilson, S.M. and Bacic, A. (2012) Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes. Nat. Protoc. 7 (9):1716–1727.
  • Toman, K. (2004) What are the advantages and disadvantages of fluorescence microscopy. In Toman's tuberculosis: Case detection, treatment, and monitoring—Questions and answers. Frieden, T., Ed. World Health Organization, Geneva, pp. 31–34.
  • Spickett, C.M., Reis, A. and Pitt, A.R. (2011) Identification of oxidized phospholipids by electrospray ionization mass spectrometry and LC–MS using a QQLIT instrument. Free Radical Bio. Med. 51 (12):2133–2149.
  • Lei, Z., Huhman, D.V. and Sumner, L.W. (2011) Mass spectrometry strategies in metabolomics. J. Biol. Chem. 286 (29):25435–25442.
  • Wang, C., Yang, J. and Nie, J. (2009) Plasma phospholipid metabolic profiling and biomarkers of rats following radiation exposure based on liquid chromatography-mass spectrometry technique. Biomed. Chromatogr. 23 (10):1079–1085.
  • Wang, M., Keogh, A., Treves, S., Idle, J.R. and Beyoğlu, D. (2016) The metabolomic profile of gamma-irradiated human hepatoma and muscle cells reveals metabolic changes consistent with the Warburg effect. Peer J. 4:e1624.
  • Douki, T., Ravanat, J.L., Pouget, J.P., Testard, I. and Cadet, J. (2006) Minor contribution of direct ionization to DNA base damage inducedby heavy ions. Int. J. Radiat. Biol. 82 (2):119–127.
  • Kumar, A. and Sevilla, M. D. (2008) Radiation effects on DNA: theoretical investigations of electron, Hole and excitation pathways to DNA damage. In Radiation induced molecular phenomena in nucleic acids: A comprehensive theoretical and experimental analysis, Shukla, M.K., and Leszczynski, J. Eds., Springer, Science+Business Media B.V., Dordrecht, pp. 577–617.
  • Ahmed, R.G. (2006) Damage pattern as a function of various types of radiation. Int. J. Zool. Res. 2 (2):150–168.
  • O'Neill, P. and Wardman, P. (2009) Radiation chemistry comes before radiation biology. Int. J. Radiat. Biol. 85 (1):9–25.
  • Phillips, J. L., Singh, N. P., and Lai, H. (2009) Electromagnetic fields and DNA damage. Pathophysiology 16 (2):79–88.
  • Parker, A. W., Lin, C. Y., George, M. W., Towrie, M., and Kuimova, M. K. (2010) Infrared characterization of the guanine radical cation: Finger printing DNA damage. J. Phys. Chem. B. 114 (10):3660–3667.
  • Gomes, P. J., Ribeiro, P. A., Shaw, D., Mason, N. J., and Raposos, M. (2009) UV degradation of deoxyribonucleic acid. Polym. Degrad. Stabil. 94 (12):2134–2141.
  • Dovbeshko, G. I., Gridina, N. Y., Kruglova, E. B., and Pashchuk, O. P. (2000) FTIR spectroscopy studies of nucleic acid damage. Talanta 53 (2000):233–246.
  • Muro, E., Atilla-Gokcumen, G. E., and Eggert, U. S. (2014) Lipids in cell biology: How can we understand them better? Mol. Biol. Cell 25 (12):1819–1823.
  • Reisz, J. A., Bansal, N., Qian, J., Zhao, W., and Furdui, C. M. (2014) Effects of ionizing radiation on biological molecules—mechanisms of damage and emerging methods of detection. Antioxid. Redox Sign. 21 (2):260–292.
  • Mady, M. M. and Allam, M. A. (2012) The influence of low power microwave on the properties of DPPC vesicles. Physica. Medica. 28 (1):48–53.
  • Gaber, M. H., Abd El Halim, N., and Khalil, W. A. (2005) Effect of microwave radiation on the biophysical properties of liposomes. Bioelectromagnetics 26 (3):194–200.
  • Bugaj, A., Masiakowski, J., Hulka-Soroka, H., and Bartosz, G. (2007) Photostability of lipid components of human blood plasma lipoproteins during exposure to long wave ultraviolet radiation (UV-A) alone and in the presence of 8-methoxypsoralen. Curr. Top. Biophys. 30:1–6.
