2,131
Views
61
CrossRef citations to date
0
Altmetric
Reviews

Microfluidic paper-based analytical devices with instrument-free detection and miniaturized portable detectors

ORCID Icon, ORCID Icon & ORCID Icon

References

  • Martinez, A. W., Phillips, S. T., Butte, M. J., and Whitesides, G. M. (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew. Chem. Int. Ed. 46: 1318–1320. doi:10.1002/anie.200603817.
  • Lisowski, P., and Zarzycki, P. K. (2013) Microfluidic paper-based analytical devices (µPADs) and micro total analysis systems (µTAS): Development, applications and future trends. Chromatographia. 76: 19–20. doi:10.1007/s10337-013-2413-y.
  • Nery, E. W., and Kubota, L. T. (2013) Sensing approaches on paper-based devices: A review. Anal. Bioanal. Chem. 405: 7573–7595. doi:10.1007/s00216-013-6911-4.
  • Cate, D. M., Adkins, J. A., Mettakoonpitak, J., and Henry, C. S. (2015) Recent developments in paper-based microfluidic devices. Anal. Chem. 87: 19–41. doi:10.1021/ac503968p.
  • Yang, Y., Noviana, E., Nguyen, M. P., Geiss, B. J., Dandy, D. S., and Henry, C. S. (2017) Paper-based microfluidic devices: Emerging themes and applications. Anal. Chem. 89: 71–91. doi:10.1021/acs.analchem.6b04581.
  • Yamada, K., Shibata, H., Suzuki, K., and Citterio, D. (2017) Toward practical application of paper-based microfluidics for medical diagnostics: State-of-the-art and challenges. Lab Chip. 17: 1206–1249 doi:10.1039/C6LC01577H.
  • Sher, M., Zhuang, R., Demirci, U., and Asghar, W. (2017) Paper-based analytical devices for clinical diagnosis: Recent advances in the fabrication techniques and sensing mechanisms. Expert Rev. Mol. Diagn. 17: 351–366. doi:10.1080/14737159.2017.1285228.
  • He, Y., Wu, Y., Fu, J. Z., and Wu, W. B. (2015) Fabrication of paper-based microfluidic analysis devices: A review. RSC Adv. 5: 78109–78127. doi:10.1039/C5RA09188H.
  • Yamada, K., Henares, T. G., Suzuki, K., and Citterio, D. (2015) Paper-based inkjet-printed microfluidic analytical devices. Angew. Chem. Int. Ed. 54: 5294–5310. doi:10.1002/anie.201411508.
  • Adkins, J., Boehle, K., and Henry, C. (2015) Electrochemical paper-based microfluidic devices. Electroporesis. 36: 1811–1824. doi:10.1002/elps.201500084.
  • Oh, J.-M., and Chow, K.-F. (2015) Recent developments in electrochemical paper-based analytical devices. Anal. Methods. 7: 7951–7960. doi:10.1039/C5AY01724F.
  • Mettakoonpitak, J., Boehle, K., Nantaphol, S., Teengam, P., Adkins, J. A., Srisa-Art, M., and Henry, C. S. (2016) Electrochemistry on paper-based analytical devices: A review. Electroanalysis. 28: 1420–1436. doi:10.1002/elan.201501143.
  • Yao, B., Zhang, J., Kou, T. Y., Song, Y., Liu, T. Y., and Li, Y. (2017) Paper-based electrodes for flexible energy storage devices. Adv. Sci. 4: 1700107. doi:10.1002/advs.201700107.
  • Sriram, G, Bhat, M. P., Patil, P., Uthappa, U. T., Jung, H. Y., Altalhi, T., Kumeria, T., Aminabhavi, T. M., Pai, R. K., Madhuprasad, and Kurkuri, M. D. (2017) Paper-based microfluidic analytical devices for colorimetric detection of toxic ions: A review. Trends Anal. Chem. 93: 212–227. doi:10.1016/j.trac.2017.06.005.
  • Morbioli, G. G., Mazzu-Nascimento, T., Stockton, A. M., and Carrilho, E. (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (µPADs) – A review. Anal. Chim. Acta. 970: 1–22. doi:10.1016/j.aca.2017.03.037.
  • L., Yu, J. H., Ge, S. G., and Yan, M. (2014) Lab-on-paper-based devices using chemiluminescence and electrogenerated chemiluminescence detection. Anal. Bioanal. Chem. 406: 5613–5630. doi:10.1007/s00216-014-7756-1.
  • Gross, E. M., Durant, H. E., Hipp, K. N., and Lai, R. Y. (2017) Electrochemiluminescence detection in paper-based and other inexpensive microfluidic devices. ChemElectroChem. 4: 1594–1603. doi:10.1002/celc.201700426.
  • Busa, L. S. A., Mohammadi, S., Maeki, M., Ishida, A., Tani, H., and Tokeshi, M. (2016) Advances in microfluidic paper-based analytical devices for food and water analysis. Micromachines. 7: 86. doi:10.3390/mi7050086.
