1,910
Views
40
CrossRef citations to date
0
Altmetric
Reviews

Applications of near-infrared spectroscopy (NIRS) in biomass energy conversion processes: A review

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Dahlquist, E. (2013) Technologies for converting biomass to useful energy: Combustion, gasification, pyrolysis, torrefaction and fermentation. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Bakeev, K. A. (2010) Process analytical technology: Spectroscopic tools and implementation strategies for the chemical and pharmaceutical industries. Chichester, West Sussex, UK: John Wiley & Sons.
  • Chen, Z., Lovett, D., and Morris, J. (2011) Process analytical technologies and real time process control a review of some spectroscopic issues and challenges. J. Process Control. 21(10): 1467–1482.
  • Pomerantsev, A. L., and Rodionova, O. Y. (2012) Process analytical technology: A critical view of the chemometricians. J. Chemom. 26(6): 299–310.
  • Roggo, Y., Chalus, P., Maurer, L., Lema-Martinez, C., Edmond, A., and Jent, N. (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J. Pharm. Biomed. Anal. 44(3 SPEC. ISS.): 683–700.
  • Reich, G. (2005) Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications. Adv. Drug Deliv. Rev. 57(8): 1109–1143.
  • Luypaert, J., Massart, D. L., and Vander Heyden, Y. (2007) Near-infrared spectroscopy applications in pharmaceutical analysis. Talanta 72(3): 865–883.
  • Huang, H., Yu, H., Xu, H., and Ying, Y. (2008) Near infrared spectroscopy for on/in-line monitoring of quality in foods and beverages: A review. J. Food Eng. 87(3): 303–313.
  • Cen, H., and He, Y. (2007) Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci. Technol. 18(2): 72–83.
  • Jimaré Benito, M. T., Bosch Ojeda, C., and Sanchez Rojas, F. (2008) Process analytical chemistry: Applications of near infrared spectrometry in environmental and food analysis: An overview. Appl. Spectrosc. Rev. 43(5): 452–484.
  • Tsuchikawa, S. (2007) A review of recent near infrared research for wood and paper. Appl. Spectrosc. Rev. 42(1): 43–71.
  • Tsuchikawa, S., and Schwanninger, M. (2013) A review of recent near-infrared research for wood and paper (part 2). Appl. Spectrosc. Rev. 48(7): 560–587.
  • Tsuchikawa, S., and Kobori, H. (2015) A review of recent application of near infrared spectroscopy to wood science and technology. J. Wood Sci. 61(3): 213–220.
  • Xu, F., Yu, J., Tesso, T., Dowell, F., and Wang, D. (2013) Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: A mini-review. Appl. Energy. 104: 801–809.
  • Lupoi, J. S., Singh, S., Simmons, B. A., and Henry, R. J. (2014) Assessment of lignocellulosic biomass using analytical spectroscopy: An evolution to high-throughput techniques. Bioenergy Res. 7(1): 1–23.
  • Chadwick, D. T., McDonnell, K. P., Brennan, L. P., Fagan, C. C., and Everard, C. D. (2014) Evaluation of infrared techniques for the assessment of biomass and biofuel quality parameters and conversion technology processes: A review. Renew. Sustain. Energy Rev. 30: 672–681.
  • Garfield, E. (1994) The Thomson Reuters impact factor. Curr. Contents (20 June): 1–6.
  • Mañana-Rodríguez, J. (2014) A critical review of SCImago journal & country rank. Res. Eval. 24: 343–354.
  • Siesler, H. W., Ozaki, Y., Kawata, S., and Heise, H. M. Near-infrared spectroscopy: Principles, instruments, applications. Weinheim, Germany: WILEY-VCH Verlag GmbH.
  • Burns, D. A., and Ciurczak, E. W. (2007) Handbook of near-infrared analysis. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Griffiths, P. R. (2006) Introduction to vibrational spectroscopy. In: Griffiths, P. R. and Chalmers, J. M (Eds.), Handbook of Vibrational Spectroscopy, Vol. 1, pp. 1–11. Hoboken, NJ: John Wiley & Sons.
  • Pasquini, C. (2003) Near infrared spectroscopy: Fundamentals, practical aspects and analytical applications. J. Braz. Chem. Soc. 14(2): 198–219.
  • Blanco, M., and Villarroya, I. (2002) NIR spectroscopy: A rapid-response analytical tool. TrAC - Trends Anal. Chem. 21(4): 240–250.
  • Workman, J., and Weyer, L. (2007) Practical guide and spectral atlas for interpretive near-infrared spectroscopy. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Schwanninger, M., Rodrigues, J. C., and Fackler, K. (2011) A review of band assignments in near infrared spectra of wood and wood components. J. Near Infrared Spectrosc. 19(5): 287–308.
  • Mark, H., and Workman Jr., J. (2010) Chemometrics in spectroscopy. Amsterdam, Netherlands: Academic Press, Elsevier.
  • Miller, J. N., and Miller, J. C. (2005) Statistics and chemometrics for analytical chemistry. Harlow, UK: Pearson Education.
  • Tauler, R., Walczak, B., and Brown, S. D. (2009) Comprehensive chemometrics: Chemical and biochemical data analysis. Amsterdam, Netherlands: Elsevier.
  • Gemperline, P. (2006) Practical guide to chemometrics. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Adams, M. J. (2004) Chemometrics in analytical spectroscopy. Cambridge, UK: Royal Society of Chemistry.
  • Varmuza, K. (2012) Chemometrics in practical applications. Rijeka, Croatia: InTech.
  • Kumar, N., Bansal, A., Sarma, G. S., and Rawal, R. K. (2014) Chemometrics tools used in analytical chemistry: An overview. Talanta 123: 186–199.
  • Lavine, B. K., and Workman Jr., J. (2012) Chemometrics. Anal. Chem. 85(2): 705–714.
  • Geladi, P. (2003) Chemometrics in spectroscopy. Part 1. Classical chemometrics. Spectrochim. Acta - Part B At. Spectrosc. 58(5): 767–782.
