999
Views
16
CrossRef citations to date
0
Altmetric
Reviews

Surface-enhanced spectroscopy: Toward practical analysis probe

, , , &

References

  • Fleischmann, M., Hendra, P. J., and McQuillan, A. J. (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26 (2): 163−166. doi:10.1016/0009-2614(74)85388-1
  • Jeanmaire, D. L., and Van Duyne, R. P. (1977) Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. Interfacial Electrochem. 84 (1): 1−20. doi:10.1016/S0022-0728(77)80224-6
  • Albrecht, M. G., and Creighton, J. A. (1977) Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99 (15): 5215−5217. doi:10.1021/ja00457a071
  • Le Ru, E., Blackie, E., Meyer, M., and Etchegoin, P. G. (2007) Surface enhanced Raman scattering enhancement factors: A comprehensive study. J. Phys. Chem. C. 111 (37): 13794−13803. doi:10.1021/jp0687908
  • Jensen, L., Åstrand, P.-O., Osted, A., Kongsted, J., and Mikkelsen, K. V. (2002) Polarizability of molecular clusters as calculated by a dipole interaction model. J. Chem. Phys. 116 (10): 4001−4010. doi:10.1063/1.1433747
  • King, F. W., Van Duyne, R. P., and Schatz, G. C. (1978) Theory of Raman scattering by molecules adsorbed on electrode surfaces. J. Chem. Phys. 69 (10): 4472−4481. doi:10.1063/1.436436
  • Gersten, J., and Nitzan, A. (1980) Electromagnetic theory of enhanced Raman scattering by molecules adsorbed on rough surfaces. J. Chem. Phys. 73 (7): 3023−3037. doi:10.1063/1.440560
  • Janesko, B. G., and Scuseria, G. E. (2006) Surface enhanced Raman optical activity of molecules on orientationally averaged substrates: Theory of electromagnetic effects. J. Chem. Phys. 125 (12): 124704. doi:10.1063/1.2345368.
  • Chulhai, D. V., and Jensen, L. (2013) Determining molecular orientation with surface-enhanced raman scattering using inhomogenous electric fields. J. Phys. Chem. C. 117 (38): 19622−19631. doi:10.1021/jp4062626
  • Chulhai, D. V., Chen, X., and Jensen, L. (2016) Simulating ensemble-averaged surface-enhanced Raman scattering. J. Phys. Chem. C. 120 (37): 20833−20842. doi:10.1021/acs.jpcc.6b02159
  • Le Ru, E., and Etchegoin, P. (2006) Rigorous justification of the| E| 4 enhancement factor in surface enhanced Raman spectroscopy. Chem. Phys. Lett. 423 (1): 63−66. doi:10.1016/j.cplett.2006.03.042
  • Kelly, K. L., Coronado, E., Zhao, L. L., and Schatz, G. C. (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B. 107 (3): 668−677. doi:10.1021/jp026731y
  • Zhou, Y., Tian, Y., and Zou, S. (2015) Failure and reexamination of the Raman scattering enhancement factor predicted by the enhanced local electric field in a silver nanorod. J. Phys. Chem. C. 119 (49): 27683−27687. doi:10.1021/acs.jpcc.5b08726
  • Zhao, Y.-P., Chaney, S. B., Shanmukh, S., and Dluhy, R. A. (2006) Polarized surface enhanced Raman and absorbance spectra of aligned silver nanorod arrays. J. Phys. Chem. B. 110 (7): 3153−3157. doi:10.1021/jp057406o
  • Prodan, E., Radloff, C., Halas, N. J., and Nordlander, P. (2003) A hybridization model for the plasmon response of complex nanostructures. Science. 302 (5644): 419−422. doi:10.1126/science.1089171.
  • Nordlander, P., Oubre, C., Prodan, E., Li, K., and Stockman, M. (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett. 4 (5): 899−903. doi:10.1021/nl049681c
  • Nordlander, P., and Prodan, E. (2004) Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett. 4 (11): 2209−2213. doi:10.1021/nl0486160
  • Prodan, E., and Nordlander, P. (2004) Plasmon hybridization in spherical nanoparticles. J. Chem. Phys. 120 (11): 5444−5454. doi:10.1063/1.1647518
  • Funston, A. M., Novo, C., Davis, T. J., and Mulvaney, P. (2009) Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 9 (4): 1651−1658. doi:10.1021/nl900034v
  • Sundaramurthy, A., Crozier, K., Kino, G., Fromm, D., Schuck, P., and Moerner, W. (2005) Field enhancement and gap-dependent resonance in a system of two opposing tip-to-tip Au nanotriangles. Phys. Rev. B. 72 (16): 165409. doi:10.1103/PhysRevB.72.165409.
  • Fromm, D. P., Sundaramurthy, A., Kinkhabwala, A., Schuck, P. J., Kino, G. S., and Moerner, W. (2006) Exploring the chemical enhancement for surface-enhanced Raman scattering with Au bowtie nanoantennas. J. Chem. Phys. 124 (6): 061101. doi:10.1063/1.2167649Please check page number “061101” in reference “21” for correctness.
  • Jäckel, F., Kinkhabwala, A., and Moerner, W. (2007) Gold bowtie nanoantennas for surface-enhanced Raman scattering under controlled electrochemical potential. Chem. Phys. Lett. 446 (4): 339−343. doi:10.1016/j.cplett.2007.08.074
  • Hatab, N. A., Hsueh, C.-H., Gaddis, A. L., Retterer, S. T., Li, J.-H., Eres, G., Zhang, Z., and Gu, B. (2010) Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy. Nano Lett. 10 (12): 4952−4955. doi:10.1021/nl102963g
  • Zhang, J., Irannejad, M., and Cui, B. (2015) Bowtie nanoantenna with single-digit nanometer gap for surface-enhanced Raman scattering (SERS). Plasmonics. 10 (4): 831−837. doi:10.1007/s11468-014-9870-5
  • García-Vidal, F. J., and Pendry, J. (1996) Collective theory for surface enhanced Raman scattering. Phys. Rev. Lett. 77 (6): 1163. doi:10.1103/PhysRevLett.77.1163
  • Hulteen, J. C., and Van Duyne, R. P. (1995) Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A. 13 (3): 1553−1558. doi:10.1116/1.579726
  • Haynes, C. L., and Van Duyne, R. P. (2001) Nanosphere lithography: A versatile nanofabrication tool for studies of size-dependent nanoparticle optics. J. Phys. Chem. B. 105 (24): 5599−5611. doi:10.1021/jp010657m
  • Fang, Y., Seong, N.-H., and Dlott, D. D. (2008) Measurement of the distribution of site enhancements in surface-enhanced Raman scattering. Science. 321 (5887): 388−392. doi:10.1126/science.1159499
  • Laurence, T. A., Braun, G. B., Reich, N. O., and Moskovits, M. (2012) Robust SERS enhancement factor statistics using rotational correlation spectroscopy. Nano Lett. 12 (6): 2912−2917. doi:10.1021/nl3005447
  • Benz, F., Tserkezis, C., Herrmann, L. O., De Nijs, B., Sanders, A., Sigle, D. O., Pukenas, L., Evans, S. D., Aizpurua, J., and Baumberg, J. J. (2014) Nanooptics of molecular-shunted plasmonic nanojunctions. Nano Lett. 15 (1): 669−674. doi:10.1021/nl5041786
  • Aikens, C. M., Madison, L. R., and Schatz, G. C. (2013) Raman spectroscopy: The effect of field gradient on SERS. Nat. Photonics. 7 (7): 508−510. doi:10.1038/nphoton.2013.153
  • Moskovits, M. (1982) Surface selection rules. J. Chem. Phys. 77 (9): 4408−4416. doi:10.1063/1.444442
  • Moskovits, M., and Suh, J. (1984) Surface selection rules for surface-enhanced Raman spectroscopy: calculations and application to the surface-enhanced Raman spectrum of phthalazine on silver. J. Phys. Chem. 88 (23): 5526−5530. doi:10.1021/j150667a013
  • Gao, X., Davies, J. P., and Weaver, M. J. (1990) Test of surface selection rules for surface-enhanced Raman scattering: The orientation of adsorbed benzene and monosubstituted benzenes on gold. J. Phys. Chem. A. 94 (17): 6858−6864. doi:10.1021/j100380a059
  • Moskovits, M., and DiLella, D. (1980) Surface-enhanced Raman spectroscopy of benzene and benzene-d 6 adsorbed on silver. J. Chem. Phys. 73 (12): 6068−6075. doi:10.1063/1.440142
  • Ayars, E., Hallen, H., and Jahncke, C. (2000) Electric field gradient effects in Raman spectroscopy. Phys. Rev. Lett. 85 (19): 4180. doi:10.1103/PhysRevLett.85.4180
  • Moskovits, M., and DiLella, D. (1982) Intense quadrupole transitions in the spectra of molecules near metal surfaces. J. Chem. Phys. 77 (4): 1655−1660. doi:10.1063/1.444008
