2,529
Views
76
CrossRef citations to date
0
Altmetric
Reviews

A review on the methods for correcting the fluorescence inner-filter effect of fluorescence spectrum

, &

References

  • Filippova, E. M., Fadeev, V. V., Chubarov, V. V., Dolenko, T. A., and Glushkov, S. M. (2001) Laser fluorescence spectroscopy as a method for studying humic substance. Appl. Spectrosc. Rev. 36(1): 87–117.
  • Patra, D. (2003) Applications and new developments in fluorescence spectroscopic techniques for the analysis of polycyclic aromatic hydrocarbons. Appl. Spectrosc. Rev. 38(2): 155–185.
  • Kamoto, S., Hyuga, M., and Kato, T. (2016) Fluorescence detection of single-nucleotide differences using aptamer-forming binary DNA probes. Analyst. 141(21): 6087–6092.
  • Filbrun, S. L. and Driskell, J. D. (2016) A fluorescence-based method to directly quantify antibodies immobilized on gold nanoparticles. Analyst. 141(12): 3851–3857.
  • Song, J. E., Park, J. H., La, J. A., Park, S., Jeong, M. K., and Cho, E. C. (2016) Use of fluorescence signals generated by elastic scattering under monochromatic incident light for determining the scattering efficiencies of various plasmonic nanoparticles. Analyst. 141(15): 4632–4639.
  • Gao, X., Zhao, Y., Zhang, B., Tang, Y., Liu, X., and Li, J. (2016) Sensitive fluorescence assay of organophosphorus pesticides based on the fluorescence resonance energy transfer between CdTe quantum dots and porphyrin. Analyst. 141(16): 4941–4946.
  • Kumar, N., Bhalla, V., and Kumar, M. (2014) Resonance energy transfer-based fluorescent probes for Hg2+, Cu2+ and Fe2+/Fe3+ ions. Analyst. 139(3): 543–558.
  • Wei, Y. J., Kang, Z. M., Qi, X. J., Zhang, Y. P., and Liu, C. G. (2001) Fluorescence spectra and fluorescence quantum yield of aurintricarboxylic acid. Acta Chim. Sin. 59(10): 1619–1622.
  • Bachmann, L., Zezell, D. M., Ribeiro, A. D. C., Gomes, L., and Ito, A. S. (2006) Fluorescence spectroscopy of biological tissues - A review. Appl. Spectrosc. Rev. 41(6): 575–590.
  • Resch-Genger, U., Bremser, W., Pfeifer, D., Spieles, M., Hoffmann, A., DeRose, P. C., Zwinkels, J. C., Gauthier, F., Ebert, B., Taubert, R. D., Voigt, J., Hollandt, J., and Macdonald, R. (2012) State-of-the art comparability of corrected emission spectra. 2. field laboratory assessment of calibration performance using spectral fluorescence standards. Anal. Chem. 84(9): 3899–3907.
  • Resch-Genger, U., Bremser, W., Pfeifer, D., Spieles, M., Hoffmann, A., DeRose, P. C., Zwinkels, J. C., Gauthier, F., Ebert, B., Taubert, R. D., Monte, C., Voigt, J., Hollandt, J., and Macdonald, R. (2012) State-of-the art comparability of corrected emission spectra.1. spectral correction with physical transfer standards and spectral fluorescence standards by expert laboratories. Anal. Chem. 84(9): 3889–3898.
  • Parker, C. A. and Rees, W. T. (1962) Fluorescence spectrometry: A review. Analyst. 87(1031): 290–296.
  • Tucker, S. A. and Amszi, V. L. (1992) Primary and secondary inner filtering: Effect of K2Cr2O7 on fluorescence emission intensities of quinine sulfate. J. Chem. Educ. 69(1): A8–A12.
  • Pacheco, M. E. and Bruzzone, L. (2013) Synchronous fluorescence spectrometry: Conformational investigation or inner filter effect? J. Lumin. 137(9): 138–142.
  • Andrade-Eiroa, A., Vazquez-Blanco, E., Lopez-Mahia, P., Muniategui-Lorenzo, S., and Prada-Rodriguez, D. (2000) Modeling of inner filter effect in synchronous spectrofluorimetry by using partial least squares. Analusis. 28(2): 148–154.
  • Bohoyo Gil, D., Munoz De La Pena, A., Arancibia, J. A., Escandar, G. M., and Olivieri, A. C. (2006) Second-order advantage achieved by unfolded-partial least-squares/residual bilinearization modeling of excitation-emission fluorescence data presenting inner filter effects. Anal. Chem. 78(23): 8051–8058.