  • Gomes, P. J., da Silva, A. M. G., Ribeiro, P. A., Oliveira, O. N., and Raposo, M. (2016) Radiation damage on Langmuir monolayers of the anionic 1.2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)](sodium salt)(DPPG) phospholipid at the air—DNA solution interface. Mater. Sci. Eng. C. 58:576–579.
  • Merle, C., Laugel, C. and Baillet-Guffroy, A. (2008) Spectral monitoring of photoirradiated skin lipids: MS and IR approaches. Chem. Phys. Lipids 154 (1):56–63.
  • Merle, C. and Baillet-Guffroy, A. (2009) Physical and chemical perturbations of the supramolecular organization of the stratum corneum lipids: In vitro to ex vivo study. BBA-Biomembranes 1788 (5):1092–1098.
  • Calabrò, E. and Magazù, S. (2012) Electromagnetic fields effects on the secondary structure of lysozyme and bioprotective effectiveness of trehalose. Adv. Phys. Chem. 2012:970369.
  • Calabrò, E. and Magazù, S. (2010) Inspections of mobile phone microwaves effects on proteins secondary structure by means of Fourier transform infrared spectroscopy. JEAA 2 (11):607–617.
  • Calabrò, E. and Magazù, S. (2013) Unfolding and aggregation of Myoglobin can be induced by three hours exposure to mobile phone microwaves: A FTIR spectroscopy study. Spectrosc. Lett. 46 (8):583–589.
  • Gomaa, A. A., Sedman, J., and Ismail, A. A. (2012) An investigation of the effect of microwave treatment on the structure and unfolding pathways of β-lactoglobulin using FTIR spectroscopy with the application of two-dimensional correlation spectroscopy (2D-COS). Vibrat. Spectrosc. 65:101–109.
  • Xing, J. Y., Bai, B., and Chen, Z. H. (2011) Effect of UV irradiation on stabilization of collage. International Symposium on Water Resource and Environmental Protection (ISWREP) Vol. 4., Beijing, China, May 20–22.
  • Smeltzer, C. C., Lukinova, N. I., Towcimak, N. D., Yan, X., Mann, D. M., Drohan, W. N., and Griko, Y. V. (2015) Effect of gamma irradiation on the structural stability and functional activity of plasma-derived IgG. Biologicals 43 (4):242–249.
  • Saad-El-Din, A. A., El-Tanahy, Z. H., El-Sayed, S. N., Anees, L. M., and Farroh, H. A. (2014) Combined effect of arsenic trioxide and radiation on physical properties of hemoglobin biopolymer. J. Radiat. Res. Appl. Sci. 7 (4):411–416.
  • Barth, H. D., Zimmermann, E. A., Schaible, E., Tang, S. Y., Alliston, T., and Ritchie, R. O. (2011) Characterization of the effects of x-ray irradiation on the hierarchical structure and mechanical properties of human cortical bone. Biomaterials 32 (34):8892–8904.
  • Gaber, M. H. (2005) Effect of gamma-irradiation on the molecular properties of bovine serum albumin. J. Biosci. Bioeng. 100 (2):203–206.
  • Zeitouni, N.E., Chotikatum, S., von Köckritz-Blickwede, M. and Naim, H.Y. (2016) The impact of hypoxia on intestinal epithelial cell functions: Consequences for invasion by bacterial pathogens. Mol. Cell Pediatr. 3:14.
  • García, J.J., López-Pingarrón, L., Almeida-Souza, P., Tres, A., Escudero, P., García-Gil, F. A., Tan, D.X., Reiter, R.J., Ramirez, J.M. and Bernal-Pérez, M. (2014) Protective effects of melatonin in reducing oxidative stress and in preserving the fluidity of biological membranes: A review. J. Pineal Res. 56 (3):225–237.
  • Catalá, A. (2009) Lipid peroxidation of membrane phospholipids generates hydroxy-alkenals and oxidized phospholipids active in physiological and/or pathological conditions. Chem. Phys. Lipids 157 (1):1–11.
  • Maxfield, F.R. and Tabas, I. (2005) Role of cholesterol and lipid organization in disease. Nature 438 (7068):612–621.
  • Niki, E. (2009) Lipid peroxidation: Physiological levels and dual biological effects. Free Radical Bio. Med. 47 (5):469–484.