  • Moskovits, M., DiLella, D., and Maynard, K. (1988) Surface Raman spectroscopy of a number of cyclic aromatic molecules adsorbed on silver: Selection rules and molecular reorientation. Langmuir. 4 (1): 67−76. doi:10.1021/la00079a012
  • Polubotko, A. (2012) Manifestation of strong quadrupole light–molecule interaction in the SER and SEHR spectra of pyrazine and phenazine. Chem. Phys. Lett. 519: 110−117. doi:10.1016/j.cplett.2011.10.008
  • Chulhai, D. V., Hu, Z., Moore, J. E., Chen, X., and Jensen, L. (2016) Theory of linear and nonlinear surface-enhanced vibrational spectroscopies. Annu. Rev. Phys. Chem. 67 (1): 541−564. doi:10.1146/annurev-physchem-040215-112347
  • Hallen, H., and Jahncke, C. (2003) The electric field at the apex of a near-field probe: Implications for nano-Raman spectroscopy. J. Raman Spectrosc. 34 (9): 655−662. doi:10.1002/jrs.1048
  • Takase, M., Ajiki, H., Mizumoto, Y., Komeda, K., Nara, M., Nabika, H., Yasuda, S., Ishihara, H., and Murakoshi, K. (2013) Selection-rule breakdown in plasmon-induced electronic excitation of an isolated single-walled carbon nanotube. Nat. Photonics. 7 (7): 550−554. doi:10.1038/nphoton.2013.129
  • Banik, M., El-Khoury, P. Z., Nag, A., Rodriguez-Perez, A., Guarrottxena, N., Bazan, G. C., and Apkarian, V. A. (2012) Surface-enhanced Raman trajectories on a nano-dumbbell: Transition from field to charge transfer plasmons as the spheres fuse. ACS Nano. 6 (11): 10343−10354. doi:10.1021/nn304277n
  • Avila, F., Fernandez, D. J., Arenas, J. F., Otero, J. C., and Soto, J. (2011) Modelling the effect of the electrode potential on the metal–adsorbate surface states: relevant states in the charge transfer mechanism of SERS. Chem. Commun. 47 (14): 4210−4212. doi:10.1039/c0cc05313a
  • Kong, X., Chen, Q., Li, R., Cheng, K., Yan, N., and Yu, B. (2011) Experimental and theoretical investigations on the negative influence of an applied magnetic field on SERS of Ag nanoparticles. Chem. Commun. 47 (40): 11237−11239. doi:10.1039/c1cc14061b
  • Morton, S. M., and Jensen, L. (2009) Understanding the molecule − surface chemical coupling in SERS. J. Am. Chem. Soc. 131 (11): 4090−4098. doi:10.1021/ja809143c
  • Savage, K. J., Hawkeye, M. M., Esteban, R., Borisov, A. G., Aizpurua, J., and Baumberg, J. J. (2012) Revealing the quantum regime in tunnelling plasmonics. Nature., 491 (7425): 574−577. doi:10.1038/nature11653
  • Jensen, L., Zhao, L., Autschbach, J., and Schatz, G. (2005) Theory and method for calculating resonance Raman scattering from resonance polarizability derivatives. J. Chem. Phys. 123 (17): 174110. doi:10.1063/1.2046670
  • Zhao, L., Jensen, L., and Schatz, G. C. (2006) Pyridine-Ag20 cluster: A model system for studying surface-enhanced Raman scattering. J. Am. Chem. Soc. 128 (9): 2911−2919. doi:10.1021/ja0556326
  • Aikens, C. M., and Schatz, G. C. (2006) TDDFT studies of absorption and SERS spectra of pyridine interacting with Au20. J. Phys. Chem. A. 110 (49): 13317−13324. doi:10.1021/jp065206m
  • Zhao, L. L., Jensen, L., and Schatz, G. C. (2006) Surface-enhanced Raman scattering of pyrazine at the junction between two Ag20 nanoclusters. Nano Lett. 6 (6): 1229−1234. doi:10.1021/nl0607378
  • Jensen, L., Aikens, C. M., and Schatz, G. C. (2008) Electronic structure methods for studying surface-enhanced Raman scattering. Chem. Soc. Rev. 37 (5): 1061−1073. doi:10.1039/b706023h
  • Morton, S. M., Silverstein, D. W., and Jensen, L. (2011) Theoretical studies of plasmonics using electronic structure methods. Chem. Rev. 111 (6): 3962−3994. doi:10.1021/cr100265f
  • Morton, S. M., and Jensen, L. (2011) A discrete interaction model/quantum mechanical method to describe the interaction of metal nanoparticles and molecular absorption. J. Chem. Phys. 135 (13): 134103. doi:10.1063/1.3643381
  • Mullin, J., and Schatz, G. C. (2012) Combined linear response quantum mechanics and classical electrodynamics (QM/ED) method for the calculation of surface-enhanced Raman spectra. J. Phys. Chem. A. 116 (8): 1931−1938. doi:10.1021/jp2087829
  • Mullin, J., Valley, N., Blaber, M. G., and Schatz, G. C. (2012) Combined quantum mechanics (TDDFT) and classical electrodynamics (Mie theory) methods for calculating surface enhanced Raman and hyper-Raman spectra. J. Phys. Chem. A. 116 (38): 9574−9581. doi:10.1021/jp307003p
  • Payton, J. L., Morton, S. M., Moore, J. E., and Jensen, L. (2012) A discrete interaction model/quantum mechanical method for simulating surface-enhanced Raman spectroscopy. J. Chem. Phys. 136 (21): 214103. doi:10.1063/1.4722755
  • Payton, J. L., Morton, S. M., Moore, J. E., and Jensen, L. (2013) A hybrid atomistic electrodynamics–quantum mechanical approach for simulating surface-enhanced raman scattering. Acc. Chem. Res. 47 (1): 88−99. doi:10.1021/ar400075r
  • Rinaldi, J. M., Morton, S. M., and Jensen, L. (2013) A discrete interaction model/quantum mechanical method for simulating nonlinear optical properties of molecules near metal surfaces. Mol. Phys. 111 (9–11): 1322−1331. doi:10.1080/00268976.2013.793419
  • Chulhai, D. V., and Jensen, L. (2014) Simulating surface-enhanced Raman optical activity using atomistic electrodynamics-quantum mechanical models. J. Phys. Chem. A. 118 (39): 9069−9079. doi:10.1021/jp502107f
  • Silverstein, D. W., and Jensen, L. (2012) Vibronic coupling simulations for linear and nonlinear optical processes: Theory. J. Chem. Phys. 136 (6): 064111. doi:10.1063/1.3684236
  • Silverstein, D. W., and Jensen, L. (2012) Vibronic coupling simulations for linear and nonlinear optical processes: Simulation results. J. Chem. Phys. 136 (6): 064110. doi:10.1063/1.3684235
  • Hu, Z., Autschbach, J., and Jensen, L. (2014) Simulation of resonance hyper-Rayleigh scattering of molecules and metal clusters using a time-dependent density functional theory approach. J. Chem. Phys. 141 (12): 124305. doi:10.1063/1.4895971
  • Moskovits, M. (2013) Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15 (15): 5301−5311. doi:10.1039/c2cp44030j
  • Islam, S. R., Kwak, D., Kabir, M. H., Hossain, M., and Kwak, K.-S. (2015) The internet of things for health care: A comprehensive survey. IEEE Access. 3: 678−708. doi:10.1109/ACCESS.2015.2437951
  • Luo, S.-C., Sivashanmugan, K., Liao, J.-D., Yao, C.-K., and Peng, H.-C. (2014) Nanofabricated SERS-active substrates for single-molecule to virus detection in vitro: A review. Biosens. Bioelectron. 61: 232−240. doi:10.1016/j.bios.2014.05.013
  • Shafer-Peltier, K. E., Haynes, C. L., Glucksberg, M. R., and Van Duyne, R. P. (2003) Toward a glucose biosensor based on surface-enhanced Raman scattering. J. Am. Chem. Soc. 125 (2): 588−593. doi:10.1021/ja028255v
  • Haynes, C. L., Yonzon, C. R., Zhang, X., and Van Duyne, R. P. (2005) Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36 (6–7): 471−484. doi:10.1002/jrs.1376
  • Yang, S., Dai, X., Stogin, B. B., and Wong, T.-S. (2016) Ultrasensitive surface-enhanced Raman scattering detection in common fluids. Proc. Natl. Acad. Sci. U.S.A. 113 (2): 268−273. doi:10.1073/pnas.1518980113
  • Kamińska, A., Winkler, K., Kowalska, A., Witkowska, E., Szymborski, T., Janeczek, A., and Waluk, J. (2017) SERS-based immunoassay in a microfluidic system for the multiplexed recognition of interleukins from blood plasma: Towards Picogram detection. Sci. Rep. 7 (1): 10656. doi:10.1038/s41598-017-11152-w.