  • Meredith, N. A., Quinn, C., Cate, D. M., Reilly, T. H., Volckens, J., and Henry, C. S. (2016) Paper-based analytical devices for environmental analysis. Analyst. 141: 1874–1887. doi:10.1039/C5AN02572A.
  • Yetisen, A. K., Akram, M. S., and Lowe, C. R. (2013) Paper-based microfluidic point-of-care diagnostic devices. Lab Chip. 13: 2210–2251. doi:10.1039/c3lc50169h.
  • Jeong, S.-G., Kim, J., Nam, J.-O., Song Y. S., and Lee C.-S. (2013) Paper-based analytical device for quantitative urinalysis. Int. Neurourol. J. 17: 155–161. doi:10.5213/inj.2013.17.4.155.
  • Santhiago, M., Nery, E. W., Santos, G. P., and Kubota, L. T. (2014) Microfluidic paper-based devices for bioanalytical applications. Bioanalysis. 6: 89–106. doi:10.4155/bio.13.296.
  • Rozand, C. (2014) Paper-based analytical devices for point-of-care infectious disease testing. Eur. J. Clin. Microbiol. Infect. Dis. 33: 147–156. doi:10.1007/s10096-013-1945-2.
  • Xia, Y., Si, J., and Li, Z. (2016) Fabrication techniques for microfluidic paper-based analytical devices and their applications for biological testing: A review. Biosens. Bioelectron. 77: 774–789. doi:10.1016/j.bios.2015.10.032.
  • Lim, W. Y., Goh, B. T., and Khor, S. M. (2017) Microfluidic paper-based analytical devices for potential use in quantitative and direct detection of disease biomarkers in clinical analysis. J. Chromatogr. B. 1060: 424442. doi:10.1016/j.jchromb.2017.06.040.
  • Briquaire, R., Colwell, R. R., Boncy, J., Rossignol, E., Dardy, A., Pandini, I., Villeval, F., Machuron, J.-L., Huq, A., and Rashed, S. (2017) Application of a paper based device containing a new culture medium to detect Vibrio cholerae in water samples collected in Haiti. J. Microbiol. Methods. 133: 23–31. doi:10.1016/j.mimet.2016.12.014.
  • Liu, S., Su, W., and Ding, X. (2016) A review on microfluidic paper-based analytical devices for glucose detection. Sensors. 16: 2086. doi:10.3390/s16122086.
  • Jeong, S.-G., Kim, J., Jin, S. H., Park, K.-S., and Lee, C.-S. (2016) Flow control in paper-based microfluidic device for automatic multistep assays: A focused minireview. Korean J. Chem. Eng. 33: 2761–2770. doi:10.1007/s11814-016-0161-z.
  • Sharifi, F., Ghobadian, S., Cavalcanti, F. R., and Hashemi, N. (2015) Paper-based devices for energy applications. Renew. Sust. Energ. Rev. 52: 1453–1472. doi:10.1016/j.rser.2015.08.027.
  • Posthuma-Trumpie, G. A., Korf, J., and van Amerongen, A. (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal. Bioanal. Chem. 393: 569–582 doi:10.1007/s00216-008-2287-2.
  • Quesada-Gonzalez, D., and Merkoci, A. (2015) Nanoparticle-based lateral flow biosensors. Biosens. Bioelectron. 73: 47–63 doi:10.1016/j.bios.2015.05.050.
  • Eltzov, E., Guttel, S., Kei, A. L. Y., Sinawang, P. D., Ionescu, R. E., and Marks, R. S. (2015) Lateral flow immunoassays – from paper strip to smartphone technology. Electroanalysis. 27: 2116–2130. doi:10.1002/elan.201500237.
  • Bahadir, E. B., and Sezginturk, M. K. (2016) Lateral flow assays: Principles, designs and labels. Trends Anal. Chem. 82: 286–306. doi:10.1016/j.trac.2016.06.006.
  • Lewis, G. G., Robbins, J. S., and Phillips, S. T. (2013) Point-of-care assay platform for quantifying active enzymes to femtomolar levels using measurements of time as the readout. Anal. Chem. 85: 10432–10439. doi:10.1021/ac402415v.
  • Zhang, Y., Zhou, C., Nie, J., Le, S., Qin, Q., Liu, F., Li, Y., and Li, J. (2014) Equipment-free quantitative measurement for microfluidic paper-based analytical devices fabricated using the principles of movable-type printing. Anal. Chem. 86: 2005–2012. doi:10.1021/ac403026c.
  • Lewis, G. G., Robbins, J. S., and Phillips, S. T. (2014) A prototype point-of-use assay for measuring heavy metal contamination in water using time as a quantitative readout. Chem. Commun. 50: 5352–5354. doi:10.1039/C3CC47698G.
  • Zhang, Y., Fan, J., Nie, J., Le, S., Zhu, W., Gao, D., Yang, J., Zhang, S., and Li, J. (2015) Timing readout in paper device for quantitative point-of-use hemin/G-quadruplex DNAzyme-based bioassays. Biosens. Bioelectron. 73: 13–18. doi:10.1016/j.bios.2015.04.081.