  • Wong-Ekkabut, J., Xu, Z., Triampo, W., Tang, I.M., Tieleman, D.P. and Monticelli, L. (2007) Effect of lipid peroxidation on the properties of lipid bilayers: a molecular dynamics study. Biophys. J. 93 (12):4225–4236.
  • Demir, P., Akkas, S. B., Severcan, M., Zorlu, F., and Severcan, F. (2015) Ionizing radiation induces structural and functional damage on the molecules of rat brain homogenate membranes: A fourier transform infrared (FT-IR) spectroscopic study. Appl. Spectrosc. 69 (1):154–164.
  • Monje, M. L., Mizumatsu, S., Fike, J. R., and Palmer, T. D. (2002) Irradiation induces neural precursor-cell dysfunction. Nat. Med. 8 (9):955–962.
  • Monje, M. L., and Palmer, T. D. (2003) Radiation injury and neurogenesis. Curr. Opin. Neurol. 16 (2):129–134.
  • Severcan, M., Haris, I. P., and Severcan, F. (2004) Using artificially generated spectral data to improve protein secondary structure prediction from Fourier transform infrared spectra of proteins. Anal. Biochem. 332 (2):238–244.
  • Cakmak, G., Zorlu, F., Severcan, M., and Severcan, F. (2011) Screening of protective effect of amifostine on radiation-induced structural and functional variations in rat liver microsomal membranes by FT-IR spectroscopy. Anal. Chem. 83 (7):2438–2444.
  • Signorini, C., Ferrali, M., Ciccoli, L., Sugherini, L., Magnani, A., and Comporti, M. (1995) Iron release, membrane protein oxidation and erythrocyte ageing. FEBS Lett. 362 (2):165–170.
  • Cakmak, G., Togan, I., and Severcan, F. (2006) 17β-Estradiol induced compositional, structural and functional changes in rainbow trout liver, revealed by FT-IR spectroscopy: A comparative study with nonylphenol. Aquat. Toxicol. 77 (1):53–63.
  • Mahmoud, S. S., El-Sakhawy, E., Abdel-Fatah, E. S., Kelany, A. M., and Rizk, R. M. (2011) Effects of acute low doses of Gamma-radiation on erythrocytes membrane. Radiat. Environ. Biophys. 50 (1):189–198.
  • Selim, N. S., Desouky, O. S., Ismail, N. M., and Dakrory, A. Z. (2011) Spectroscopic analysis of irradiated erythrocytes. Radiat. Phys. Chem. 80 (12):1337–1342.
  • Toyran, N., Zorlu, F., and Severcan, F. (2005) Effect of stereotactic radiosurgery on lipids and proteins of normal and hypoperfused rat brain homogenates: A Fourier transform infrared spectroscopy study. Int. J. Radiat. Biol. 81 (12):911–918.
  • Liu, K. Z., Schultz, C. P., Johnston, J. B., Beck, F. W., Al-Katib, A. M., Mohammad, R. M., and Mantsch, H. H. (1999) Infrared spectroscopic study of bryostatin 1-induced membrane alterations in a B-CLL cell line. Leukemia 13:1273–1280.
  • Bartosz, G., Schon, W., Kraft, G., and Gartner, H. (1992) Irradiation increases proteolysis in erythrocyte ghosts: A spin label study. Radiat. Environ. Bioph. 31 (2):117–121.
  • Streffer, C., Bücker, J., Cansier, A., Cansier, D., Gethmann, C. F., Guderian, R., Hanekamp, G., Henschler, D., Pöch, G., Rehbinder, E., Renn, O., Slesina, M., and Wuttke, K. (2003) Environmental standards: Combined exposures and their effects on human beings and their environment, 1st ed. Springer-Verlag Berlin Heidelberg, Essen, Germany.
  • Calabrò, E., Condello, S., Magazù, S., and Ientile, R. (2011) Static and 50 Hz electromagnetic fields effects on human neuronal-like cells vibration bands in the mid-infrared region. JEAA 3 (2):69–78.
  • Bras, A., Garcia-Domingo, D. and Martinez-A, C. (2004) Apoptosis in immune system in when cells die II: A comprehensive evaluation of apoptosis and programmed cell death, Lockshin, R.A., Zakeri, Z. and Tilly, J.L., Eds., Wiley-Liss, New York, pp. 147–174.