  • Palonpon, A. F., Sodeoka, M., and Fujita, K. (2013) Molecular imaging of live cells by Raman microscopy. Curr. Opin. Chem. Biol. 17 (4): 708−715. doi:10.1016/j.cbpa.2013.05.021
  • Palonpon, A. F., Ando, J., Yamakoshi, H., Dodo, K., Sodeoka, M., Kawata, S., and Fujita, K. (2013) Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 8 (4): 677−692. doi:10.1038/nprot.2013.030
  • Li, S.-S., Guan, Q.-Y., Meng, G., Chang, X.-F., Wei, J.-W., Wang, P., Kang, B., Xu, J.-J., and Chen, H.-Y. (2017) Revealing chemical processes and kinetics of drug action within single living cells via plasmonic Raman probes. Sci. Rep. 7: 2296. doi:10.1038/s41598-017-02510-9
  • Ando, J., Fujita, K., Smith, N. I., and Kawata, S. (2011) Dynamic SERS imaging of cellular transport pathways with endocytosed gold nanoparticles. Nano Lett. 11 (12): 5344−5348. doi:10.1021/nl202877r
  • Huang, K.-C., Bando, K., Ando, J., Smith, N. I., Fujita, K., and Kawata, S. (2014) 3D SERS (surface enhanced Raman scattering) imaging of intracellular pathways. Methods. 68 (2): 348−353. doi:10.1016/j.ymeth.2014.02.007
  • Puppulin, L., Pezzotti, G., Sun, H., Hosogi, S., Nakahari, T., Inui, T., Kumamoto, Y., Tanaka, H., and Marunaka, Y. (2017) Raman micro-spectroscopy as a viable tool to monitor and estimate the ionic transport in epithelial cells. Sci. Rep. 7 (1): 3395. doi:10.1038/s41598-017-03595-yPlease check page number “3395” in reference “76” for correctness.
  • Vo-Dinh, T., Wang, H. N., and Scaffidi, J. (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J. Biophotonics. 3 (1–2): 89−102.
  • Lam, Z., Kong, K. V., Olivo, M., and Leong, W. K. (2016) Vibrational spectroscopy of metal carbonyls for bio-imaging and-sensing. Analyst. 141 (5): 1569−1586. doi:10.1039/C5AN02191J
  • Gustafsson, M. G. (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198 (2): 82−87. doi:10.1046/j.1365-2818.2000.00710.x.
  • Hartschuh, A., Sánchez, E. J., Xie, X. S., and Novotny, L. (2003) High-resolution near-field Raman microscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 90 (9): 095503. doi:10.1103/PhysRevLett.90.095503
  • Jiang, S., Zhang, X., Zhang, Y., Hu, C., Zhang, R., Zhang, Y., Liao, Y., Smith, Z. J., Dong, Z., and Hou, J. (2017) Subnanometer-resolved chemical imaging via multivariate analysis of tip-enhanced Raman maps. Light Sci. Appl. 6 (11): e17098. doi:10.1038/lsa.2017.98
  • Olson, A. P., Spies, K. B., Browning, A. C., Soneral, P. A., and Lindquist, N. C. (2017) Chemically imaging bacteria with super-resolution SERS on ultra-thin silver substrates. Sci. Rep. 7 (1): 9135. doi:10.1038/s41598-017-08915-w
  • Kawata, S., Inouye, Y., and Verma, P. (2009) Plasmonics for near-field nano-imaging and superlensing. Nat. Photonics. 3 (7): 388−394. doi:10.1038/nphoton.2009.111
  • Ichimura, T., Hayazawa, N., Hashimoto, M., Inouye, Y., and Kawata, S. (2004) Tip-enhanced coherent anti-Stokes Raman scattering for vibrational nanoimaging. Phys. Rev. Lett. 92 (22): 220801. doi:10.1103/PhysRevLett.92.220801
  • Bhattarai, A., and El-Khoury, P. Z. (2017) Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering. Chem. Commun. 53 (53): 7310−7313. doi:10.1039/C7CC02593A
  • Willets, K. A. (2014) Super-resolution imaging of SERS hot spots. Chem. Soc. Rev. 43 (11): 3854−3864. doi:10.1039/C3CS60334B
  • Watanabe, K., Palonpon, A. F., Smith, N. I., Kasai, A., Hashimoto, H., Kawata, S., and Fujita, K. (2015) Structured line illumination Raman microscopy. Nat. Commun. 6: 10095. doi:10.1038/ncomms10095.
  • Böhme, R., Mkandawire, M., Krause-Buchholz, U., Rösch, P., Rödel, G., Popp, J., and Deckert, V. (2011) Characterizing cytochrome c states–TERS studies of whole mitochondria. Chem. Commun. 47 (41): 11453−11455. doi:10.1039/c1cc15246g
  • Stranahan, S. M., and Willets, K. A. (2010) Super-resolution optical imaging of single-molecule SERS hot spots. Nano Lett. 10 (9): 3777−3784. doi:10.1021/nl102559d
  • Lee, C., Kim, S. T., Jeong, B. G., Yun, S. J., Song, Y. J., Lee, Y. H., Park, D. J., and Jeong, M. S. (2017) Tip-enhanced Raman scattering imaging of two-dimensional tungsten disulfide with optimized tip fabrication process. Sci. Rep. 7: 40810. doi:10.1038/srep40810.
  • Molas, M. R., Nogajewski, K., Potemski, M., and Babiński, A. (2017) Raman scattering excitation spectroscopy of monolayer WS 2. Sci. Rep. 7 (1): 5036. doi:10.1038/s41598-017-05367-0
  • Xu, H., Bjerneld, E. J., Käll, M., and Börjesson, L. (1999) Spectroscopy of single hemoglobin molecules by surface enhanced Raman scattering. Phys. Rev. Lett. 83 (21): 4357. doi:10.1103/PhysRevLett.83.4357
  • Nie, S., and Emory, S. R. (1997) Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science. 275 (5303): 1102−1106. doi:10.1126/science.275.5303.1102.