  • Cate, D. M., Dungchai, W., Cunningham, J. C., Volckens, J., and Henry, C. S. (2013) Simple, distance-based measurement for paper analytical devices. Lab Chip. 13: 2397–2404. doi:10.1039/c3lc50072a.
  • Cate, D. M., Noblitt S. D., Volckens, J., and Henry, C. S. (2015) Multiplexed paper analytical device for quantification of metals using distance-based detection. Lab Chip. 15: 2808–2818. doi:10.1039/C5LC00364D.
  • Yamada, K., Henares, T. G., Suzuki, K., and Citterio, D. (2015) Distance-based tear lactoferrin assay on microfluidic paper device using interfacial interactions on surface-modified cellulose. ACS Appl. Mater. Interfaces. 7: 24864–24875. doi:10.1021/acsami.5b08124.
  • Wei, X. F., Tian, T., Jia, S. S., Zhu, Z., Ma, Y. L., Sun, J. J., Lin, Z. Y., and Yang, C. J. (2016) Microfluidic distance readout sweet hydrogel integrated paper-based analytical device (μDiSH-PAD) for visual quantitative point-of-care testing. Anal. Chem. 88: 2345–2352. doi:10.1021/acs.analchem.5b04294.
  • Tian, T., Li, J., Song, Y., Zhou, L., Zhu Z., and Yang, C. J. (2016) Distance-based microfluidic quantitative detection methods for point-of-care testing. Lab Chip. 16: 1139–1151. doi:10.1039/C5LC01562F.
  • Tian, T., An, Y., Wu, Y., Song, Y., Zhu, Z., and Yang, C. (2017) Integrated distance-based origami paper analytical device for one-step visualized analysis. ACS Appl. Mater. Interfaces. 9: 30480–30487 doi:10.1021/acsami.7b09717.
  • Hongwarittorrn, I., Chaichanawongsaroj, N., and Laiwattanapaisal, W. (2017) Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta. 175: 135–142. doi:10.1016/j.talanta.2017.07.019.
  • Pratiwia, R., Nguyend, M. P., Ibrahima, S., Yoshioka, N., Henry, C. S., and Tjahjono, D. H. (2017) A selective distance-based paper analytical device for copper(II) determination using a porphyrin derivative. Talanta. 174: 493–499. doi:10.1016/j.talanta.2017.06.041.
  • Cai, L., Fang, Y., Mo, Y., Huang, Y., Xu, C., Zhang, Z., and Wang, M. (2017) Visual quantification of Hg on a microfluidic paper-based analytical device using distance-based detection technique. AIP Adv. 7: 085214. doi:10.1063/1.4999784.
  • Buking, S., Saetear, P., Tiyapongpattana, W., Uraisin, K., Wilairat, P., Nacapricha, D., and Ratanawimarnwong, N. (2018) Microfluidic paper-based analytical device for quantification of lead using reaction band-length for identification of bullet hole and its potential for estimating firing distance. Anal. Sci. 34: 83–89. doi:10.2116/analsci.34.83.
  • Piyanan, T., Athipornchai, A., Henry, C. S., and Sameenoi, Y. (2018) An instrument-free detection of antioxidant activity using paper-based analytical devices coated with nanoceria. Anal. Sci. 34: 97–102. doi:10.2116/analsci.34.97.
  • Shimada, Y., and Kaneta, T. (2018) Highly sensitive paper-based analytical devices with the introduction of a large-volume sample via continuous flow. Anal. Sci. 34: 65–70. doi:10.2116/analsci.34.65.
  • Lewis, G. G., DiTucci, M. J., and Phillips, S. T. (2012) Quantifying analytes in paper-based microfluidic devices without using external electronic readers. Angew. Chem. Int. Ed. 124: 12879–12882. doi:10.1002/ange.201207239.
  • Karita, S., and Kaneta, T. (2014) Acid-base titrations using microfluidic paper-based analytical devices. Anal. Chem. 86: 12108–12114. doi:10.1021/ac5039384.
  • Karita, S., and Kaneta, T. (2016) Chelate titrations of Ca2+ and Mg2+ using microfluidic paper-based analytical devices. Anal. Chim. Acta. 924: 60–67. doi:10.1016/j.aca.2016.04.019.
  • Yamada, K., Suzuki, K., and Citterio, D. (2017) Text-displaying colorimetric paper-based analytical device, ACS Sens. 2: 1247–1254. doi:10.1021/acssensors.7b00464.
  • Li, M., Tian, J., Al-Tamimi, M., and Shen W. (2012) Paper-based blood typing device that reports patient's blood type “in writing”. Angew. Chem. Int. Ed. 51: 5497–5501. doi:10.1002/anie.201201822.
  • Carrasquilla, C., Little, J. R. L., Li, Y., and Brennan, J. D. (2015) Patterned paper sensors printed with long-chain DNA aptamers, Chem. Eur. J. 21: 7369–7373. doi:10.1002/chem.201500949.