  • Geladi, P., Sethson, B., Nyström, J., Lillhonga, T., Lestander, T., and Burger, J. (2004) Chemometrics in spectroscopy: Part 2. Examples. Spectrochim. Acta - Part B At. Spectrosc. 59(9): 1347–1357.
  • Rinnan, Å., van den Berg, F., and Engelsen, S. B. (2009) Review of the most common pre-processing techniques for near-infrared spectra. TrAC - Trends Anal. Chem. 28(10): 1201–1222.
  • Panero, P. D. S., Panero, F. D. S., Panero, J. D. S., and da SilVa, H. E. B. (2013) Application of extended multiplicative signal correction to short-wavelength near infrared spectra of moisture in marzipan. J. Data Anal. Inf. Process. 1: 30–34.
  • Wold, S., Antti, H., Lindgren, F., and Öhman, J. (1998) Orthogonal signal correction of near-infrared spectra. Chemom. Intell. Lab. Syst. 44(1–2): 175–185.
  • Blanco, M., Coello, J., Montoliu, I., and Romero, M. A. (2001) Orthogonal signal correction in near infrared calibration. Anal. Chim. Acta 434(1): 125–132.
  • Fearn, T., Riccioli, C., Garrido-Varo, A., and Guerrero-Ginel, J. E. (2009) On the geometry of SNV and MSC. Chemom. Intell. Lab. Syst. 96(1): 22–26.
  • Czarnecki, M. a. (2015) Resolution enhancement in second-derivative spectra. Appl. Spectrosc. 69(1): 67–74.
  • Rinnan, Å. (2014) Pre-processing in vibrational spectroscopy–when, why and how. Anal. Methods 6(18): 7124–7129.
  • Zeaiter, M., Roger, J. M., Bellon-Maurel, V., and Rutledge, D. N. (2004) Robustness of models developed by multivariate calibration. Part I: The assessment of robustness. TrAC - Trends Anal. Chem. 23(2): 157–170.
  • Zeaiter, M., Roger, J. M., and Bellon-Maurel, V. (2005) Robustness of models developed by multivariate calibration. Part II: The influence of pre-processing methods. TrAC - Trends Anal. Chem. 24(5): 437–445.
  • Rajalahti, T., and Kvalheim, O. M. (2011) Multivariate data analysis in pharmaceutics: A tutorial review. Int. J. Pharm. 417(1–2): 280–290.
  • Via, B. K., Zhou, C., Acquah, G., Jiang, W., and Eckhardt, L. (2014) Near infrared spectroscopy calibration for wood chemistry: Which chemometric technique is best for prediction and interpretation? Sensors (Switzerland) 14(8): 13532–13547.
  • Ergon, R. (2002) PLS score-loading correspondence and a bi-orthogonal factorization. J. Chemom. 16(7): 368–373.
  • Labbé, N., Lee, S. H., Cho, H. W., Jeong, M. K., and André, N. (2008) Enhanced discrimination and calibration of biomass NIR spectral data using non-linear kernel methods. Bioresour. Technol. 99(17): 8445–8452.
  • Balabin, R. M., Lomakina, E. I., and Safieva, R. Z. (2011) Neural network (ANN) approach to biodiesel analysis: Analysis of biodiesel density, kinematic viscosity, methanol and water contents using near infrared (NIR) spectroscopy. Fuel 90(5): 2007–2015.
  • Balabin, R. M., and Smirnov, S. V. (2012) Interpolation and extrapolation problems of multivariate regression in analytical chemistry: benchmarking the robustness on near-infrared (NIR) spectroscopy data. Analyst 137(7): 1604–1610.
  • Esbensen, K. H., and Geladi, P. (2010) Principles of proper validation: Use and abuse of re-sampling for validation. J. Chemom. 24(3–4): 168–187.
  • Petersen, L., Minkkinen, P., and Esbensen, K. H. (2005) Representative sampling for reliable data analysis: Theory of Sampling. Chemom. Intell. Lab. Syst. 77(1–2 SPEC. ISS.): 261–277.
  • Westad, F., and Marini, F. (2015) Validation of chemometric models - A tutorial. Anal. Chim. Acta 893: 14–24.
  • De Carvalho Rocha, W. F., Nogueira, R., and Vaz, B. G. (2012) Validation of model of multivariate calibration: An application to the determination of biodiesel blend levels in diesel by near-infrared spectroscopy. J. Chemom. 26(8–9): 456–461.
  • Guimaraes, C. C., Simeone, M. L. F., Parrella, R. A. C., and Sena, M. M. (2014) Use of NIRS to predict composition and bioethanol yield from cell wall structural components of sweet sorghum biomass. Microchem. J. 117: 194–201.
  • Abrahamsson, C., Johansson, J., Sparen, A., and Lindgren, F. (2003) Comparison of different variable selection methods conducted on NIR transmission measurements on intact tablets. Chemom. Intell. Lab. Syst. 69(1–2): 3–12.
  • Forina, M., Lanteri, S., Oliveros, M. C. C., and Millan, C. P. (2004) Selection of useful predictors in multivariate calibration. Anal. Bioanal. Chem. 380: 397–418.
  • Xiaobo, Z., Jiewen, Z., Povey, M. J. W., Holmes, M., and Hanpin, M. (2010) Variables selection methods in near-infrared spectroscopy. Anal. Chim. Acta 667(1–2): 14–32.
  • Balabin, R. M., and Smirnov, S. V. (2011) Variable selection in near-infrared spectroscopy: Benchmarking of feature selection methods on biodiesel data. Anal. Chim. Acta 692(1–2): 63–72.
  • Mehmood, T., Liland, K. H., Snipen, L., and Sæbø, S. (2012) A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst. 118: 62–69.
  • Kawata, S. (2008) Instrumentation for near-infrared spectroscopy. In Siesler, H. W., Ozaki, Y., Kawata, S., and Heise, H. M. (Eds.), Near-infrared spectroscopy: principles, instruments, applications, pp. 43–73. Weinheim, Germany: WILEY-VCH Verlag GmbH.