  • Rickard, D., Giordam, S., Blau, W., and Coleman, J. N. (2008) Quantifying the contributions of inner-filter, re-absorption and aggregation effects in the photoluminescence of high-concentration conjugated polymer solutions. J. Lumin. 128(1): 31–40.
  • Galban, J., Delgado-Camon, A., Sanz, V., Sanz-Vicente, I., and de Marcos, S. (2008) A theoretical approach for designing fluorescent reagentless biosensors: The optical model. Anal. Chim. Acta. 615(2): 148–157.
  • Elkins, K. M., Dickerson, M. A., and Traudt, E. M. (2011) Fluorescence characterization of the interaction Suwannee river fulvic acid with the herbicide dichlorprop (2-(2,4-dichlorophenoxy)propionic acid) in the absence and presence of aluminum or erbium. J. Inorg. Biochem. 105(11): 1469–1476.
  • Antunes, M. C. G. and Silva, J. C. G. E. (2005) Multivariate curve resolution analysis excitation-emission matrices of fluorescence of humic substances. Anal. Chim. Acta. 546(1): 52–59.
  • Kalbitz, K. and Geyer, W. (2001) Humification indices of water-soluble fulvic acids derived from synchronous fluorescence spectra-effects of spectrometer type and concentration. J. Plant Nutr. Soil Sci. 164(3): 259–265.
  • Cavoski, I., D'Orazio, V., and Miano, T. (2009) Interactions between rotenone and humic acids by means of FT-IR and fluorescence spectroscopies. Anal. Bioanal. Chem. 395(4): 1145–1158.
  • Kalbitz, K., Geyer, S., and Geyer, W. (2000) A comparative characterization of dissolved organic matter by means of original aqueous samples and isolated humic substances. Chemosphere. 40(12): 1305–1312.
  • Jin-jin, D. L. W. Y. C. A. O. (2014) Fluorescence inner filter effect of multicomponent system, The Eighteenth National Symposium On Molecular Spectroscopy. Suzhou, China, October 31.
  • Kao, S. M., Asanov, A. N., and Oldham, P. B. (1998) A comparison of fluorescence inner-filter effects for different cell configurations. Instrum. Sci. Technol. 26(4): 375–387.
  • Zhang, D. and Nettles, C. B. I. (2015) A generalized model on the effects of nanoparticles on fluorophore fluorescence in solution. J. Phys. Chem. C. 119(14): 7941–7948.
  • Galinha, C. F., Carvalho, G., Portugal, C. A. M., Guglielmi, G., Reis, M. A. M., and Crespo, J. G. (2011) Two-dimensional fluorescence as a fingerprinting tool for monitoring wastewater treatment systems. J. Chem. Technol. Biot. 86(7): 985–992.
  • Konstantinov, K. B., Dhurjati, P., Vandyk, T., Majarian, W., and Larossa, R. (1993) Real-time compensation of the inner filter effect in high-density bioluminescent cultures. Biotechnol. Bioeng. 42(10): 1190–1198.
  • Zanzotto, A., Boccazzi, P., Gorret, N., Van Dyk, T. K., Sinskey, A. J., and Jensen, K. F. (2006) In situ measurement of bioluminescence and fluorescence in an integrated microbioreactor. Biotechnol. Bioeng. 93(1): 40–47.
  • MacDonald, B. C., Lvin, S. J., and Patterson, H. (1997) Correction of fluorescence inner filter effects and the partitioning of pyrene to dissolved organic carbon. Anal. Chim. Acta. 338(1): 155–162.
  • Kubista, M., Sjoback, R., Eriksson, S., and Albinsson, B. (1994) Experimental correction for the inner-filter effect in fluorescence-spectra. Analyst. 119(3): 417–419.
  • Lakowicz, J. R. (2006) Principles of Fluorescence Spectroscopy. 3rd ed. Springer US, Berlin, Germany.
  • Piccirilli, G. N. and Escandar, G. M. (2006) Partial least-squares with residual bilinearization for the spectrofluorimetric determination of pesticides. A solution of the problems of inner-filter effects and matrix interferents. Analyst. 131(9): 1012–1020.
  • Li, H. and Hu, Y. (2007) Spectroscopic investigation of inner filter effect by magnolol solutions. Spectrochim. Acta a. 68(5): 1263–1268.
  • Palmier, M. O. and Van Doren, S. R. (2007) Rapid determination of enzyme kinetics from fluorescence: Overcoming the inner filter effect. Anal. Biochem. 371(1): 43–51.