  • Michaels, A. M., Jiang, J., and Brus, L. (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J. Phys. Chem. B. 104 (50): 11965−11971. doi:10.1021/jp0025476
  • Zrimsek, A. B., Chiang, N., Mattei, M., Zaleski, S., McAnally, M. O., Chapman, C. T., Henry, A.-I., Schatz, G. C., and Van Duyne, R. P. (2016) Single-molecule chemistry with surface-and tip-enhanced Raman spectroscopy. Chem. Rev. 117 (11): 7583−7613. doi:10.1021/acs.chemrev.6b00552
  • Kneipp, K., Wang, Y., Kneipp, H., Perelman, L. T., Itzkan, I., Dasari, R. R., and Feld, M. S. (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78 (9): 1667. doi:10.1103/PhysRevLett.78.1667
  • Liu, Z., Ding, S.-Y., Chen, Z.-B., Wang, X., Tian, J.-H., Anema, J. R., Zhou, X.-S., Wu, D.-Y., Mao, B.-W., and Xu, X. (2011) Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2: 305. doi:10.1038/ncomms1310
  • Chen, X.-J., Cabello, G., Wu, D.-Y., and Tian, Z.-Q. (2014) Surface-enhanced Raman spectroscopy toward application in plasmonic photocatalysis on metal nanostructures. J. Photochem. Photobiol. C. 21: 54−80. doi:10.1016/j.jphotochemrev.2014.10.003
  • El-Sayed, M. A. (2011) Plasmonic photochemistry and photon confinement to the nanoscale. J. Photochem. Photobiol. A. 221 (2): 138−142. doi:10.1016/j.jphotochem.2011.05.024
  • Ueno, K., and Misawa, H. (2011) Photochemical reaction fields with strong coupling between a photon and a molecule. J. Photochem. Photobiol. A. 221 (2): 130−137. doi:10.1016/j.jphotochem.2011.04.014
  • Ueno, K., and Misawa, H. (2013) Surface plasmon-enhanced photochemical reactions. J. Photochem. Photobiol. C. 15: 31−52. doi:10.1016/j.jphotochemrev.2013.04.001
  • Xu, P., Kang, L., Mack, N. H., Schanze, K. S., Han, X., and Wang, H.-L. (2013) Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Sci. Rep. 3: 2997. doi:10.1038/srep02997
  • Wu, K., Chen, J., McBride, J. R., and Lian, T. (2015) Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science. 349 (6248): 632−635. doi:10.1126/science.aac5443
  • Yang, J.-L., Xu, J., Ren, H., Sun, L., Xu, Q.-C., Zhang, H., Li, J.-F., and Tian, Z.-Q. (2017) In situ SERS study of surface plasmon resonance enhanced photocatalytic reactions using bifunctional Au@ CdS core–shell nanocomposites. Nanoscale. 9: 6254−6258. doi:10.1039/C7NR00655A
  • Fang, Y., Li, Y., Xu, H., and Sun, M. (2010) Ascertaining p, p′-dimercaptoazobenzene produced from p-aminothiophenol by selective catalytic coupling reaction on silver nanoparticles. Langmuir. 26 (11): 7737−7746. doi:10.1021/la904479q
  • Huang, Y.-F., Zhu, H.-P., Liu, G.-K., Wu, D.-Y., Ren, B., and Tian, Z.-Q. (2010) When the signal is not from the original molecule to be detected: Chemical transformation of para-aminothiophenol on Ag during the SERS measurement. J. Am. Chem. Soc. 132 (27): 9244−9246. doi:10.1021/ja101107z
  • van Schrojenstein Lantman, E. M., Deckert-Gaudig, T., Mank, A. J., Deckert, V., and Weckhuysen, B. M. (2012) Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 7 (9): 583−586. doi:10.1038/nnano.2012.131
  • Cui, L., Wang, P., Fang, Y., Li, Y., and Sun, M. (2015) A plasmon-driven selective surface catalytic reaction revealed by surface-enhanced Raman scattering in an electrochemical environment. Sci. Rep. 5: 11920. doi:10.1038/srep11920
  • Choi, H.-K., Park, W.-H., Park, C.-G., Shin, H.-H., Lee, K. S., and Kim, Z. H. (2016) Metal-catalyzed chemical reaction of single molecules directly probed by vibrational spectroscopy. J. Am. Chem. Soc. 138 (13): 4673−4684. doi:10.1021/jacs.6b01865
  • Zhang, Z., Xu, P., Yang, X., Liang, W., and Sun, M. (2016) Surface plasmon-driven photocatalysis in ambient, aqueous and high-vacuum monitored by SERS and TERS. J. Photochem. Photobiol. C. 27: 100−112. doi:10.1016/j.jphotochemrev.2016.04.001
  • Kim, K., Choi, J.-Y., and Shin, K. S. (2014) Surface-enhanced Raman scattering of 4-nitrobenzenethiol and 4-aminobenzenethiol on silver in icy environments at liquid nitrogen temperature. J. Phys. Chem. C. 118 (21): 11397−11403. doi:10.1021/jp5015115
  • Colliex, C., Kociak, M., and Stéphan, O. (2016) Electron energy loss spectroscopy imaging of surface plasmons at the nanometer scale. Ultramicroscopy. 162: A1−A24. doi:10.1016/j.ultramic.2015.11.012
  • Leung, P., and Tse, W. (1995) Nonlocal electrodynamic effect on the enhancement factor for surface enhanced Raman scattering. Solid State Commun. 95 (1): 39−44. doi:10.1016/0038-1098(95)00144-1
  • Peng, S., McMahon, J. M., Schatz, G. C., Gray, S. K., and Sun, Y. (2010) Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. U.S.A. 107 (33): 14530−14534. doi:10.1073/pnas.1007524107
  • Ciracì, C., Hill, R., Mock, J., Urzhumov, Y., Fernández-Domínguez, A., Maier, S., Pendry, J., Chilkoti, A., and Smith, D. (2012) Probing the ultimate limits of plasmonic enhancement. Science. 337 (6098): 1072−1074. doi:10.1126/science.1224823
  • Toscano, G., Raza, S., Xiao, S., Wubs, M., Jauho, A.-P., Bozhevolnyi, S. I., and Mortensen, N. A. (2012) Surface-enhanced Raman spectroscopy: Nonlocal limitations. Opt. Lett. 37 (13): 2538−2540. doi:10.1364/OL.37.002538
  • Huang, Y., and Gao, L. (2013) Nonlocal effects on surface enhanced Raman scattering from bimetallic coated nanoparticles. Prog. Electromagn. Res. 133: 591−605. doi:10.2528/PIER12091217
  • Tserkezis, C., Mortensen, N. A., and Wubs, M. (2017) How nonlocal damping reduces plasmon-enhanced fluorescence in ultranarrow gaps. Phys. Rev. B. 96 (8): 085413. doi:10.1103/PhysRevB.96.085413
  • McMahon, J. M., Gray, S. K., and Schatz, G. C. (2009) Nonlocal optical response of metal nanostructures with arbitrary shape. Phys. Rev. Lett. 103 (9): 097403. doi:10.1103/PhysRevLett.103.097403
  • Khurgin, J., Tsai, W.-Y., Tsai, D. P., and Sun, G. (2017) Landau damping and limit to field confinement and enhancement in plasmonic dimers. ACS Photonics. 4 (11): 2871–2880. doi:10.1021/acsphotonics.7b00860
  • Li, X., Xiao, D., and Zhang, Z. (2013) Landau damping of quantum plasmons in metal nanostructures. New J. Phys. 15 (2): 023011. doi:10.1088/1367-2630/15/2/023011
  • Barth, A. (2007) Infrared spectroscopy of proteins. Biochim. Biophys. Acta. 1767 (9): 1073−1101. doi:10.1016/j.bbabio.2007.06.004
  • Siesler, H. W., Ozaki, Y., Kawata, S., and Heise, H. M. (2008). Near-infrared spectroscopy: principles, instruments, applications. New York: John Wiley & Sons.