  • Griffiths, P. R., and de Haseth, J. A. (2007) Fourier transform infrared spectrometry. 2nd ed. Hoboken, NJ: John Wiley & Sons.
  • Smith, B. C. (2011) Fundamentals of Fourier transform infrared spectroscopy. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Fearn, T. (2001) Standardisation and calibration transfer for near infrared instruments: A review. J. Near Infrared Spectrosc. 9(4): 229–244.
  • Feudale, R. N., Woody, N. A., Tan, H., Myles, A. J., Brown, S. D., and Ferré, J. (2002) Transfer of multivariate calibration models: A review. Chemom. Intell. Lab. Syst. 64(2): 181–192.
  • Xue, J., Yang, Z., Han, L., and Chen, L. (2014) Study of the influence of NIRS acquisition parameters on the spectral repeatability for on-line measurement of crop straw fuel properties. Fuel 117(Pt. B): 1027–1033.
  • He, C., Yang, Z., Chen, L., Huang, G., Liao, N., and Han, L. (2014) Influencing factors of on-line measurement of straw-coal blends using near infrared spectroscopy. Trans. Chinese Soc. Agric. Eng. 30(9): 192–200.
  • Togashi, D., Alvarez-Jubete, L., Rifai, H., Cama-Moncunill, R., Cruise, P., Sullivan, C., and Cullen, P. J. (2015) Evaluation of diffuse reflectance near infrared fibre optical sensors in measurements for chemical identification and quantification for binary granule blends. J. Near Infrared Spectrosc. 23(3): 133–144.
  • Rodionova, O. Y., Balyklova, K. S., Titova, A. V., and Pomerantsev, A. L. (2013) The influence of fiber-probe accessories application on the results of near-infrared (NIR) measurements. Appl. Spectrosc. 67(12): 1401–1407.
  • Andersson, M., Svensson, O., Folestad, S., Josefson, M., and Wahlund, K. G. (2005) NIR spectroscopy on moving solids using a scanning grating spectrometer - Impact on multivariate process analysis. Chemom. Intell. Lab. Syst. 75(1): 1–11.
  • Berntsson, O., Danielsson, L. G., and Folestad, S. (2001) Characterization of diffuse reflectance fiber probe sampling on moving solids using a Fourier transform near-infrared spectrometer. Anal. Chim. Acta 431(1): 125–131.
  • Stelte, W., Sanadi, A. R., Shang, L., Holm, J. K., Ahrenfeldt, J., and Henriksen, U. B. (2012) Recent developments in biomass pelletization - a review. BioResources 7(3): 4451–4490.
  • Lestander, T. a., Johnsson, B., and Grothage, M. (2009) NIR techniques create added values for the pellet and biofuel industry. Bioresour. Technol. 100(4): 1589–1594.
  • Lestander, T. A., Finell, M., Samuelsson, R., Arshadi, M., and Thyrel, M. (2012) Industrial scale biofuel pellet production from blends of unbarked softwood and hardwood stems-the effects of raw material composition and moisture content on pellet quality. Fuel Process. Technol. 95: 73–77.
  • Everard, C. D., Fagan, C. C., and McDonnell, K. P. (2012) Visible-near infrared spectral sensing coupled with chemometric analysis as a method for on-line prediction of milled biomass composition pre-pelletising. J. Near Infrared Spectrosc. 20(3): 361–369.
  • Gillespie, G. D., Everard, C. D., and McDonnell, K. P. (2015) Prediction of biomass pellet quality indices using near infrared spectroscopy. Energy 80: 582–588.
  • Sundaram, J., Kandala, C. V. K., Butts, C. L., and Windham, W. R. (2010) Application of NIR reflectance spectroscopy on determination of moisture content of in-shell peanuts: A non-destructive analysis. Trans. ASABE 53(Mc): 183–189.
  • Lestander, T. A. (2008) Water absorption thermodynamics in single wood pellets modelled by multivariate near-infrared spectroscopy. Holzforschung. 62(4): 429–434.
  • Zhang, L., Xu, C., Charles,  , and Champagne, P. (2010) Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 51(5): 969–982.
  • Chen, W. H., Peng, J., and Bi, X. T. (2015) A state-of-the-art review of biomass torrefaction, densification and applications. Renew. Sustain. Energy Rev. 44: 847–866.
  • McKendry, P. (2002) Energy production from biomass (part 1): Overview of biomass. Bioresource Tech., 83(1): 37–46.
  • Jenkins, B., Baxter, L., Miles, T., and Miles, T. (1998) Combustion properties of biomass. Fuel Process. Technol. 54(1–3): 17–46.
  • Demirbas, A. (2004) Combustion characteristics of different biomass fuels. Prog. Energy Combust. Sci. 30(2): 219–230.
  • Nyström, J., and Dahlquist, E. (2004) Methods for determination of moisture content in woodchips for power plants - A review. Fuel 83(7–8): 773–779.
  • Lestander, T. A., and Rhén, C. (2005) Multivariate NIR spectroscopy models for moisture, ash and calorific content in biofuels using bi-orthogonal partial least squares regression. Analyst 130(8): 1182–1189.
  • So, C. L., and Eberhardt, T. L. (2010) Chemical and calorific characterisation of longleaf pine using near infrared spectroscopy. J. Near Infrared Spectrosc. 18(6): 417–423.
  • Cooper, P.A., Jeremic, D., Radivojevic, S., Ung, Y. T., and Leblon, B. (2011) Potential of near-infrared spectroscopy to characterize wood products. Can. J. For. Res. 41(11): 2120–2140.
  • Fagan, C. C., Everard, C. D., and McDonnell, K. (2011) Prediction of moisture, calorific value, ash and carbon content of two dedicated bioenergy crops using near-infrared spectroscopy. Bioresour. Technol. 102(8): 5200–5206.
  • Everard, C. D., McDonnell, K. P., and Fagan, C. C. (2012) Prediction of biomass gross calorific values using visible and near infrared spectroscopy. Biomass and Bioenergy 45: 203–211.