  • Chen, X., Yu, S., Yang, L., Wang J., and Jiang C. (2016) Fluorescence and visual detection of fluoride ions using a photoluminescent graphene oxide paper sensor. Nanoscale. 8: 13669–13677. doi:10.1039/C6NR02878K.
  • Ellerbee, A. K., Phillips, S. T., Siegel, A. C., Mirica, K. A., Martinez, A. W., Striehl, P., Jain, N., Prentiss, M., and Whitesides, G. M. (2009) Quantifying colorimetric assays in paper-based microfluidic devices by measuring the transmission of light through paper. Anal. Chem. 81: 8447–8452. doi:10.1021/ac901307q.
  • Ferreira, D. C. M., Giordano, G. F., Soares, C. C. D. P., de Oliveira, J. F. A., Mendes, R. K., Piazzetta, M. H., Gobbi, A. L., and Cardoso, M. B. (2015) Optical paper-based sensor for ascorbic acid quantification using silver nanoparticles. Talanta. 141:188–194. doi:10.1016/j.talanta.2015.03.067.
  • Swanson, C., Lee, S., Aranyosi, A. J., Tien, B., Chan, C., Wong, M., Lowe, J., Jain, S., and Ghaffari, R. (2015) Rapid light transmittance measurements in paper-based microfluidic devices. Sens. and Bio-Sens. Res. 5: 55–61. doi:10.1016/j.sbsr.2015.07.005.
  • Fiedoruk-Pogrebniak, M., Granica, M., and Koncki, R. (2018) Compact detectors made of paired leds for photometric and fluorometric measurements on paper. Talanta. 178: 31–36. doi:10.1016/j.talanta.2017.08.091.
  • Yang, X., Piety, N. Z., Vignes, S. M., Benton, M. S., Kanter, J., and Shevkoplyas, S. S. (2013) Simple paper-based test for measuring blood hemoglobin concentration in resource-limited settings. Clin. Chem. 59: 1506–1513. doi:10.1373/clinchem.2013.204701.
  • Martinez, A. W., Phillips, S. T., Carrilho, E., Thomas, S. W. III, Sindi, H., and Whitesides, G. M. (2008) Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 80: 3699–3707. doi:10.1021/ac800112r.
  • Rasband, W. S. (1997–2016) ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA, https://imagej.nih.gov/ij/.
  • Burger, W., and Burge, M. J. (2009) Principles of digital image processing. Fundamental techniques. Springer, London.
  • Sharma, G. (2002) Digital color imaging handbook. CRC Press, Boca Raton, London, New York, Washington, D.C.
  • Jayawardane, B. M., Mckelvie, I. D., and Kolev, S. D. (2015) Development of a gas-diffusion microfluidic paper-based analytical device (µPAD) for the determination of ammonia in wastewater samples. Anal. Chem. 87 (9): 4621–4626. doi:10.1021/acs.analchem.5b00125.
  • Birch, N. C., and Stickle, D. F. (2003) Example of use of a desktop scanner for data acquisition in a colorimetric assay. Clin. Chim. Acta. 333 (1): 95–96. doi:10.1016/S0009-8981(03)00168-2.
  • Grudpan, K., Kolev, S. D., Lapanantnopakhun, S., Mckelvie, I. D., and Wongwilai, W. (2015) Applications of everyday it and communications devices in modern analytical chemistry: A review. Talanta. 136: 84–94. doi:10.1016/j.talanta.2014.12.042.
  • Zhang, D., and Liu, Q. (2016) Biosensors and bioelectronics on smartphone for portable biochemical detection. Biosens. Bioelectron. 75: 273–284. doi:10.1016/j.bios.2015.08.037.
  • Lopez-Marzo, A. M., and Merkoci, A. (2016) Paper-based sensors and assays: A success of the engineering design and the convergence of knowledge areas. Lab Chip. 16: 3150–3176. doi:10.1039/C6LC00737F.
  • Roda, A., Michelini, E., Zangheri, M., Di Fusco, M., Calabria, D., and Simoni, P. (2016) Smartphone-based biosensors: A critical review and perspectives. Trends Anal. Chem. 79: 317–325. doi:10.1016/j.trac.2015.10.019.
  • Morbioli, G. G., Mazzu-Nascimento, T., Stockton, A. M., and Carrilho, E. (2017) Technical aspects and challenges of colorimetric detection with microfluidic paper-based analytical devices (µPADs) – A review. Anal. Chim. Acta. 970: 1–22. doi:10.1016/j.aca.2017.03.037.
  • Komatsu, T., Mohammadi, S., Busa, L. S., Maeki, M., Ishida, A., Tani, H., and Tokeshi, M. (2016) Image analysis for a microfluidic paper-based analytical device using the CIE L*a*b* color system. Analyst. 141: 6507–6509. doi:10.1039/C6AN01409G.
  • Phansi, P., Sumantakul, S., Wongpakdee, T., Fukana, N., Ratanawimarnwong, N., Sitanurak, J., and Nacapricha, D. (2016) Membraneless gas-separation microfluidic paper-based analytical devices for direct quantitation of volatile and nonvolatile compounds. Anal. Chem. 88: 8749–8756. doi:10.1021/acs.analchem.6b02103.