  • Larsson, T., Wedborg, M. and Turner, D. (2007) Correction of inner-filter effect in fluorescence excitation-emission matrix spectrometry using Raman scatter. Anal. Chim. Acta. 583(2): 357–363.
  • Gauthier, T. D., Shane, E. C., Guerin, W. F., Seitz, W. R., and Grant, C. L. (1986) Fluorescence quenching method for determining equilibrium-constants for polycyclic aromatic-hydrocarbons binding to dissolved humic materials. Environ. Sci. Technol. 20(11): 1162–1166.
  • Kothawala, D. N., Murphy, K. R., Stedmon, C. A., Weyhenmeyer, G. A., and Tranvik, L. J. (2013) Inner filter correction of dissolved organic matter fluorescence. Limnol. Oceanogr.-Meth. 11(12): 616–630.
  • Zhang, C., Liu, M., Han, B., and Xing, X. (2009) Correcting for the inner filter effect in measurements of fluorescent proteins in high-cell-density cultures. Anal. Biochem. 390(2): 197–202.
  • Cancilla, J. C., Diaz-Rodriguez, P., Izquierdo, J. G., Banares, L., and Torrecilla, J. S. (2014) Artificial neural networks applied to fluorescence studies for accurate determination of N-butylpyridinium chloride concentration in aqueous solution. Sensor Actuator B-Chem. 198(7): 173–179.
  • Sihn, Y., Yun, J., and Lee, W. (2016) Laser Spectroscopic characterization and quantification of uranium(Vi) under fluorescence quenching By Fe(Ii). J. Radioanal. Nucl. Ch. 308(2): 413–423.
  • Cohen, J. E., Comon, P., and Luciani, X. (2016) Correcting inner filter effects, a non multilinear tensor decomposition method. Chemometr. Intell. Lab. 150(1): 29–40.
  • Nie, J., Li, B., Zhang, Y., Fan, J., Yi, Z., and Cai, Z. (2016) High-order calibration for the spectrofluorimetric determination of pesticides based on photochemical derivatization. A solution of the problems of inner-filter effects and matrix interferences in complex environmental water. Chemometr. Intell. Lab. 156(4): 36–53.
  • Krimer, N. I., Rodrigues, D., Rodriguez, H. B., and  , M. (2017) Mirenda, steady-state fluorescence of highly absorbing samples in transmission geometry: A simplified quantitative approach considering reabsorption events. Anal. Chem. 89(1): 640–647.
  • Sulatskaya, A. I., Lavysh, A. V., Maskevich, A. A., Kuznetsova, I. M., and Turoverov, K. K. (2017) Thioflavin T fluoresces as excimer in highly concentrated aqueous solutions and as monomer being incorporated in amyloid fibrils. Sci. Rep. 7(1): 2146.
  • Christmann, D. R., Crouch, S. R., and Timnick, A. (1981) Automated instrument for absorption-corrected molecular fluorescence measurements by the cell shift method. Anal. Chem. 53(2): 276–280.
  • Christmann, D. R., Crouch, S. R., and Timnick, A. (1981) Precision and accuracy of absorption-corrected molecular fluorescence measurements by the cell shift method. Anal. Chem. 53(2): 2040–2044.
  • Adamsons, K., Timnick, A., Holland, J. F., and Sell, J. E. (1982) Cell rotation for computer-based correction of primary and secondary absorption in fluorescence measurements. Anal. Chem. 54(13): 2186–2190.
  • VictorI, M. A. and Crouch, S. R. (1995) Absorbency-corrected synchronous fluorescence with a fiber-optic-based fluorometer. Appl. Spectrosc. 49(7): 1041–1047.
  • Su, W. W., Liu, B., Lu, W. B., Xu, N. S., Du, G. C., and Tan, J. L. (2005) Observer-based online compensation of inner filter effect in monitoring fluorescence of GFP-expressing plant cell cultures. Biotechnol. Bioeng. 91(2): 213–226.
  • Munzke, D., Saunders, J., Omrani, H., Reich, O., and Loock, H. (2012) Modeling of fiber-optic fluorescence probes for strongly absorbing samples. Appl. Opt. 51(26): 6343–6351.
  • Zeng, L. H., Wang, C., Wang, T., and Li, D. L. (2016) The correction fluorescence inner filter effect using a single excitation and dual-emission fiber optic probe. Analyst. 141(18): 5339.