  • Huang, C., Han, L., Yang, Z., and Liu, X. (2008) Prediction of heating value of straw by proximate data, and near infrared spectroscopy. Energy Convers. Manag. 49(12): 3433–3438.
  • Huang, C., Han, L., Yang, Z., and Liu, X. (2009) Ultimate analysis and heating value prediction of straw by near infrared spectroscopy. Waste Manag. 29(6): 1793–1797.
  • He, C., Chen, L., Yang, Z., Huang, G., Liao, N., and Han, L. (2012) A rapid and accurate method for on-line measurement of straw-coal blends using near infrared spectroscopy. Bioresour. Technol. 110: 314–320.
  • Xue, J., Yang, Z., Han, L., Liu, Y. Y., Liu, Y. Y., and Zhou, C. (2015) On-line measurement of proximates and lignocellulose components of corn stover using NIRS. Appl. Energy 137: 18–25.
  • Skvaril, J., Kyprianidis, K., Avelin, A., Odlare, M., and Dahlquist, E. (2015) Utilization of near infrared (NIR) spectrometry for detection of glass in the waste-based fuel. Energy Procedia 75: 734–741.
  • Lestander, T. a., Rudolfsson, M., Pommer, L., and Nordin, A. (2014) NIR provides excellent predictions of properties of biocoal from torrefaction and pyrolysis of biomass. Green Chem. 16(12): 4906–4913.
  • Via, B. K., Adhikari, S., and Taylor, S. (2013) Modeling for proximate analysis and heating value of torrefied biomass with vibration spectroscopy. Bioresour. Technol. 133: 1–8.
  • Rousset, P., Davrieux, F., Macedo, L., and Perré, P. (2011) Characterisation of the torrefaction of beech wood using NIRS: Combined effects of temperature and duration. Biomass and Bioenergy 35(3): 1219–1226.
  • Andrade, C., Trugilho, P., Gherardi Hein, P., Lima, J., and Napoli, A. (2012) Near infrared spectroscopy for estimating Eucalyptus charcoal properties. J. Near Infrared Spectrosc. 20(6): 657.
  • Yang, H., and Sheng, K. (2012) Characterization of biochar properties affected by different pyrolysis temperatures using visible-near-infrared spectroscopy. ISRN Spectrosc. 2012(2012): 1–7.
  • Eriksson, D., Weiland, F., Hedman, H., Stenberg, M., Öhrman, O., Lestander, T. A., Bergsten, U., Öhman, M. (2012) Characterization of scots pine stump-root biomass as feed-stock for gasification. Bioresour. Technol. 104: 729–736.
  • Preece, S. L. M., Auvermann, B. W., MacDonald, J. C., and Morgan, C. L. S. (2013) Predicting the heating value of solid manure with visible and near-infrared spectroscopy. Fuel 106: 712–717.
  • Posom, J., and Sirisomboon, P. (2015) Evaluation of the moisture content of Jatropha curcas kernels and the heating value of the oil-extracted residue using near-infrared spectroscopy. Biosyst. Eng. 130: 52–59.
  • Posom, J., and Sirisomboon, P. (2014) Evaluation of the thermal properties of Jatropha curcas L. kernels using near-infrared spectroscopy. Biosyst. Eng. 125: 45–53.
  • Mata Sánchez, J., Pérez Jiménez, J. A., Díaz Villanueva, M. J., Serrano, A., Núñez, N., and López Giménez, J. (2015) Assessment of near infrared spectroscopy for energetic characterization of olive byproducts. Renew. Energy 74: 599–605.
  • Jensen, P. D., Hartmann, H., Böhm, T., Temmerman, M., Rabier, F., and Morsing, M. (2006) Moisture content determination in solid biofuels by dielectric and NIR reflection methods. Biomass and Bioenergy 30(11): 935–943.
  • Sandberg, J., Fdhila, R. B., Dahlquist, E., and Avelin, A. (2011) Dynamic simulation of fouling in a circulating fluidized biomass-fired boiler. Appl. Energy 88(5): 1813–1824.
  • Moros, J., Garrigues, S., and Guardia, M. de la. (2010) Vibrational spectroscopy provides a green tool for multi-component analysis. TrAC - Trends Anal. Chem. 29(7): 578–591.
  • Cherubini, F. (2010) The biorefinery concept: Using biomass instead of oil for producing energy and chemicals. Energy Convers. Manag. 51(7): 1412–1421.
  • Weiland, P. (2010) Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85(4): 849–860.
  • Dahlquist, E. (2013) Biomass as energy source: Resources, systems and applications. Boca Raton, FL: CRC Press, Taylor & Francis Group.
  • Chen, Y., Cheng, J. J., and Creamer, K. S. (2008) Inhibition of anaerobic digestion process: A review. Bioresource Tech., 99(10): 4044–4064.
  • Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., and Ladisch, M. (2005) Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Tech., 96(6): 673–686.
  • Hayes, D. J. M. (2012) Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples. Bioresour. Technol. 119: 393–405.
  • Hayes, D. J. M., Hayes, M. H. B., and Leahy, J. J. (2015) Analysis of the lignocellulosic components of peat samples with development of near infrared spectroscopy models for rapid quantitative predictions. Fuel 150: 261–268.
  • Nkansah, K., Dawson-Andoh, B., and Slahor, J. (2010) Rapid characterization of biomass using near infrared spectroscopy coupled with multivariate data analysis: Part 1 yellow-poplar (Liriodendron tulipifera L.). Bioresour. Technol. 101(12): 4570–4576.
  • Lestander, T., Geladi, P., Larsson, S., and Thyrel, M. (2012) Near infrared image analysis for online identification and separation of wood chips with elevated levels of extractives. J. Near Infrared Spectrosc. 20(5): 591.
  • Philip Ye, X., Liu, L., Hayes, D., Womac, A., Hong, K., and Sokhansanj, S. (2008) Fast classification and compositional analysis of cornstover fractions using Fourier transform near-infrared techniques. Bioresour. Technol. 99(15): 7323–32.