  • Satarpai, T., Shiowatana, J., and Siripinyanond, A. (2016) Paper-based analytical device for sampling, on-site preconcentration and detection of ppb lead in water. Talanta. 154: 504–510. doi:10.1016/j.talanta.2016.04.017.
  • Choodum, A., Kanatharana, P., Wongniramaikul, W., and Daeid, N. N. (2013) Using the iphone as a device for a rapid quantitative analysis of trinitrotoluene in soil. Talanta. 115: 143–149. doi:10.1016/j.talanta.2013.04.037.
  • Chen, G. H., Chen, W. Y., Yen, Y. C., Wang, C. W., Chang, H. T., and Chen, C. F. (2014) Detection of mercury(II) ions using colorimetric gold nanoparticles on paper-based analytical devices. Anal. Chem. 86 (14): 6843–6849. doi:10.1021/ac5008688.
  • Songjaroen, T., Dungchai, W., Chailapakul, O., and Laiwattanapaisal, W. (2011) Novel, simple and low-cost alternative method for fabrication of paper-based microfluidics by wax dipping. Talanta. 85: 2587–2593. doi:10.1016/j.talanta.2011.08.024.
  • Chun, H. J., Park, Y. M., Han, Y. D., Jang, Y. H., and Yoon, H. C. (2014) Paper-based glucose biosensing system utilizing a smartphone as a signal reader. BioChip J. 8: 218–226. doi:10.1007/s13206-014-8308-7.
  • Oncescu, V., O'dell, D., and Erickson, D. (2013) Smartphone based health accessory for colorimetric detection of biomarkers in sweat and saliva. Lab Chip. 13: 3232–3238. doi:10.1039/c3lc50431j.
  • Meelapsom, R., Jarujamrus, P., Amatatongchai, M., Chairam, S., Kulsing, C., and Shen, W. (2016) Chromatic analysis by monitoring unmodified silver nanoparticles reduction on double layer microfluidic paper-based analytical devices for selective and sensitive determination of mercury(II). Talanta. 155: 193–201. doi:10.1016/j.talanta.2016.04.037.
  • Moonrungsee, N., Pencharee, S., and Jakmunee, J. (2015) Colorimetric analyzer based on mobile phone camera for determination of available phosphorus in soil. Talanta. 136: 204–209. doi:10.1016/j.talanta.2015.01.024.
  • García, A., Erenas, M. M., Marinetto, E. D., Abad, C. A., De Orbe-Paya, I., Palma, A. J., and Capitán-Vallvey, L. F. (2011) Mobile phone platform as portable chemical analyzer. Sen. Actuators B. 156: 350–359. doi:10.1016/j.snb.2011.04.045.
  • Yakoh, A., Rattanarat, P., Siangproh, W., and Chailapakul, O. (2018) Simple and selective paper-based colorimetric sensor for determination of chloride ion in environmental samples using label-free silver nanoprisms. Talanta. 178: 134–140. doi:10.1016/j.talanta.2017.09.013.
  • Guan, L., Tian, J., Cao, R., Li, M., Cai, Z., and Shen, W. (2014) Barcode-like paper sensor for smartphone diagnostics: An application of blood typing. Anal. Chem. 86: 11362–11367. doi:10.1021/ac503300y.
  • Park, Y. M., Han, Y. D., Kim, K. R., Zhang, C., and Yoon, H. C. (2015) An immunoblot-based optical biosensor for screening of osteoarthritis using a smartphone-embedded illuminometer. Anal. Methods. 7 (15): 6437–6442. doi:10.1039/C5AY01198A.
  • Salles, M. O., Meloni, G. N., De Araujo, W. R., and Paixão, T. R. L. C. (2014) Explosive colorimetric discrimination using a smartphone, paper device and chemometrical approach. Anal. Methods. 6: 2047–2052. doi:10.1039/C3AY41727A.
  • Lopez-Ruiz, N., Curto, V. F., Erenas, M. M., Benito-Lopez, F., Diamond, D., Palma, A. J., and Capitan-Vallvey, L. F. (2014) Smartphone-based simultaneous pH and nitrite colorimetric determination for paper microfluidic devices. Anal. Chem. 86: 9554–9562. doi:10.1021/ac5019205.
  • Sicard, C., Glen, C., Aubie, B., Wallace, D., Jahanshahi-Anbuhi, S., Pennings, K., Daigger, G. T., Pelton, R., Brennan, J. D., and Filipe, C. D. (2015) Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water. Res. 70: 360–369. doi:10.1016/j.watres.2014.12.005.
  • Dungchai, W., Chailapakul, O., and Henry, C. S. (2009) Electrochemical detection for paper-based microfluidics. Anal. Chem. 81: 5821–5826. doi:10.1021/ac9007573.
  • Oh, J., and Chow, K. (2015) Recent developments in electrochemical paper-based analytical devices. Anal. Methods. 7: 7951–7960. doi:10.1039/C5AY01724F.