  • Pozzi, D., Grimaldi, P., Gaudenzi, S., Di Giambattista, L., Silvestri, I., Morrone, S., and Castellano, A. C. (2007) UVB-radiation-induced apoptosis in Jurkat cells: A coordinated fourier transform infrared spectroscopy-flow cytometry study. Radiat. Res. 168 (6):698–705.
  • Gault, N. and Lefaix, J. L. (2003) Infrared microspectroscopic characteristics of radiation-induced apoptosis in human lymphocytes. Radiat. Res. 160 (2):238–250.
  • Cregan, S. P., Smith, B. P., Brown, D. L., and Mitchel, R. E. (1999) Two pathways for the induction of apoptosis in human lymphocytes. Int. J. Radiat. Biol. 75 (9):1069–1086.
  • Wood, B. R., Tait, B., and McNaughton, D. (2000) Fourier-transform infrared spectroscopy as a tool for detecting early lymphocyte activation: A new approach to histocompatibility matching. Human Immunol. 61 (12):1307–1314.
  • Gault, N., Rigaud, O., Poncy, J. L., and Lefaix, J. L. (2005) Infrared microspectroscopy study of γ-irradiated and H2O2-treated human cells. Int. J. Radiat. Biol. 81 (10):767–779.
  • Liu, R., Tang, W., Kang, Y., and Si, M. (2009) Studies on best dose of X-ray for Hep-2 cells by using FTIR, UV–vis absorption spectroscopy and flow cytometry. Spectrochim. Acta A. 73 (4):601–607.
  • Paluszkiewicz, C., Kwiatek, W. M., Banas, A., Kisiel, A., Marcelli, A., and Piccinini, M. (2007) SR-FTIR spectroscopic preliminary findings of non-cancerous, cancerous, and hyperplastic human prostate tissues. Vibrat. Spectrosc. 43 (1):237–242.
  • Ramesh, J., Salman, A., Mordechai, S., Argov, S., Goldstein, J., Sinelnikov, I., Walfisch, S., and Guterman, H. (2001) FTIR microscopic studies on normal, polyp, and malignant human colonic tissues. Subsurf. Sens. Technol. Appl. 2 (2):99–117.
  • Gianoncelli, A., Vaccari, L., Kourousias, G., Cassese, D., Bedolla, D. E., Kenig, S., Storici, P., Lazzarino, M., and Kiskinova, M. (2015) Soft X-ray microscopy radiation damage on fixed cells investigated with synchrotron radiation FTIR microscopy. Sci. Rep. 5:1–11.
  • Biniek, K., Levi, K., and Dauskardt, R. H. (2012) Solar UV radiation reduces the barrier function of human skin. PNAS 109 (42):17111–17116.
  • Dogan, A., Siyakus, G., and Severcan, F. (2007) FTIR spectroscopic characterization of irradiated hazelnut (Corylus avellana L.). Food. Chem. 100:1106–1114.
  • Singh, R., Purohit, S., and Chacharkar, M. P. (2007) Effect of high doses of gamma radiation on the functional characteristics of amniotic membrane. Radiat. Phys. Chem. 76 (6):1026–1030.
  • Crupi, V., Interdonato, S., Majolino, D., Mondello, M. R., Pergolizzi, S., and Venuti, V. (2004) Structural changes of tissue samples exposed to low frequency electromagnetic field: A FT-IR absorbance study. Spectrosc. Int. J. 18 (4):513–518.
  • Reiter, R. J. (1995) Oxidative processes and antioxidative defense mechanisms in the aging brain. FASEB J. 9 (7):526–533.
  • Severcan, F., and Bozkurt, O. (2010) Application of vibrational spectroscopy to investigate radiation-induced changes in food. In Applications of vibrational spectroscopy in food science, Li-Chan, E., Griffiths, P.R. and Chalmers, J.M. Eds., John Wiley & Sons, New York, pp. 241–259.
  • Dziedzic–Goclawska, A. (2000) The application of ionizing radiation to sterilise connective tissue allografts. In Radiation and tissue banking, Phillips, G.O., Ed., World Scientific, Singapore, pp. 57–99.
  • Darchuk, L. A., Zaverbna, L. V., Bebeshko, V. G., Worobiec, A., Stefaniak, E. A., and Van Grieken, R. (2008) Infrared investigation of hard human teeth tissues exposed to various doses of ionizing radiation from the 1986 Chernobyl accident. J. Spectrosc. 22 (2–3):105–111.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.