  • Osawa, M. (2001). Surface-enhanced infrared absorption. In Near-field optics and surface plasmon polaritons, Osawa, M., Eds., Berlin, Heidelberg: Springer, pp.163−187.
  • Dong, L., Yang, X., Zhang, C., Cerjan, B., Zhou, L., Tseng, M. L., Zhang, Y., Alabastri, A., Nordlander, P., and Halas, N. J. (2017) Nanogapped Au antennas for ultrasensitive surface-enhanced infrared absorption spectroscopy. Nano Lett. 17 (9): 5768−5774. doi:10.1021/acs.nanolett.7b02736
  • Le, F., Brandl, D. W., Urzhumov, Y. A., Wang, H., Kundu, J., Halas, N. J., Aizpurua, J., and Nordlander, P. (2008) Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano. 2 (4): 707−718. doi:10.1021/nn800047e
  • Griffiths, P. R., and De Haseth, J. A. (2007). Fourier transform infrared spectrometry. New York: John Wiley & Sons.
  • Kuimova, M. K., Chan, K. L. A., and Kazarian, S. G. (2009) Chemical imaging of live cancer cells in the natural aqueous environment. Appl. Spectrosc. 63 (2): 164−171. doi:10.1366/000370209787391969
  • Kazarian, S. G., and Chan, K. L. A. (2010) Micro- and macro-attenuated total reflection Fourier transform infrared spectroscopic imaging. Appl. Spectrosc. 64 (5): 135A−152A. doi:10.1366/000370210791211673
  • Kellner, R., Mizaikoff, B., Jakusch, M., Wanzenbock, H. D., and Weissenbacher, N. (1997) Surface-enhanced vibrational spectroscopy: A new tool in chemical IR sensing? Appl. Spectrosc. 51 (4): 495−503. doi:10.1366/0003702971940774
  • Kundu, J., Le, F., Nordlander, P., and Halas, N. J. (2008) Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 452 (1): 115−119. doi:10.1016/j.cplett.2007.12.042
  • Adato, R., Yanik, A. A., Amsden, J. J., Kaplan, D. L., Omenetto, F. G., Hong, M. K., Erramilli, S., and Altug, H. (2009) Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. U.S.A. 106 (46): 19227−19232. doi:10.1073/pnas.0907459106
  • Chae, J., Lahiri, B., and Centrone, A. (2016) Engineering near-field SEIRA enhancements in plasmonic resonators. ACS Photonics. 3 (1): 87–95. doi:10.1021/acsphotonics.5b00466
  • Brown, L. V., Yang, X., Zhao, K., Zheng, B. Y., Nordlander, P., and Halas, N. J. (2015) Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). Nano Lett. 15 (2): 1272−1280. doi:10.1021/nl504455s
  • Pryce, I. M., Kelaita, Y. A., Aydin, K., and Atwater, H. A. (2011) Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing. ACS Nano. 5 (10): 8167−8174. doi:10.1021/nn202815k
  • Priebe, A., Pucci, A., and Otto, A. (2006) Infrared reflection-absorption spectra of C2H4 and C2H6 on Cu:  Effect of surface roughness. J. Phys. Chem. B. 110 (4): 1673−1679. doi:10.1021/jp054803q
  • Osawa, M., Ataka, K.-I., Yoshii, K., and Nishikawa, Y. (1993) Surface-enhanced infrared spectroscopy: The origin of the absorption enhancement and band selection rule in the infrared spectra of molecules adsorbed on fine metal particles. Appl. Spectrosc. 47 (9): 1497−1502. doi:10.1366/0003702934067478
  • Neubrech, F., Beck, S., Glaser, T., Hentschel, M., Giessen, H., and Pucci, A. (2014) Spatial extent of plasmonic enhancement of vibrational signals in the infrared. ACS Nano. 8 (6): 6250−6258. doi:10.1021/nn5017204
  • Bochterle, J., Neubrech, F., Nagao, T., and Pucci, A. (2012) Angstrom-scale distance dependence of antenna-enhanced vibrational signals. ACS Nano. 6 (12): 10917−10923. doi:10.1021/nn304341c
  • Dregely, D., Neubrech, F., Duan, H., Vogelgesang, R., and Giessen, H. (2013) Vibrational near-field mapping of planar and buried three-dimensional plasmonic nanostructures. Nat. Commun. 4: 2237. doi:10.1038/ncomms3237
  • Kühner, L., Hentschel, M., Zschieschang, U., Klauk, H., Vogt, J., Huck, C., Giessen, H., and Neubrech, F. (2017) Nanoantenna-enhanced infrared spectroscopic chemical imaging. ACS Sens. 2 (5): 655−662. doi:10.1021/acssensors.7b00063
  • Chen, C.-K., Chang, M.-H., Wu, H.-T., Lee, Y.-C., and Yen, T.-J. (2014) Enhanced vibrational spectroscopy, intracellular refractive indexing for label-free biosensing and bioimaging by multiband plasmonic-antenna array. Biosens. Bioelectron. 60: 343−350.
  • Ataka, K., and Heberle, J. (2007) Biochemical applications of surface-enhanced infrared absorption spectroscopy. Anal. Bioanal. Chem. 388 (1): 47−54. doi:10.1007/s00216-006-1071-4.
  • Limaj, O., Etezadi, D., Wittenberg, N. J., Rodrigo, D., Yoo, D., Oh, S.-H., and Altug, H. (2016) Infrared plasmonic biosensor for real-time and label-free monitoring of lipid membranes. Nano Lett. 16 (2): 1502−1508. doi:10.1021/acs.nanolett.5b05316
  • Bassan, P., Mellor, J., Shapiro, J., Williams, K. J., Lisanti, M. P., and Gardner, P. (2014) Transmission FT-IR chemical imaging on glass substrates: Applications in infrared spectral histopathology. Anal. Chem. 86 (3): 1648−1653. doi:10.1021/ac403412n
  • Jha, S. K., Ahmed, Z., Agio, M., Ekinci, Y., and Löffler, J. F. (2012) Deep-UV surface-enhanced resonance Raman scattering of adenine on aluminum nanoparticle arrays. J. Am. Chem. Soc. 134 (4): 1966−1969. doi:10.1021/ja210446w
  • Adato, R., and Altug, H. (2013) In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nat. Commun. 4: 2154. doi:10.1038/ncomms3154
  • Eyring, H., Liu, H.-C., and Caldwell, D. (1968) Optical rotatory dispersion and circular dichroism. Chem. Rev. 68 (5): 525−540. doi:10.1021/cr60255a001
  • Grunenberg, J. (2011). Computational spectroscopy: Methods, experiments and applications. New York : John Wiley & Sons.