  • Park, J. I., Liu, L., Philip Ye, X., Jeong, M. K., and Jeong, Y. S. (2012) Improved prediction of biomass composition for switchgrass using reproducing kernel methods with wavelet compressed FT-NIR spectra. Expert Syst. Appl. 39(1): 1555–1564.
  • Kelley, S. S., Rowell, R. M., Davis, M., Jurich, C. K., and Ibach, R. (2004) Rapid analysis of the chemical composition of agricultural fibers using near infrared spectroscopy and pyrolysis molecular beam mass spectrometry. Biomass and Bioenergy 27(1): 77–88.
  • Lesteur, M., Bellon-Maurel, V., Gonzalez, C., Latrille, E., Roger, J. M., Junqua, G., and Steyer, J. P. (2010) Alternative methods for determining anaerobic biodegradability: A review. Process Biochem. 45(4): 431–440.
  • Lesteur, M., Latrille, E., Maurel, V. B., Roger, J. M., Gonzalez, C., Junqua, G., and Steyer, J. P. (2011) First step towards a fast analytical method for the determination of biochemical methane potential of solid wastes by near infrared spectroscopy. Bioresour. Technol. 102(3): 2280–2288.
  • Doublet, J., Boulanger, A., Ponthieux, A., Laroche, C., Poitrenaud, M., and Cacho Rivero, J. A. (2013) Predicting the biochemical methane potential of wide range of organic substrates by near infrared spectroscopy. Bioresour. Technol. 128: 252–258.
  • Triolo, J. M., Ward, A. J., Pedersen, L., Løkke, M. M., Qu, H., and Sommer, S. G. (2014) Near infrared reflectance spectroscopy (NIRS) for rapid determination of biochemical methane potential of plant biomass. Appl. Energy 116: 52–57.
  • Godin, B., Mayer, F., Agneessens, R., Gerin, P., Dardenne, P., Delfosse, P., and Delcarte, J. (2015) Biochemical methane potential prediction of plant biomasses: Comparing chemical composition versus near infrared methods and linear versus non-linear models. Bioresour. Technol. 175: 382–390.
  • Raju, C. S., Ward, A. J., Nielsen, L., and Møller, H. B. (2011) Comparison of near infra-red spectroscopy, neutral detergent fibre assay and in-vitro organic matter digestibility assay for rapid determination of the biochemical methane potential of meadow grasses. Bioresour. Technol. 102(17): 7835–7839.
  • Krongtaew, C., Messner, K., Ters, T., and Fackler, K. (2010) Characterization of key parameters for biotechnological lignocellulose conversion assessed by FT-NIR spectroscopy. Part I: Qualitative analysis of pretreated straw. BioResources 5(4): 2063–2080.
  • Krongtaew, C., Messner, K., Ters, T., and Fackler, K. (2010) Characterization of key parameters for biotechnological lignocellulose conversion assessed by Ft-Nir spectroscopy. Part II: quantitative analysis by partial least squares regression. BioResources 5(4): 2081–2096.
  • Kandel, T. P., Gislum, R., Jørgensen, U., and Lærke, P. E. (2013) Prediction of biogas yield and its kinetics in reed canary grass using near infrared reflectance spectroscopy and chemometrics. Bioresour. Technol. 146: 282–287.
  • Grieder, C., Mittweg, G., Dhillon, B. S., Montes, J. M., Orsinia, E., and Melchinger, A. E. (2011) Determination of methane fermentation yield and its kinetics by near infrared spectroscopy and chemical composition in maize. J. Near Infrared Spectrosc. 19(6): 463–477.
  • Reed, J. P., Devlin, D., Esteves, S. R. R., Dinsdale, R., and Guwy, a. J. (2011) Performance parameter prediction for sewage sludge digesters using reflectance FT-NIR spectroscopy. Water Res. 45(8): 2463–2472.
  • Reed, J. P., Devlin, D., Esteves, S. R. R., Dinsdale, R., and Guwy, A. J. (2013) Integration of NIRS and PCA techniques for the process monitoring of a sewage sludge anaerobic digester. Bioresour. Technol. 133: 398–404.
  • Hotelling, H. (1951) A generalized T test and measure of multivariate dispersion. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability. The Regents of the University of California, Berkeley, CA, pp. 23–40.
  • Jacobi, H. F., Moschner, C. R., and Hartung, E. (2011) Use of near infrared spectroscopy in online-monitoring of feeding substrate quality in anaerobic digestion. Bioresour. Technol. 102(7): 4688–4696.
  • Jacobi, H. F., Ohl, S., Thiessen, E., and Hartung, E. (2012) NIRS-aided monitoring and prediction of biogas yields from maize silage at a full-scale biogas plant applying lumped kinetics. Bioresour. Technol. 103(1): 162–172.
  • Holm-Nielsen, J. B., and Esbensen, K. H. (2011) Monitoring of biogas test plants-a process analytical technology approach. J. Chemom. 25(7): 357–365.
  • Holm-Nielsen, J. B., Andree, H., Lindorfer, H., and Esbensen, K. H. (2007) Transflexive embedded near infrared monitoring for key process intermediates in anaerobic digestion/biogas production. J. Near Infrared Spectrosc. 15(2): 123.
  • Stockl, A., and Oechsner, H. (2012) Near-infrared spectroscopic online monitoring of process stability in biogas plants. Eng. Life Sci. 12(3): 295–305.
  • Lomborg, C. J., Holm-Nielsen, J. B., Oleskowicz-Popiel, P., and Esbensen, K. H. (2009) Near infrared and acoustic chemometrics monitoring of volatile fatty acids and dry matter during co-digestion of manure and maize silage. Bioresour. Technol. 100(5): 1711–1719.
  • Luck, S., Büge, G., Plettenberg, H., and Hoffmann, M. (2010) Near-infrared spectroscopy for process control and optimization of biogas plants. Eng. Life Sci. 10(6): 537–543.