  • Hasanzadeh, M., and Shadjou, N. (2016) Electrochemical and photoelectrochemical nano-immunesensing using origami paper based method. Mater. Sci. Eng. C. 61: 979–1001. doi:10.1016/j.msec.2015.12.031.
  • Hu, C., Bai, X., Wang, Y., Jin, W., Zhang, X., and Hu, S. (2012) Inkjet printing of nanoporous gold electrode arrays on cellulose membranes for high-sensitive paper-like electrochemical oxygen sensors using ionic liquid electrolytes. Anal. Chem. 84: 3745–3750. doi:10.1021/ac3003243.
  • Dossi, N., Toniolo, R., Pizzariello, A., Impellizzieri, F., Piccin, E., and Bontempelli, G. (2013) Pencil-drawn paper supported electrodes as simple electrochemical detectors for paper-based fluidic devices. Electrophoresis. 34: 2085–2091. doi:10.1002/elps.201200425.
  • Godino, N., Gorkin, R., Bourke, K., and Ducree, J. (2012) Fabricating electrodes for amperometric detection in hybrid paper/polymer lab-on-a-chip devices. Lab Chip. 12: 3281–3284. doi:10.1039/c2lc40223h.
  • Fosdick, S. E., Anderson, M. J., Renault, C., Degregory, P. R., Loussaert, J. A., and Crooks, R. M. (2014) Wire, mesh, and fiber electrodes for paper-based electroanalytical devices. Anal. Chem. 86: 3659–3666. doi:10.1021/ac5004294.
  • Li, Z., Li, F., Hu, J., Wee, W. H., Han, Y. L., Pingguan-Murphy, B., Lu, T. J., and Xu, F. (2015) Direct writing electrodes using a ball pen for paper-based point-of-care testing. Analyst. 140: 5526–5535. doi:10.1039/C5AN00620A.
  • Arduini, F., Micheli, L., Moscone, D., Palleschi, G., Piermarini, S., Ricci, F., and Volpe, G. (2016) Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. Trends Anal. Chem. 79: 114–126. doi:10.1016/j.trac.2016.01.032.
  • Nantaphol, S., Chailapakul, O., and Siangproh, W. (2015) A novel paper-based device coupled with a silver nanoparticle-modified boron-doped diamond electrode for cholesterol detection. Anal. Chim. Acta. 891: 136–143. doi:10.1016/j.aca.2015.08.007.
  • Rungsawang, T., Punrat, E., Adkins, J., Henry, C., and Chailapakul, O. (2016) Development of electrochemical paper-based glucose sensor using cellulose-4-aminophenylboronic acid-modified screen-printed carbon electrode. Electroanalysis. 28: 462–468. doi:10.1002/elan.201500406.
  • Carvalha, R. F., Kfouri, M. S., Piazetta, M. H. O., Gobbi, A. L., and Kubota, L. T. (2010) Electrochemical detection in a paper-based separation device. Anal. Chem. 82: 1162–1165. doi:10.1021/ac902647r.
  • Ge, S., Zhang, L., Zhang, Y., Liu, H., Huang, J., Yan, M., and Yu, J. (2015) Electrochemical K-562 cells sensor based on origami paper device for point-of-care testing. Talanta. 145: 12–19. doi:10.1016/j.talanta.2015.05.008.
  • Fan, L., Hao, Q., and Kan, X. (2018) Three-dimensional graphite paper based imprinted electrochemical sensor for tertiary butylhydroquinone selective recognition and sensitive detection. Sens. Actuators. B. 256: 520–527. doi:10.1016/j.snb.2017.10.085.
  • Nunez-Bajo, E., Blanco-Lopez, M. C., Costa-Garcia, A., and Fernandez-Abedul, M. T. (2018) In situ gold-nanoparticle electrogeneration on gold films deposited on paper for non-enzymatic electrochemical determination of glucose. Talanta. 178: 160–165. doi:10.1016/j.talanta.2017.08.104.
  • Nie, Z., Deiss, F., Liu, X., Akbulut, O., and Whitesides, G. M. (2010) Integration of paper-based microfluidic devices with commercial electrochemical readers. Lab Chip. 10: 3163–3169. doi:10.1039/c0lc00237b.
  • Wu, G., and Zaman, M. H. (2015) Amperometric measurements of ethanol on paper with a glucometer. Talanta. 134: 194–199. doi:10.1016/j.talanta.2014.10.061.
  • Wang, C. C., Hennek, J. W., Ainla, A., Kumar, A. A., Lan, W. J., Im, J., Smith, B. S., Zhao, M., and Whitesides, G. M. (2016) A paper-based “pop-up” electrochemical device for analysis of beta-hydroxybutyrate. Anal. Chem. 88: 6326–6333. doi:10.1021/acs.analchem.6b00568.
  • Zhao, C., Thuo, M. M., and Liu, X. (2015) Corrigendum: A microfluidic paper-based electrochemical biosensor array for multiplexed detection of metabolic biomarkers. Sci. Technol. Adv. Mater. 16: 049501.