  • Tullius, R., Karimullah, A. S., Rodier, M., Fitzpatrick, B., Gadegaard, N., Barron, L. D., Rotello, V. M., Cooke, G., Lapthorn, A., and Kadodwala, M. (2015) “Superchiral” spectroscopy: Detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc. 137 (26): 8380–8383. doi:10.1021/jacs.5b04806
  • Tang, Y., and Cohen, A. E. (2010) Optical chirality and its interaction with matter. Phys. Rev. Lett. 104 (16): 163901. doi:10.1103/PhysRevLett.104.163901
  • Fan, Z., and Govorov, A. O. (2010) Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett. 10 (7): 2580−2587. doi:10.1021/nl101231b
  • García-Etxarri, A., and Dionne, J. A. (2013) Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas. Phys. Rev. B. 87 (23): 235409. doi:10.1103/PhysRevB.87.235409
  • Tang, Y., and Cohen, A. E. (2011) Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science. 332 (6027): 333. doi:10.1126/science.1202817
  • Hendry, E., Carpy, T., Johnston, J., Popland, M., Mikhaylovskiy, R. V., Lapthorn, A. J., Kelly, S. M., Barron, L. D., Gadegaard, N., and Kadodwala, M. (2010) Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5 (11): 783. doi:10.1038/nnano.2010.209
  • Schäferling, M., Yin, X., Engheta, N., and Giessen, H. (2014) Helical plasmonic nanostructures as prototypical chiral near-field sources. ACS Photonics. 1 (6): 530−537. doi:10.1021/ph5000743
  • Zhang, W., Wu, T., Wang, R., and Zhang, X. (2017) Surface-enhanced circular dichroism of oriented chiral molecules by plasmonic nanostructures. J. Phys. Chem. C. 121 (1): 666−675. doi:10.1021/acs.jpcc.6b09435
  • Zhu, F., Li, X., Li, Y., Yan, M., and Liu, S. (2015) Enantioselective circular dichroism sensing of cysteine and glutathione with gold nanorods. Anal. Chem. 87 (1): 357−361. doi:10.1021/ac504017f
  • Zhao, Y., Askarpour, A. N., Sun, L., Shi, J., Li, X., and Alù, A. (2017) Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8: 14180. doi:10.1038/ncomms14180
  • Efrima, S. (1983) The effect of large electric field gradients on the Raman optical activity of molecules adsorbed on metal surfaces. Chem. Phys. Lett. 102 (1): 79−82. doi:10.1016/0009-2614(83)80662-9
  • Efrima, S. (1985) Raman optical activity of molecules adsorbed on metal surfaces: Theory. J. Chem. Phys. 83 (3): 1356−1362. doi:10.1063/1.449452
  • Abdali, S., and Blanch, E. W. (2008) Surface enhanced Raman optical activity (SEROA). Chem. Soc. Rev. 37 (5): 980−992. doi:10.1039/b707862p
  • Hecht, L., and Barron, L. D. (1994) Rayleigh and Raman optical activity from chiral surfaces. Chem. Phys. Lett. 225 (4): 525−530. doi:10.1016/0009-2614(94)87122-1
  • Bouř, P. (2007) Matrix formulation of the surface-enhanced Raman optical activity theory. J. Chem. Phys. 126 (13): 136101. doi:10.1063/1.2715949
  • Johannessen, C., White, P. C., and Abdali, S. (2007) Resonance Raman optical activity and surface enhanced resonance Raman optical activity analysis of cytochrome c. J. Phys. Chem. A. 111 (32): 7771−7776. doi:10.1021/jp0705267
  • Pour, S. O., Bell, S. E., and Blanch, E. W. (2011) Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). Chem. Commun. 47 (16): 4754−4756. doi:10.1039/c0cc05284a
  • Geddes, C. D., and Lakowicz, J. R. (2002) Metal-enhanced fluorescence. J. Fluoresc. 12 (2): 121−129. doi:10.1023/A:1016875709579
  • Fort, E., and Grésillon, S. (2007) Surface enhanced fluorescence. J. Phys. D. 41 (1): 013001. doi:10.1088/0022-3727/41/1/013001
  • Barnes, W. L., Dereux, A., and Ebbesen, T. W. (2003) Surface plasmon subwavelength optics. Nature. 424 (6950): 824−830. doi:10.1038/nature01937
  • Willets, K. A., and Van Duyne, R. P. (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58: 267−297. doi:10.1146/annurev.physchem.58.032806.104607
  • Lakowicz, J. R., Malicka, J., Gryczynski, I., Gryczynski, Z., and Geddes, C. D. (2003) Radiative decay engineering: The role of photonic mode density in biotechnology. J. Phys. D. 36 (14): R240. doi:10.1088/0022-3727/36/14/203
  • Zhao, L., Ming, T., Chen, H., Liang, Y., and Wang, J. (2011) Plasmon-induced modulation of the emission spectra of the fluorescent molecules near gold nanorods. Nanoscale. 3 (9): 3849−3859. doi:10.1039/c1nr10544b
  • Bharadwaj, P., Deutsch, B., and Novotny, L. (2009) Optical antennas. Adv. Opt. Photonics. 1 (3): 438−483. doi:10.1364/AOP.1.000438
  • Purcell, E. M. (1995). Spontaneous emission probabilities at radio frequencies. In Confined electrons and photons, Purcell, E.M., Ed., Springer, US, pp.839−839.
  • Gryczynski, I., Malicka, J., Gryczynski, Z., and Lakowicz, J. R. (2004) Radiative decay engineering 4. Experimental studies of surface plasmon-coupled directional emission. Anal. Biochem. 324 (2): 170−182. doi:10.1016/j.ab.2003.09.036
  • Lakowicz, J. R., Shen, Y., D'Auria, S., Malicka, J., Fang, J., Gryczynski, Z., and Gryczynski, I. (2002) Radiative decay engineering: 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 301 (2): 261−277. doi:10.1006/abio.2001.5503
  • Malicka, J., Gryczynski, I., Fang, J., and Lakowicz, J. R. (2003) Fluorescence spectral properties of cyanine dye-labeled DNA oligomers on surfaces coated with silver particles. Anal. Biochem. 317 (2): 136−146. doi:10.1016/S0003-2697(03)00005-8
  • Malicka, J., Gryczynski, I., Maliwal, B. P., Fang, J., and Lakowicz, J. R. (2003) Fluorescence spectral properties of cyanine dye labeled DNA near metallic silver particles. Biopolymers. 72 (2): 96−104. doi:10.1002/bip.10301
  • Geddes, C. D., Cao, H., Gryczynski, I., Gryczynski, Z., Fang, J., and Lakowicz, J. R. (2003) Metal-enhanced fluorescence (MEF) due to silver colloids on a planar surface: Potential applications of indocyanine green to in vivo imaging. J. Phys. Chem. A. 107 (18): 3443−3449. doi:10.1021/jp022040q
  • Parfenov, A., Gryczynski, I., Malicka, J., Geddes, C. D., and Lakowicz, J. R. (2003) Enhanced fluorescence from fluorophores on fractal silver surfaces. J. Phys. Chem. B. 107 (34): 8829−8833. doi:10.1021/jp022660r
  • Dong, J., Zheng, H., Li, X., Yan, X., and Zhang, Z. (2011) Surface-enhanced fluorescence from silver fractallike nanostructures decorated with silver nanoparticles. Appl. Opt. 50 (31): G123−G126. doi:10.1364/AO.50.00G123
  • Dong, J., Qu, S., Zhang, Z., Liu, M., Liu, G., Yan, X., and Zheng, H. (2012) Surface enhanced fluorescence on three dimensional silver nanostructure substrate. J. Appl. Phys. 111 (9): 093101. doi:10.1063/1.4709442