  • Wolf, D., von Canstein, H., and Schröder, C. (2011) Optimisation of biogas production by infrared spectroscopy-based process control. J. Nat. Gas Sci. Eng. 3(5): 625–632.
  • Ward, A. J., Bruni, E., Lykkegaard, M. K., Feilberg, A., Adamsen, A. P. S., Jensen, A. P., and Poulsen, A. K. (2011) Real time monitoring of a biogas digester with gas chromatography, near-infrared spectroscopy, and membrane-inlet mass spectrometry. Bioresour. Technol. 102(5): 4098–4103.
  • Castillo, R. D. P., Baeza, J., Rubilar, J., Rivera, Á., and Freer, J. (2012) Infrared spectroscopy as alternative to wet chemical analysis to characterize Eucalyptus globulus pulps and predict their ethanol yield for a simultaneous saccharification and fermentation process. Appl. Biochem. Biotechnol. 168(7): 2028–2042.
  • Hou, S., and Li, L. (2011) Rapid characterization of woody biomass digestibility and chemical composition using near-infrared spectroscopy. J. Integr. Plant Biol. 53(2): 166–175.
  • Monrroy, M., Garcia, J. R., Troncoso, E., and Freer, J. (2014) Fourier transformed near infrared (FT-NIR) spectroscopy for the estimation of parameters in pretreated lignocellulosic materials for bioethanol production. J. Chem. Technol. Biotechnol. 90(7): 1281–1289.
  • Horikawa, Y., Imai, M., Kanai, K., Imai, T., Watanabe, T., Takabe, K., Kobayashi, Y. and Sugiyama, J. (2015) Line monitoring by near-infrared chemometric technique for potential ethanol production from hydrothermally treated Eucalyptus globulus. Biochem. Eng. J. 97: 65–72.
  • Castillo, R. D. P., Parra, C., Troncoso, E., Franco, H., Peña, S., and Freer, J. (2014) NIR spectroscopy applied to the characterization and selection of pre-treated materials from multiple lignocellulosic resources for bioethanol production. J. Chil. Chem. Soc. 59(1): 2347–2352.
  • Horikawa, Y., Imai, T., Takada, R., Watanabe, T., Takabe, K., Kobayashi, Y., and Sugiyama, J. (2011) Near-infrared chemometric approach to exhaustive analysis of rice straw pretreated for bioethanol conversion. Appl. Biochem. Biotechnol. 164(2): 194–203.
  • Hattori, T., Murakami, S., Mukai, M., Yamada, T., Hirochika, H., Ike, M., Tokuyasu, K., Suzuki, S., Sakamoto M. and Umezawa T. (2012) Rapid analysis of transgenic rice straw using near-infrared spectroscopy. Plant Biotechnol. 29(4): 359–366.
  • Horikawa, Y., Imai, T., Takada, R., Watanabe, T., Takabe, K., Kobayashi, Y., and Sugiyama, J. (2012) Chemometric analysis with near-infrared spectroscopy for chemically pretreated Erianthus toward efficient bioethanol production. Appl. Biochem. Biotechnol. 166(3): 711–721.
  • Lindedam, J., Bruun, S., De Martini, J., Jørgensen, H., Felby, C., Yang, B., Wyman, C. E. and Magid, J. (2010) Near infrared spectroscopy as a screening tool for sugar release and chemical composition of wheat straw. J. Biobased Mater. Bioenergy. 4(4): 378–383.
  • Bruun, S., Jensen, J. W., Magid, J., Lindedam, J., and Engelsen, S. B. (2010) Prediction of the degradability and ash content of wheat straw from different cultivars using near infrared spectroscopy. Ind. Crops Prod. 31(2): 321–326.
  • Lomborg, C. J., Thomsen, M. H., Jensen, E. S., and Esbensen, K. H. (2010) Power plant intake quantification of wheat straw composition for 2nd generation bioethanol optimization - A near infrared spectroscopy (NIRS) feasibility study. Bioresour. Technol. 101(4): 1199–1205.
  • Jiang, H., Liu, G., Mei, C., Yu, S., Xiao, X., and Ding, Y. (2012) Measurement of process variables in solid-state fermentation of wheat straw using FT-NIR spectroscopy and synergy interval PLS algorithm. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 97: 277–283.
  • Vogel, K. P., Dien, B. S., Jung, H. G., Casler, M. D., Masterson, S. D., and Mitchell, R. B. (2011) Quantifying actual and theoretical ethanol yields for switchgrass strains using NIRS analyses. Bioenergy Res. 4(2): 96–110.
  • Magana, C., Núñez-Sánchez, N., Fernández-Cabanás, V. M., García, P., Serrano, A., and Pérez-Marín, D. (2011) Direct prediction of bioethanol yield in sugar beet pulp using near infrared spectroscopy. Bioresour. Technol. 102(20): 9542–9549.
  • Pohl, F., and Senn, T. (2011) A rapid and sensitive method for the evaluation of cereal grains in bioethanol production using near infrared reflectance spectroscopy. Bioresour. Technol. 102(3): 2834–2841.
  • Liu, L., Ye, X. P., Womac, A. R., and Sokhansanj, S. (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr. Polym. 81(4): 820–829.
  • Liebmann, B., Friedl, A., and Varmuza, K. (2009) Determination of glucose and ethanol in bioethanol production by near infrared spectroscopy and chemometrics. Anal. Chim. Acta 642(1–2): 171–178.
  • Liebmann, B., Friedl, A., and Varmuza, K. (2010) Applicability of near-infrared spectroscopy for process monitoring in bioethanol production. Biochem. Eng. J. 52(2–3): 187–193.
  • Hongqiang, L., and Hongzhang, C. (2008) Near-infrared spectroscopy with a fiber-optic probe for state variables determination in solid-state fermentation. Process Biochem. 43(5): 511–516.
  • Jiang, H., Liu, G., Mei, C., Yu, S., Xiao, X., and Ding, Y. (2012) Rapid determination of pH in solid-state fermentation of wheat straw by FT-NIR spectroscopy and efficient wavelengths selection. Anal. Bioanal. Chem. 404(2): 603–611.