  • Fanget, B., Devos, O., and Draye, M. (2003) Correction of inner filter effect in mirror coating cells for trace level fluorescence measurements. Anal. Chem. 75(11): 2790–2795.
  • Puchalski, M. M., Morra, M. J., and von Wandruszka, R. (1991) Assessment of inner filter effect corrections in fluorimetry. Fresenius' J. Anal. Chem. 340(6): 341–344.
  • Zhang, Y., Zhong, L., Du Jing,  , Chen, J., Dong, X., and Li, C. (2014) Assessment of inner filter effect corrections in fluorimetry of the interaction between polyphenols and proteins. Spectrosc. Spect. Anal. 34(1): 116–121.
  • Ratzlaff, E. H., Harfmann, R. G., and Crouch, S. R. (1984) Absorption-corrected fiber optic fluorometer. Anal. Chem. 56(3): 342–347.
  • Territo, P. R., Heil, J., Bose, S., Evans, F. J., and Balaban, R. S. (2007) Fluorescence absorbance inner-filter decomposition: The role of emission shape on estimates of free Ca2+ using Rhod-2. Appl. Spectrosc. 61(2): 138–147.
  • Itami, S. and Araki, T. (1995) Development of a simple chemiluminometer to determine acid value of edible oil free of the inner-filter effect. Anal. Sci. 11(6): 973–978.
  • Subbarao, N. K. and MacdonaldA, R. C. (1993) Experimental-method to correct fluorescence intensities for the inner filter effect. Analyst. 118(7): 913–916.
  • Surribas, A., Montesinos, J. L., and Valero, F. F. (2006) Biomass estimation using fluorescence measurements in Pichia pastoris bioprocess. J. Chem. Technol. Biot. 81(1): 23–28.
  • Luciani, X., Mounier, S., Redon, R., and Bois, A. (2009) A simple correction method of inner filter effects affecting FEEM and its application to the PARAFAC decomposition. Chemometr. Intell. Lab. 96(2): 227–238.
  • Zong, W., Liu, R., Sun, F., Teng, Y., Fang, X., and Chai, J. (2011) A new strategy to identify and eliminate the inner filter effects by outer filter technique. J. Fluoresc. 21(3): 1249–1254.
  • Fonin, A. V., Sulatskaya, A. I., Kuznetsova, I. M., and Turoverov, K. K. (2014) Fluorescence of dyes in solutions with high absorbance. Inner filter effect correction. Plos One. 9(7): 103878.
  • Fonin, A. V., Kuznetsova, I. M., and Turoverov, K. K. (2015) Spectral properties of BADAN in solutions with different polarities. J. Mol. Struct. 1090(SI): 107–111.
  • Sulatskaya, A. I., Kuznetsova, I. M., Belousov, M. V., Bondarev, S. A., Zhouravleva, G. A., and  , K. K. (2016) Stoichiometry and affinity of turoverov, stoichiometry and affinity of thioflavin T binding to Sup35p amyloid fibrils. Plos One. 11(5): e0156314.
  • Credi, A. and Prodi, L. (2014) Inner filter effects and other traps in quantitative spectrofluorimetric measurements: Origins and methods of correction. J. Mol. Struct. 1077(13): 30–39.
  • Patel, N. S., Nandurbarkar, V. P., Patel, A. J., and Patel, S. G. (2014) Simultaneous spectrophotometric determination of celecoxib and diacerein in bulk and capsule by absorption correction method and chemometric methods. Spectrochim. Acta A. 125(5): 46–52.
  • Shutova, Y., Baker, A., Bridgeman, J., and Henderson, R. K. (2016) On-line monitoring of organic matter concentrations and character in drinking water treatment systems using fluorescence spectroscopy. Environ. Sci. Water Res. Technol. 2(4): 749–760.
  • Geethanjali, H. S., Nagaraja, D., and Melavanki, R. M. (2015) Exploring the mechanism of fluorescence quenching in two biologically active boronic acid derivatives using stern-volmer kinetics. J. Mol. Liq. 209(6): 669–675.
  • Hao, F., Jing, M., Zhao, X., and Liu, R., Spectroscopy. (2015) Spectroscopy, calorimetry and molecular simulation studies on the interaction of catalase with copper ion. J. Photochem. Photobiol. B. 143(1): 100–106.
  • Ali, M. S. and Al-Lohedan, H. A. (2017) Deciphering the interaction of procaine with bovine serum albumin and elucidation of binding site: A multi spectroscopic and molecular docking study. J. Mol. Liq. 236(1): 232–240.