  • Liaw, J.-W., Wu, H.-Y., Huang, C.-C., and Kuo, M.-K. (2016) Metal-enhanced fluorescence of silver island associated with silver nanoparticle. Nanoscale Res. Lett. 11 (1): 26. doi:10.1186/s11671-016-1247-6
  • Zhang, Z., Yang, P., Xu, H., and Zheng, H. (2013) Surface enhanced fluorescence and Raman scattering by gold nanoparticle dimers and trimers. J. Appl. Phys. 113 (3): 033102. doi:10.1063/1.4776227
  • Zhang, J., Malicka, J., Gryczynski, I., and Lakowicz, J. R. (2005) Surface-enhanced fluorescence of fluorescein-labeled oligonucleotides capped on silver nanoparticles. J. Phys. Chem. B. 109 (16): 7643−7648. doi:10.1021/jp0490103
  • Zhang, Y., Aslan, K., Previte, M. J., and Geddes, C. D. (2006) Metal-enhanced S 2 fluorescence from azulene. Chem. Phys. Lett. 432 (4): 528−532. doi:10.1016/j.cplett.2006.11.005
  • Bek, A., Jansen, R., Ringler, M., Mayilo, S., Klar, T. A., and Feldmann, J. (2008) Fluorescence enhancement in hot spots of AFM-designed gold nanoparticle sandwiches. Nano Lett. 8 (2): 485−490. doi:10.1021/nl072602n
  • Dasary, S. S., Rai, U. S., Yu, H., Anjaneyulu, Y., Dubey, M., and Ray, P. C. (2008) Gold nanoparticle based surface enhanced fluorescence for detection of organophosphorus agents. Chem. Phys. Lett. 460 (1): 187−190. doi:10.1016/j.cplett.2008.05.082
  • Tan, C. L., Lee, S. K., and Lee, Y. T. (2015) Bi-SERS sensing and enhancement by Au-Ag bimetallic non-alloyed nanoparticles on amorphous and crystalline silicon substrate. Opt. Express. 23 (5): 6254−6263. doi:10.1364/OE.23.006254
  • Zhang, C., Han, Q., Li, C., Zhang, M., Yan, L., and Zheng, H. (2016) Metal-enhanced fluorescence of single shell-isolated alloy metal nanoparticle. Appl. Opt. 55 (32): 9131−9136. doi:10.1364/AO.55.009131
  • Sugawa, K., Tamura, T., Tahara, H., Yamaguchi, D., Akiyama, T., Otsuki, J., Kusaka, Y., Fukuda, N., and Ushijima, H. (2013) Metal-enhanced fluorescence platforms based on plasmonic ordered copper arrays: Wavelength dependence of quenching and enhancement effects. ACS Nano. 7 (11): 9997−10010. doi:10.1021/nn403925d
  • Pedersen, D. B., and Wang, S. (2007) Surface plasmon resonance spectra of 2.8±0.5 nm diameter copper nanoparticles in both near and far fields. J. Phys. Chem. C. 111 (47): 17493−17499. doi:10.1021/jp075076x
  • Darugar, Q., Qian, W., El-Sayed, M. A., and Pileni, M.-P. (2006) Size-dependent ultrafast electronic energy relaxation and enhanced fluorescence of copper nanoparticles. J. Phys. Chem. B. 110 (1): 143−149. doi:10.1021/jp0545445
  • Wenger, J., Lenne, P.-F., Popov, E., Rigneault, H., Dintinger, J., and Ebbesen, T. W. (2005) Single molecule fluorescence in rectangular nano-apertures. Opt. Express. 13 (18): 7035−7044. doi:10.1364/OPEX.13.007035
  • Genet, C., and Ebbesen, T. (2007) Light in tiny holes. Nature. 445 (7123): 39−46. doi:10.1038/nature05350
  • Gérard, D., Wenger, J., Bonod, N., Popov, E., Rigneault, H., Mahdavi, F., Blair, S., Dintinger, J., and Ebbesen, T. W. (2008) Nanoaperture-enhanced fluorescence: Towards higher detection rates with plasmonic metals. Phys. Rev. B. 77 (4): 045413. doi:10.1103/PhysRevB.77.045413
  • Chou, R. Y., Li, G., Cheng, Y., He, Y., Zhao, J., Cao, Z., Gong, Q., and Lu, G. (2016) Surface enhanced fluorescence by metallic nano-apertures associated with stair-gratings. Opt. Express. 24 (17): 19567−19573. doi:10.1364/OE.24.019567
  • Lezec, H. J., Degiron, A., Devaux, E., Linke, R., Martin-Moreno, L., Garcia-Vidal, F., and Ebbesen, T. (2002) Beaming light from a subwavelength aperture. Science. 297 (5582): 820−822. doi:10.1126/science.1071895
  • Aouani, H., Mahboub, O., Bonod, N., Devaux, E., Popov, E., Rigneault, H., Ebbesen, T. W., and Wenger, J. (2011) Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations. Nano Lett. 11 (2): 637−644. doi:10.1021/nl103738d
  • Jun, Y. C., Huang, K. C., and Brongersma, M. L. (2011) Plasmonic beaming and active control over fluorescent emission. Nat. Commun. 2: 283. doi:10.1038/ncomms1286
  • Toma, M., Toma, K., Adam, P., Homola, J., Knoll, W., and Dostálek, J. (2012) Surface plasmon-coupled emission on plasmonic Bragg gratings. Opt. Express. 20 (13): 14042−14053. doi:10.1364/OE.20.014042
  • Malicka, J., Gryczynski, I., Geddes, C. D., and Lakowicz, J. R. (2003) Metal-enhanced emission from indocyanine green: A new approach to in vivo imaging. J. Biomed. Opt. 8 (3): 472−478. doi:10.1117/1.1578643
  • Anderson, J. P., Griffiths, M., and Boveia, V. R. (2006) Near-infrared fluorescence enhancement using silver island films. Plasmonics. 1 (2–4): 103−110. doi:10.1007/s11468-006-9018-3
  • Tabakman, S. M., Lau, L., Robinson, J. T., Price, J., Sherlock, S. P., Wang, H., Zhang, B., Chen, Z., Tangsombatvisit, S., and Jarrell, J. A. (2011) Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nat. Commun. 2: 466. doi:10.1038/ncomms1477
  • Bardhan, R., Grady, N. K., and Halas, N. J. (2008) Nanoscale control of near-infrared fluorescence enhancement using Au nanoshells. Small. 4 (10): 1716−1722. doi:10.1002/smll.200800405
  • Bardhan, R., Grady, N. K., Cole, J. R., Joshi, A., and Halas, N. J. (2009) Fluorescence enhancement by Au nanostructures: Nanoshells and nanorods. ACS Nano. 3 (3): 744−752. doi:10.1021/nn900001q
  • Sun, S., Wu, L., Bai, P., and Png, C. (2016) Fluorescence enhancement in visible light: Dielectric or noble metal? Phys. Chem. Chem. Phys. 18 (28): 19324−19335. doi:10.1039/C6CP03303B
  • Sigalas, M., Fattal, D., Williams, R., Wang, S., and Beausoleil, R. (2007) Electric field enhancement between two Si microdisks. Opt. Express. 15 (22): 14711−14716. doi:10.1364/OE.15.014711
  • Rolly, B., Bebey, B., Bidault, S., Stout, B., and Bonod, N. (2012) Promoting magnetic dipolar transition in trivalent lanthanide ions with lossless Mie resonances. Phys. Rev. B. 85 (24): 245432. doi:10.1103/PhysRevB.85.245432
  • Permyakov, D., Sinev, I., Markovich, D., Ginzburg, P., Samusev, A., Belov, P., Valuckas, V., Kuznetsov, A. I., Luk'yanchuk, B. S., and Miroshnichenko, A. E. (2015) Probing magnetic and electric optical responses of silicon nanoparticles. Appl. Phys. Lett. 106 (17): 171110. doi:10.1063/1.4919536
  • Rigneault, H., Lemarchand, F., Sentenac, A., and Giovannini, H. (1999) Extraction of light from sources located inside waveguide grating structures. Opt. Lett. 24 (3): 148−150. doi:10.1364/OL.24.000148
  • Schuller, J. A., and Brongersma, M. L. (2009) General properties of dielectric optical antennas. Opt. Express. 17 (26): 24084−24095. doi:10.1364/OE.17.024084