  • Jiang, H., Liu, G., Xiao, X., Mei, C., Ding, Y., and Yu, S. (2012) Monitoring of solid-state fermentation of wheat straw in a pilot scale using FT-NIR spectroscopy and support vector data description. Microchem. J. 102: 68–74.
  • Jiang, H., Zhang, H., Chen, Q., Mei, C., and Liu, G. (2015) Identification of solid state fermentation degree with FT-NIR spectroscopy: Comparison of wavelength variable selection methods of CARS and SCARS. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 149: 1–7.
  • Jiang, H., and Chen, Q. (2014) Development of electronic nose and near infrared spectroscopy analysis techniques to monitor the critical time in SSF process of feed protein. Sensors (Basel). 14(10): 19441–19456.
  • Wang, J., and Zhang, Y. (2012) Speech characteristic signal recognition based on BP_AdaBoost. In: H. Tan (Ed.), Technology for Education and Learning, pp. 259–264. Berlin, Heidelberg, Germany: Springer.
  • Wen, Z., Yu, X., Tu, S.-T., Yan, J., and Dahlquist, E. (2010) Biodiesel production from waste cooking oil catalyzed by TiO2-MgO mixed oxides. Bioresour. Technol. 101(24): 9570–9576.
  • Zhang, W. B. (2012) Review on analysis of biodiesel with infrared spectroscopy. Renew. Sustain. Energy Rev. 16(8): 6048–6058.
  • Azizian, H., and Kramer, J. K. (2005) A rapid method for the quantification of fatty acids in fats and oils with emphasis on trans fatty acids using Fourier Transform near infrared spectroscopy (FT-NIR). Lipids 40(8): 855–867.
  • Baptista, P., Felizardo, P., Menezes, J. C., and Neiva Correia, M. J. (2008) Monitoring the quality of oils for biodiesel production using multivariate near infrared spectroscopy models. J Near Infrared Spectrosc. 16: 445–454.
  • Adewale, P., Mba, O., Dumont, M. J., Ngadi, M., and Cocciardi, R. (2014) Determination of the iodine value and the free fatty acid content of waste animal fat blends using FT-NIR. Vib. Spectrosc. 72: 72–78.
  • Moreira, S. A., Sarraguca, J., Saraiva, D. F., Carvalho, R., and Lopes, J. A. (2015) Optimization of NIR spectroscopy based PLSR models for critical properties of vegetable oils used in biodiesel production. Fuel 150: 697–704.
  • Richard, R., Li, Y., Dubreuil, B., Thiebaud-Roux, S., and Prat, L. (2011) On-line monitoring of the transesterification reaction between triglycerides and ethanol using near infrared spectroscopy combined with gas chromatography. Bioresour. Technol. 102(12): 6702–6709.
  • Richard, R., Dubreuil, B., Thiebaud-Roux, S., and Prat, L. (2013) On-line monitoring of the transesterification reaction carried out in microreactors using near infrared spectroscopy. Fuel 104: 318–325.
  • Killner, M. H. M., Rohwedder, J. J. R., and Pasquini, C. (2011) A PLS regression model using NIR spectroscopy for on-line monitoring of the biodiesel production reaction. Fuel 90(11): 3268–3273.
  • De Lima, S. M., Silva, B. F. A., Pontes, D. V., Pereira, C. F., Stragevitch, L., and Pimentel, M. F. (2014) In-line monitoring of the transesterification reactions for biodiesel production using NIR spectroscopy. Fuel 115: 46–53.
  • Pinzi, S., Alonso, F., García Olmo, J., and Dorado, M. P. (2012) Near infrared reflectance spectroscopy and multivariate analysis to monitor reaction products during biodiesel production. Fuel 92(1): 354–359.
  • Zhang, Y., Dubé, M. A., McLean, D. D. L., and Kates, M. (2003) Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresource Tech., 89(1): 1–16.
  • Al-Zuhair, S., Dowaidar, A., and Kamal, H. (2009) Dynamic modeling of biodiesel production from simulated waste cooking oil using immobilized lipase. Biochem. Eng. J. 44(2–3): 256–262.
  • Tapasvi, D., Wiesenborn, D., and Gustafson, C. (2005) Process model for biodiesel production from various feedstocks. Trans. ASAE 48(6): 2215–2221.
  • Baptista, P., Felizardo, P., Menezes, J. C., and Neiva Correia, M. J. (2008) Multivariate near infrared spectroscopy models for predicting the iodine value, CFPP, kinematic viscosity at 40°C and density at 15°C of biodiesel. Talanta 77(1): 144–151.
  • Balabin, R. M., and Safieva, R. Z. (2011) Near-infrared (NIR) spectroscopy for biodiesel analysis: Fractional composition, iodine value, and cold filter plugging point from one vibrational spectrum. Energy and Fuels 25(5): 2373–2382.
  • Coronado, M., Yuan, W., Wang, D., and Dowell, F. E. (2009) Predicting the concentration and specific gravity of biodiesel-diesel blends using near-infrared spectroscopy. Appl. Eng. Agric. 25(2): 217–221.
  • Canha, N., Felizardo, P., Menezes, J. C., and Joana Neiva Correia, M. (2012) Multivariate near infrared spectroscopy models for predicting the oxidative stability of biodiesel: Effect of antioxidants addition. Fuel 97: 352–357.
  • Vieira, F. S., and Pasquini, C. (2014) Determination of the oxidative stability of biodiesel using near infrared emission spectroscopy. Fuel 117(PARTB): 1004–1009.
  • Alves, J. C. L., and Poppi, R. J. (2013) Biodiesel content determination in diesel fuel blends using near infrared (NIR) spectroscopy and support vector machines (SVM). Talanta 104: 155–161.
  • Alves, J. C. L., and Poppi, R. J. (2013) Simultaneous determination of hydrocarbon renewable diesel, biodiesel and petroleum diesel contents in diesel fuel blends using near infrared (NIR) spectroscopy and chemometrics. Analyst 138(21): 6477–6487.