  • Hang-Xing Xiong, H. W. H. Z. (2016) Chemicobiological deciphering the protein-binding details of aspirin. J. Pharm. Pharm. Sci. 5(2): 21–30.
  • Ng, C. L., Ng, Y. J., Chen, Q. Q., and Hemond, H. F. (2016) Corrections for matrix effects on fluorescence measurement of a multi-platform optical sensor. Water Pract. Technol. 11(3): 644–660.
  • Mendonca, A., Rocha, A. C., Duarte, A. C., and Santos, E. B. H. (2013) The inner filter effects and their correction in fluorescence spectra of salt marsh humic matter. Anal. Chim. Acta. 788(14): 99–107.
  • Novak, A. (1978) Method for routine corrections of inner filter effects in measurements of excitation and fluorescence-spectra. Collect. Czech. Chem. C. 43(11): 2869–2878.
  • Britten, A., Archerhall, J., and Lockwood, G. (1978) Technique for the determination of fluorescence quantum efficiencies: a method avoiding direct measurement of absorbance. Analyst. 103(1230): 928–936.
  • Lutz, H. P., and Luisi, P. L. (1983) Correction for inner filter effects in fluorescence spectroscopy. Helv. Chim. Acta. 66(7): 1929–1935.
  • Luciani, X., Redon, R., and Mounier, S. (2013) How to correct inner filter effects altering 3D fluorescence spectra by using a mirrored cell. Chemometr. Intell. Lab. 126(4): 91–99.
  • Riesz, J., Gilmore, J., and Meredith, P. (2005) Quantitative photoluminescence of broad band absorbing melanins: A procedure to correct for inner filter and re-absorption effects. Spectrochim. Acta A. 61(9): 2153–2160.
  • Nettles, C. B. I., Hu, J., and Zhang, D. (2015) Using water Raman intensities to determine the effective excitation and emission path lengths of fluorophotometers for correcting fluorescence inner filter effect. Anal. Chem. 87(9): 4917–4924.
  • Nettles, C. B. (2016). Material characterization using spectrofluorometers. Mississippi State University. Ph.D.
  • Liu, Y., Yang, C., Cheng, P., He, X., Zhu, Y., and Zhang, Y. (2016) Influences of humic acid on the bioavailability of phenanthrene and alkyl phenanthrenes to early life stages of marine medaka (Oryzias melastigma). Environ. Pollut. 210(3): 211–216.
  • Gobrecht, A., Bendoula, R., Roger, J., and Bellon-Maurel, V. (2015) Combining linear polarization spectroscopy and the representative layer theory to measure the beer-lambert law absorbance of highly scattering materials. Anal. Chim. Acta. 853(1): 486–494.
  • Wu, B., Yang, M., Yin, R., and Zhang, S. (2017) Applicability of light sources and the inner filter effect in Uv/acetylacetone and UV/H2O2 processes. J. Hazard. Mater. 335(7):100–107.
  • Leese, R. A. and Wehry, E. L. Corrections for inner-filter effects in fluorescence quenching measurements via right-angle and front-surface illumination. Anal. Chem. 50(8): 1193–1197.
  • Tanke, H. J., Vanoostveldt, P., and Vanduijn, P. (1982) A parameter for the distribution of fluorophores in cells derived from measurements of inner filter effect and reabsorption phenomenon. Cytometry. 2(6): 359–369.
  • Patra, D. and Mishra, A. K. (2000) Effect of sample geometry on synchronous fluorimetric analysis of petrol, diesel, kerosene and their mixtures at higher concentration. Analyst. 125(8): 1383–1386.
  • Gu, Q. and Kenny, J. E. (2009) Improvement of inner filter effect correction based on determination of effective geometric parameters using a conventional fluorimeter. Anal. Chem. 81(1): 420–426.
  • Kwapiszewski, R., Ziolkowska, K., Zukowski, K., Chudy, M., Dybko, A., and Brzozka, Z. (2012) Effect of a high surface-to-volume ratio on fluorescence-based assays. Anal. Bioanal. Chem. 403(1): 151–155.
  • Xiang-dong, C., Zi-jun, Y., Feng, G., and Wei-qin, G. (2015) Method of accurate correction on inner filter effect in fluorescence quenching analysis. Acta Photonica Sin. 44(10): 160–165.
  • Levin, A. D., Pribytkov, V. A., Nagaev, A. I., and Sadagov, A. Y. (2015) Reference materials for fluorescence based on inorganic glass. Phys. Proc. 72(2): 213–217.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.