  • Huang, L., Yu, Y., and Cao, L. (2013) General modal properties of optical resonances in subwavelength nonspherical dielectric structures. Nano Lett. 13 (8): 3559−3565. doi:10.1021/nl401150j
  • Albella, P., Poyli, M. A., Schmidt, M. K., Maier, S. A., Moreno, F., Sáenz, J. J., and Aizpurua, J. (2013) Low-loss electric and magnetic field-enhanced spectroscopy with subwavelength silicon dimers. J. Phys. Chem. C. 117 (26): 13573−13584. doi:10.1021/jp4027018
  • Schmidt, M. K., Esteban, R., Sáenz, J., Suárez-Lacalle, I., Mackowski, S., and Aizpurua, J. (2012) Dielectric antennas-a suitable platform for controlling magnetic dipolar emission. Opt. Express. 20 (13): 13636−13650. doi:10.1364/OE.20.013636
  • Fu, Y. H., Kuznetsov, A. I., Miroshnichenko, A. E., Yu, Y. F., and Luk'yanchuk, B. (2013) Directional visible light scattering by silicon nanoparticles. Nat. Commun. 4: 2538. doi:10.1038/ncomms2538
  • Regmi, R., Berthelot, J., Winkler, P. M., Mivelle, M., Proust, J., Bedu, F. d. r., Ozerov, I., Begou, T., Lumeau, J., and Rigneault, H. (2016) All-dielectric silicon nanogap antennas to enhance the fluorescence of single molecules. Nano Lett. 16 (8): 5143−5151. doi:10.1021/acs.nanolett.6b02076
  • Van de Groep, J., and Polman, A. (2013) Designing dielectric resonators on substrates: Combining magnetic and electric resonances. Opt. Express. 21 (22): 26285−26302. doi:10.1364/OE.21.026285
  • Person, S., Jain, M., Lapin, Z., Sáenz, J. J., Wicks, G., and Novotny, L. (2013) Demonstration of zero optical backscattering from single nanoparticles. Nano Lett. 13 (4): 1806−1809. doi:10.1021/nl4005018
  • Albella, P., Alcaraz de la Osa, R., Moreno, F., and Maier, S. A. (2014) Electric and magnetic field enhancement with ultralow heat radiation dielectric nanoantennas: Considerations for surface-enhanced spectroscopies. ACS Photonics. 1 (6): 524−529. doi:10.1021/ph500060s
  • Laroche, M., Albaladejo, S., Carminati, R., and Sáenz, J. J. (2007) Optical resonances in one-dimensional dielectric nanorod arrays: Field-induced fluorescence enhancement. Opt. Lett. 32 (18): 2762−2764. doi:10.1364/OL.32.002762
  • Gómez-Medina, R., Laroche, M., and Sáenz, J. J. (2006) Extraordinary optical reflection from sub-wavelength cylinder arrays. Opt. Express. 14 (9): 3730−3737. doi:10.1364/OE.14.003730
  • Brunstein, M., Cattoni, A., Estrada, L., and Yacomotti, A. M. (2015) Improving image contrast in fluorescence microscopy with nanostructured substrates. Opt. Express. 23 (23): 29772−29778. doi:10.1364/OE.23.029772
  • Rosenblatt, D., Sharon, A., and Friesem, A. A. (1997) Resonant grating waveguide structures. IEEE J. Quantum Electron. 33 (11): 2038–2059. doi:10.1109/3.641320
  • Soria, S., Katchalski, T., Teitelbaum, E., Friesem, A. A., and Marowsky, G. (2004) Enhanced two-photon fluorescence excitation by resonant grating waveguide structures. Opt. Lett. 29 (17): 1989−1991. doi:10.1364/OL.29.001989
  • Liu, Y., Wang, S., Park, Y.-S., Yin, X., and Zhang, X. (2010) Fluorescence enhancement by a two-dimensional dielectric annular Bragg resonant cavity. Opt. Express. 18 (24): 25029−25034. doi:10.1364/OE.18.025029
  • Estrada, L., Martinez, O., Brunstein, M., Bouchoule, S., Le-Gratiet, L., Talneau, A., Sagnes, I., Monnier, P., Levenson, J., and Yacomotti, A. (2010) Small volume excitation and enhancement of dye fluorescence on a 2D photonic crystal surface. Opt. Express. 18 (4): 3693−3699. doi:10.1364/OE.18.003693
  • Hao, Q., Qiu, T., and Chu, P. K. (2012) Surfaced-enhanced cellular fluorescence imaging. Prog. Surf. Sci. 87 (1): 23−45. doi:10.1016/j.progsurf.2012.03.001
  • Fu, Y., Zhang, J., and Lakowicz, J. R. (2009) Highly efficient detection of single fluorophores in blood serum samples with high autofluorescence. Photochem. Photobiol. 85 (3): 646−651. doi:10.1111/j.1751-1097.2008.00500.x
  • Peng, H.-I., Strohsahl, C. M., Leach, K. E., Krauss, T. D., and Miller, B. L. (2009) Label-free DNA detection on nanostructured Ag surfaces. ACS Nano. 3 (8): 2265−2273. doi:10.1021/nn900112e
  • Wang, Y., Liu, B., Mikhailovsky, A., and Bazan, G. C. (2010) Conjugated polyelectrolyte–metal nanoparticle platforms for optically amplified DNA detection. Adv. Mat. 22 (5): 656−659. doi:10.1002/adma.200902675
  • Cheng, Y., Stakenborg, T., Van Dorpe, P., Lagae, L., Wang, M., Chen, H., and Borghs, G. (2011) Fluorescence near gold nanoparticles for DNA sensing. Anal. Chem. 83 (4): 1307−1314. doi:10.1021/ac102463c
  • Aslan, K., Huang, J., Wilson, G. M., and Geddes, C. D. (2006) Metal-enhanced fluorescence-based RNA sensing. J. Am. Chem. Soc. 128 (13): 4206−4207. doi:10.1021/ja0601179
  • Masuda, S., Yanase, Y., Usukura, E., Ryuzaki, S., Wang, P., Okamoto, K., Kuboki, T., Kidoaki, S., and Tamada, K. (2017) High-resolution imaging of a cell-attached nanointerface using a gold-nanoparticle two-dimensional sheet. Sci. Rep. 7 (1): 3720. doi:10.1038/s41598-017-04000-4
  • Qiu, T., Jiang, J., Zhang, W., Lang, X., Yu, X., and Chu, P. K. (2010) High-sensitivity and stable cellular fluorescence imaging by patterned silver nanocap arrays. ACS Appl. Mater. Interfaces. 2 (8): 2465−2470. doi:10.1021/am100534h
  • Ponsetto, J. L., Bezryadina, A., Wei, F., Onishi, K., Shen, H., Huang, E., Ferrari, L., Ma, Q., Zou, Y., and Liu, Z. (2017) Experimental demonstration of localized plasmonic structured illumination microscopy. ACS Nano. 11 (6): 5344−5350. doi:10.1021/acsnano.7b01158
  • Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., Woggon, U., and Artemyev, M. (2002) Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Lett. 2 (12): 1449−1452. doi:10.1021/nl025819k
  • Jain, P. K., Huang, X., El-Sayed, I. H., and El-Sayed, M. A. (2008) Noble metals on the nanoscale: Optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc. Chem. Res. 41 (12): 1578−1586. doi:10.1021/ar7002804
  • Zhang, J., Fu, Y., Liang, D., Nowaczyk, K., Zhao, R. Y., and Lakowicz, J. R. (2008) Single-cell fluorescence imaging using metal plasmon-coupled probe 2: Single-molecule counting on lifetime image. Nano Lett. 8 (4): 1179−1186. doi:10.1021/nl080093z
  • Saha, A., Basiruddin, S., Sarkar, R., Pradhan, N., and Jana, N. R. (2009) Functionalized plasmonic − fluorescent nanoparticles for imaging and detection. J. Phys. Chem. C. 113 (43): 18492−18498. doi:10.1021/jp904791h
  • Zhang, J., Fu, Y., and Lakowicz, J. R. (2011) Fluorescent metal nanoshells: Lifetime-tunable molecular probes in fluorescent cell imaging. J. Phys. Chem. C. 115 (15): 7255−7260. doi:10.1021/jp111475y

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.