  • Alves, J. C. L., and Poppi, R. J. (2016) Quantification of conventional and advanced biofuels contents in diesel fuel blends using near-infrared spectroscopy and multivariate calibration. Fuel 165: 379–388.
  • Filgueiras, P. R., Alves, J. C. L., and Poppi, R. J. (2014) Quantification of animal fat biodiesel in soybean biodiesel and B20 diesel blends using near infrared spectroscopy and synergy interval support vector regression. Talanta 119: 582–589.
  • Felizardo, P., Baptista, P., Menezes, J. C., and Correia, M. J. N. (2007) Multivariate near infrared spectroscopy models for predicting methanol and water content in biodiesel. Anal. Chim. Acta 595(1–2 SPEC. ISS.): 107–113.
  • Bampi, M., Scheer, A. D. P., and De Castilhos, F. (2013) Application of near infrared spectroscopy to predict the average droplet size and water content in biodiesel emulsions. Fuel 113: 546–552.
  • Paiva, E. M., Rohwedder, J. J. R., Pasquini, C., Pimentel, M. F., and Pereira, C. F. (2015) Quantification of biodiesel and adulteration with vegetable oils in diesel/biodiesel blends using portable near-infrared spectrometer. Fuel 160: 57–63.
  • Balabin, R. M., and Safieva, R. Z. (2011) Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data. Anal. Chim. Acta 689(2): 190–197.
  • Veras, G., Gomes, A. D. A., Da Silva, A. C., De Brito, A. L. B., De Almeida, P. B. A., and De Medeiros, E. P. (2010) Classification of biodiesel using NIR spectrometry and multivariate techniques. Talanta 83(2): 565–568.
  • Insausti, M., Gomes, A. A., Cruz, F. V., Pistonesi, M. F., Araujo, M. C. U., Galvão, R. K. H., Pereira, C. F. and Band, B. S. (2012) Screening analysis of biodiesel feedstock using UV-vis, NIR and synchronous fluorescence spectrometries and the successive projections algorithm. Talanta 97: 579–583.
  • Pontes, M. J. C., Pereira, C. F., Pimentel, M. F., Vasconcelos, F. V. C., and Silva, A. G. B. (2011) Screening analysis to detect adulteration in diesel/biodiesel blends using near infrared spectrometry and multivariate classification. Talanta 85(4): 2159–2165.
  • Silva, G. W. B., Gomes, A. A., Da Silva, P., Costa, G. B., Fernandes, D. D. S., Fontes, M. M., and Veras, G. (2012) Biodiesel/diesel blends classification with respect to base oil using NIR spectrometry and chemometrics tools. JAOCS, J. Am. Oil Chem. Soc. 89(7): 1165–1171.
  • de Oliveira, I. K., de Carvalho Rocha, W. F., and Poppi, R. J. (2009) Application of near infrared spectroscopy and multivariate control charts for monitoring biodiesel blends. Anal. Chim. Acta 642(1–2): 217–221.
  • De Oliveira, R. R., De Lima, K. M. G., De Juan, A., and Tauler, R. (2014) Application of correlation constrained multivariate curve resolution alternating least-squares methods for determination of compounds of interest in biodiesel blends using NIR and UV-visible spectroscopic data. Talanta 125: 233–241.
  • de Lira, L. F. B., de Albuquerque, M. S., Pacheco, J. G. A., Fonseca, T. M., Cavalcanti, E. H., de, S., Stragevitch, L., and Pimentel, M. F. (2010) Infrared spectroscopy and multivariate calibration to monitor stability quality parameters of biodiesel. Microchem. J. 96(1): 126–131.
  • Zhang, W., Yuan, W., Zhang, X., and Coronado, M. (2012) Predicting the dynamic and kinematic viscosities of biodiesel-diesel blends using mid- and near-infrared spectroscopy. Appl. Energy 98: 122–127.
  • de Vasconcelos, F. V. C., de Souza, P. F. B., Pimentel, M. F., Pontes, M. J. C., and Pereira, C. F. (2012) Using near-infrared overtone regions to determine biodiesel content and adulteration of diesel/biodiesel blends with vegetable oils. Anal. Chim. Acta 716: 101–107.
  • Gaydou, V., Kister, J., and Dupuy, N. (2011) Evaluation of multiblock NIR/MIR PLS predictive models to detect adulteration of diesel/biodiesel blends by vegetal oil. Chemom. Intell. Lab. Syst. 106(2): 190–197.
  • Oliveira, J. S., Montalvão, R., Daher, L., Suarez, P. A. Z., and Rubim, J. C. (2006) Determination of methyl ester contents in biodiesel blends by FTIR-ATR and FTNIR spectroscopies. Talanta 69(5): 1278–1284.
  • Fernandes, D. D. S., Gomes, A. A., Costa, G. B., Da Silva, G. W. B. D., and Véras, G. (2011) Determination of biodiesel content in biodiesel/diesel blends using NIR and visible spectroscopy with variable selection. Talanta 87(1): 30–34.
  • Pilar Dorado, M., Pinzi, S., De Haro, A., Font, R., and Garcia-Olmo, J. (2011) Visible and NIR Spectroscopy to assess biodiesel quality: Determination of alcohol and glycerol traces. Fuel 90(6): 2321–2325.
  • Oliveira, F. C. C., Brandao, C. R., Ramalho, H. F., da Costa, L. A., Suarez, P. A., and Rubim, J. C. (2007) Adulteration of diesel/biodiesel blends by vegetable oil as determined by Fourier transform (FT) near infrared spectrometry and FT-Raman spectroscopy. Anal. Chim. Acta 587(2): 194–199.
  • Santos, V. O., Oliveira, F. C. C., Lima, D. G., Petry, A. C., Garcia, E., Suarez, P. A. Z., and Rubim, J. C. (2005) A comparative study of diesel analysis by FTIR, FTNIR and FT-Raman spectroscopy using PLS and artificial neural network analysis. Anal. Chim. Acta 547(2): 188–196.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.