  • Fujimoto, T., Kawahara, S., Fuchigami, Y., Shimokawa, S., Nakamura, Y., Fukayama, K., Kamahori, M., and Uno, S. (2017) Portable electrochemical sensing system attached to smartphones and its incorporation with paper-based electrochemical glucose sensor. Int. J. Electrical Comput. Eng.. 7: 1423–1429. doi:10.11591/ijece.v7i3.pp1423-1429.
  • Kawahara, S., Fuchigmami, Y., Shimokawa, S., Nakamura, Y., Kuretake, T., Kamahori, M., and Uno, S. (2017) Portable electrochemical gas sensing system with a paper-based enzyme electrode. TELKOMNIKA. 15: 895–902.
  • Zhao, C., and Liu, X., (2016) A portable paper-based microfluidic platform for multiplexed electrochemical detection of human immunodeficiency virus and hepatitis c virus antibodies in serum. Biomicrofluidics. 10: 024119. doi:10.1063/1.4945311.
  • Canovas, R., Parrilla, M., Blondeau, P., and Andrade, F. J. (2017) A novel wireless paper-based potentiometric platform for monitoring glucose in blood. Lab Chip. 17: 2500–2507. doi:10.1039/C7LC00339K.
  • Fan, Y., Liu, J., Wang, Y., Luo, J., Xu, H., Xu, S., and Cai, X. (2017) A wireless point-of-care testing system for the detection of neuron-specific enolase with microfluidic paper-based analytical devices. Biosens. Bioelectron. 95: 60–66. doi:10.1016/j.bios.2017.04.003.
  • Liang, L., Su, M., Li, L., Lan, F., Yang, G., Ge, S., Yu, J., and Song, X. (2016) Aptamer-based fluorescent and visual biosensor for multiplexed monitoring of cancer cells in microfluidic paper-based analytical devices. Sens. Actuators. B. 229: 347–354. doi:10.1016/j.snb.2016.01.137.
  • Ueland, M., Blanes, L., Taudte, R. V., Stuart, B. H., Cole, N., Willis, P., Roux, C., and Doble, P. (2016) Capillary-driven microfluidic paper-based analytical devices for lab on a chip screening of explosive residues in soil. J. Chromatogr. A. 1436: 28–33. doi:10.1016/j.chroma.2016.01.054.
  • Wen, X., Wang, Q., and Fan, Z. (2018) Highly selective turn-on fluorogenic chemosensor for Zn(II) detection based on aggregation-induced emission. J. Lumin. 194: 366–373. doi:10.1016/j.jlumin.2017.10.064.
  • Anjana, R. R., Anjali Devi, J. S., Jayasree, M., Aparna, R. S., Aswathy, B., Praveen, G. L., Lekha, G. M., and Sony, G. (2018) S,n-doped carbon dots as a fluorescent probe for bilirubin. Microchim. Acta. 185: 1–11. doi:10.1007/s00604-017-2574-8.
  • Wu, H, Yang, L., Chen, L., Xiang, F., and Gao, H. (2017) Visual determination of ferric ions in aqueous solution based on a high selectivity and sensitivity ratiometric fluorescent nanosensor. Anal. Methods. 9: 5935–5942. doi:10.1039/C7AY01917C.
  • Das, P., and Krull, U. J. (2017) Detection of a cancer biomarker protein on modified cellulose paper by fluorescence using aptamer-linked quantum dots. Analyst. 142: 3132–3135. doi:10.1039/C7AN00624A.
  • Zamora-Galvez, A., Morales-Narvaez, E., Romero, J., and Merkoci, A. (2018) Photoluminescent lateral flow based on non-radiative energy transfer for protein detection in human serum. Biosens. Bioelectron. 100: 208–213. doi:10.1016/j.bios.2017.09.013.
  • Zhang, D., Broyles, D., Hunt, E. A., Dikici, E., Daunert, S., and Deo, S. K. (2017) A paper-based platform for detection of viral RNA. Analyst. 142: 815–823. doi:10.1039/C6AN02452A.
  • Liang, L., Lan, F., Yin, X., Ge, S., Yu, J., and Yan, M. (2017) Metal-enhanced fluorescence/visual bimodal platform for multiplexed ultrasensitive detection of microRNA with reusable paper analytical devices. Biosens. Bioelectron. 95: 181–188. doi:10.1016/j.bios.2017.04.027.
  • Taudte, R. V., Beavis, A., Wilson-Wilde, L., Roux, C., Doble, P., and Blanes, L. (2013) A portable explosive detector based on fluorescence quenching of pyrene deposited on coloured wax-printed mupads. Lab Chip. 13: 4164–4172. doi:10.1039/c3lc50609f.
  • Petruci, J. F., and Cardoso, A. A. (2016) Portable and disposable paper-based fluorescent sensor for in situ gaseous hydrogen sulfide determination in near real-time. Anal. Chem. 88: 11714–11719. doi:10.1021/acs.analchem.6b03325.
  • Petryayeva, E., and Algar, W. R. (2013) Proteolytic assays on quantum-dot-modified paper substrates using simple optical readout platforms. Anal. Chem. 85: 8817–8825. doi:10.1021/ac4020066.
