351
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Analytical strategies for spectrometric determination of vanadium in samples of interest in the petroleum industry

, , , , , , & show all

References

  • Lee, J. D. (2013) Concise Inorganic Chemistry. 5th ed. Willey, Hoboken, New Jersey, USA.
  • Peixoto, E. M. A. (2006) Vanádio. Química Nova na Escola 24: 2006.
  • Khan, S., Kazi, T. G., Baig, J. A., Kolachi, N. F., Afridi, H. I., Wadhwa, S. K., Shah, A. Q., Kandhro, G. A., and Shah, F. (2010) Cloud point extraction of vanadium in pharmaceutical formulations, dialysate and parenteral solutions using 8-hydroxyquinoline and nonionic surfactant. J. Hazard. Mater. 182 (1–3): 371–376.
  • Crans, D. C., Smee, J. J., Gaidamauskas, E., and Yang, L. (2004) The chemistry and biochemistry of vanadium and the biological activities exerted by vanadium compounds. Chem. Rev. 104 (2): 849–902.
  • Willsky, G. R., Goldfine, A. B., Kostyniak, P. J., McNeill, J. H., Yang, L. Q., Khan, H. R., and Crans, D. C. (2001) Effect of vanadium(IV) compounds in the treatment of diabetes: In vivo and in vitro studies with vanadyl sulfate and bis(maltolato)oxovandium(IV). J. Inorg. Biochem. 85 (1): 33–42.
  • Bermejo-Barrera, P., Beceiro-Gonzalez, E., and Bermeto-Barrera, A. (1990) Vanadium determination in water by atomic absorption spectrometry with electrothermal atomization and using hot injection and preconcentration on the graphite tube. Anal. Chim. Acta 236: 475–477.
  • Coetzee, P. P., Fischer, J. L., and Hu, M. (2006) The separation and simultaneous determination of V (IV) and V (V) species complexed with EDTA by IC-ICP-OES. WaterSA 28 (1): 37–44.
  • Barceloux, D. G. (1999) Vanadium. J. Toxicol. Clin. Toxicol. 37 (2): 265–278.
  • Patel, B., Henderson, G. E., Haswell, S. J., and Grzeskowiak, R. (1990) Speciation of vanadium present in a model yeast system. Analyst 115 (8): 1063–1066.
  • Gamage, S. V., Hodge, V. F., Cizdziel, J. V., and Lindley, K. (2010) Determination of vanadium (IV) and (V) in southern Nevada groundwater by ion chromatography-inductively coupled plasma mass spectrometry. Open Chem. Biomed. Methods J. 3: 10–17.
  • Cotton, F.A., Wilkinson, G., Murillo, C.A., and Bochmann, M. (1999) Advanced Inorganic Chemistry. 6th ed. John Wiley and Sons, Hoboken, New Jersey, USA.
  • Wright, M. T., and Belitz, K. (2010) Factors controlling the regional distribution of vanadium in groundwater. Ground Water 48 (4): 515–525.
  • Magomedov, R. N., Popova, A. Z., Maryutina, T. A., Kadiev, K. M., and Khadzhiev, S. N. (2015) Current status and prospects of demetallization of heavy petroleum feedstock (Review). Pet. Chem. 55 (6): 423–443.
  • Pyrzyńska, K., and Wierzbicki, T. (2004) Determination of vanadium species in environmental samples. Talanta 64 (4): 823–829.
  • Poirier, L., Nelson, J., Leong, D., Berhane, L., Hajdu, P., and Lopez-Linares, F. (2016) Application of ICP-MS and ICP-OES on the determination of nickel, vanadium, iron, and calcium in petroleum crude oils via direct dilution. Energy Fuels 30 (5): 3783–3790.
  • Hardaway, C., Sneddon, J., and Beck, J. N. (2004) Determination of metals in crude oil by atomic spectroscopy. Anal. Lett. 37 (14): 2881–2889.
  • Korn, M. G. A., Santos, D. S., Welz, B., Vale, M. G., Teixeira, A. P., Lima, D.C., and Ferreira, S. L. C. (2007) Atomic spectrometric methods for the determination of metals and metalloids in automotive fuels - A review. Talanta 73 (1):1–11.
  • Caumette, G., Lienemann, C.-P., Merdrignac, I., Bouyssiere, B., and Lobinski, R. (2009) Element speciation analysis of petroleum and related materials. J. Anal. At. Spectrom. 24 (3): 263.
  • Maryutina, T. A., and Timerbaev, A. R. (2017) Metal speciation analysis of petroleum: Myth or reality? Anal. Chim. Acta. 991 (23): 1–8.
  • Amorim, F. A. C., Welz, B., Costa, A. C. S., Lepri, F. G., Vale, M. G. R., and Ferreira, S. L. C. (2007) Determination of vanadium in petroleum and petroleum products using atomic spectrometric techniques. Talanta 72 (2): 349–359.