  • Guzman, J. M. C. C., Tayo, L. L., Liu, C-C., Wang, Y-N., and Fu, L-M. (2018) Rapid microfluidic paper-based platform for low concentration formaldehyde detection. Sens. Actuators B. 255: 3623–3629. doi:10.1016/j.snb.2017.09.080.
  • Thom, N. K., Lewis, G. G., Yeung, K., and Phillips, S. T. (2014) Quantitative fluorescence assays using a self-powered paper-based microfluidic device and a camera-equipped cellular phone. RSC Adv. 4: 1334–1340. doi:10.1039/C3RA44717K.
  • Song, Y. Z., Zhang, X. X., Ma, B., Wu, Z. Y., and Zhang, Z. Q. (2017) Performance of electrokinetic stacking enhanced paper-based analytical device with smartphone for fast detection of fluorescent whitening agent. Anal. Chim. Acta. 995: 85–90. doi:10.1016/j.aca.2017.09.040.
  • Alahmad, W., Uraisin, K., Nacapricha, D., and Kaneta, T. (2016) A miniaturized chemiluminescence detection system for a microfluidic paper-based analytical device and its application to the determination of chromium (III). Anal. Methods. 8: 5414–5420. doi:10.1039/C6AY00954A.
  • Liu, F., and Zhang, C. (2015) A novel paper-based microfluidic enhanced chemiluminescence biosensor for facile, reliable and highly-sensitive gene detection of listeria monocytogenes. Sens. Actuators B. 209: 399–406. doi:10.1016/j.snb.2014.11.099.
  • Lebiga, E., Edwin Fernandez, R., and Beskok, A. (2015) Confined chemiluminescence detection of nanomolar levels of H2O2 in a paper-plastic disposable microfluidic device using a smartphone. Analyst. 140: 5006–5011. doi:10.1039/C5AN00720H.
  • Zangheri, M., Cevenini, L., Anfossi, L., Baggiani, C., Simoni, P., Di Nardo, F., and Roda, A. (2015) A simple and compact smartphone accessory for quantitative chemiluminescence-based lateral flow immunoassay for salivary cortisol detection. Biosens. Bioelectron. 64: 63–68. doi:10.1016/j.bios.2014.08.048.
  • Spyrou, E. M., Kalogianni, D. P., Tragoulias, S. S., Ioannou, P. C., and Christopoulos, T. K. (2016) Digital camera and smartphone as detectors in paper-based chemiluminometric genotyping of single nucleotide polymorphisms. Anal. Bioanal, Chem. 408: 7393–7402. doi:10.1007/s00216-016-9819-y.
  • Gross, E. M., Durant, H. E., Hipp, K. N., and Lai, R. Y. (2017) Electrochemiluminescence detection in paper-based and other inexpensive microfluidic devices. ChemElectroChem. 4: 1594–1603. doi:10.1002/celc.201700426.
  • Delaney, J. L., Hogan, C. F., Tian, J., and Shen, W. (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal. Chem. 83: 1300–1306. doi:10.1021/ac102392t.
  • Mani, V., Kadimisetty, K., Malla, S., Joshi, A. A., and Rusling, J. F. (2013) Paper-based electrochemiluminescent screening for genotoxic activity in the environment. Environ. Sci. Technol. 47: 1937–1944. doi:10.1021/es304426j.
  • Doeven, E. H., Barbante, G. J., Kerr, E., Hogan, C. F., Endler, J. A., and Francis, P. S. (2014) Red-green-blue electrogenerated chemiluminescence utilizing a digital camera as detector. Anal. Chem. 86: 2727–2732. doi:10.1021/ac404135f.
  • Delaney, J. L., Doeven, E. H., Harsant, A. J., and Hogan, C. F. (2013) Use of a mobile phone for potentiostatic control with low cost paper-based microfluidic sensors. Anal. Chim. Acta. 790: 56–60. doi:10.1016/j.aca.2013.06.005.
  • Chen, L., Zhang, C., and Xing, D. (2016) Paper-based bipolar electrode-electrochemiluminescence (BPE-ECL) device with battery energy supply and smartphone read-out: A handheld ECL system for biochemical analysis at the point-of-care level. Sens. and Actuators B: Chem. 237: 308–317. doi:10.1016/j.snb.2016.06.105.
  • Chen, M., Yang, H., Rong, L, and Chen, X. (2016) A gas-diffusion microfluidic paper-based analytical device (µPAD) coupled with portable surface-enhanced Raman scattering (SERS): Facile determination of sulphite in wines. Analyst. 141: 5511–5519. doi:10.1039/C6AN00788K.
  • Villa, J. E., and Poppi, R. J. (2016) A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst. 141: 1966–1972. doi:10.1039/C5AN02398J.
  • Feng, S., Caire, R., Cortazar, B., Turan, M., Wong, A., and Ozcan, A. (2014) Immunochromatographic diagnostic test analysis using google glass. ACS Nano. 8: 3069–3079. doi:10.1021/nn500614k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.