  • Santaella, S. T., Silva Júnior, F. C. G., Gadelha, D. A. C., Costa, K. O., Aguiar, R. D, Arthaud, I. D. B., and Leitão, R. C. (2009) Tratamento de efluentes de refinaria de petróleo em reatores com Aspergillus niger. Eng. Sanit. Ambient. 14 (1): 139–148.
  • Brazil, Agência Nacional do Petróleo, gás e Biocombustíveis. http://www.anp.gov.br/producao-de-derivados-de-petroleo-e-processamento-de-gas-natutal/petroleo?view=default (accessed 29 May 2018).
  • Kovalenko, E. Y., Golushkova, E. B., and Sagachenko, T. A. (2016) The study of the composition of oils and structure of their components during the preliminary refining of oil feedstock with metal powders. Pet. Chem. 56 (2): 101–108.
  • Khuhawar, M.Y., Mirza, M. A., and Jahangir, T. M. (2012) Determination of metal ions in crude oils. In Crude oils emulsions - Composition stability and characterization, Manar El-Sayed Abdul-Raouf, Ed., Ed. Intech, London, UK, pp. 121–144.
  • Ahmed, A., Waqas, M., Naser, N., Singh, E., Roberts, W., Chung, S., and Sarathy, M. (2016) Compositional effects of gasoline fuels on combustion, performance and emissions in engine. SAE Int. J. Fuels Lubricants 9 (3): 460–468.
  • AGÊNCIA NACIONAL DE PETRÓLEO, GÁS E BIOCOMBUSTÍVEIS. http://www.anp.gov.br/wwwanp/petroleo-derivados/155-combustiveis/1855-gasolina (accessed 16 December 2016).
  • AGÊNCIA NACIONAL DE PETRÓLEO, GÁS E BIOCOMBUSTÍVEIS. http://www.anp.gov.br/wwwanp/petroleo-derivados/155-combustiveis/1857-oleo-diesel (accessed 4 January 2017).
  • Motta, A. R. P. d., Borges, C. P., Kiperstok, A., Esquerre, K. P., Araujo, P. M., and Branco, L. P. N. (2013) Tratamento de água produzida de petróleo para remoção de óleo por processos de separação por membranas: Revisão. Eng. Sanit. Ambient. 18 (1): 15–26.
  • Zuliani, J. E., Miyata, T., Mizoguchi, T., Feng, J., Kirk, D. W., and Jia, C. Q. (2016) Characterization of vanadium in oil sands fluid petroleum coke using electron microscopy. Fuel 178: 124–128.
  • Ali, M. F., and Abbas, S. (2006) A review of methods for the demetallization of residual fuel oils. Fuel Process. Technol. 87 (7): 573–584.
  • Zhao, X., Shi, Q., Gray, M. R., and Xu, C. (2014) New vanadium compounds in Venezuela heavy crude oil detected by positive-ion electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Sci. Rep. 4: 1–6.
  • Trujillo, C. A., Navarro Uribe, U., Knops-Gerrits, P. P., Oviedo A., L. A., and Jacobs, P. A. (1997) The mechanism of zeolite Y destruction by steam in the presence of vanadium. J. Catal. 168 (1): 1–15.
  • Aliakbari, A., Amini, M. M., Mehrani, K., and Zadeh, H. R. M. (2014) Magnetic ion imprinted polymer nanoparticles for the preconcentration of vanadium(IV) ions. Microchim. Acta 181 (15–16): 1931–1938.
  • Shang, H., Liu, Y., Shi, J. C., Shi, Q., and Zhang, W. H. (2016) Microwave-assisted nickel and vanadium removal from crude oil. Fuel Process. Technol. 142: 250–257.
  • Cristiano-Torres, D. V., Osorio-Pérez, Y., Palomeque-Forero, L. A., Sandoval-Díaz, L. E., and Trujillo, C. A. (2008) The action of vanadium over Y zeolite in oxidant and dry atmosphere. Appl. Catal. A Gen. 346 (1–2): 104–111.
  • Kohli, K., Prajapati, R., Maity, S. K., Sau, M., and Garg, M. O. (2016) Deactivation of hydrotreating catalyst by metals in resin and asphaltene parts of heavy oil and residues. Fuel 175: 264–273.
  • Duyck, C., Miekeley, N., Porto da Silveira, C. L., Aucélio, R. Q., Campos, R. C., Grinberg, P., and Brandão, G. P. (2007) The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry. Spectrochim. Acta Part B At. Spectrosc. 62 (9): 939–951.
  • Cunha, F. A. S., Sousa, R. A., Harding, D. P., Cadore, S., Almeida, L. F., and Araújo, M. C. U. (2012) Automatic microemulsion preparation for metals determination in fuel samples using a flow-batch analyzer and graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 727: 34–40.
  • Butler, O. T., Cairns, W. R. L., Cook, J. M., and Davidson, C. M. (2016) Atomic spectrometry update – A review of advances in environmental analysis. J. Anal. At. Spectrom. 31 (1): 35–89.
  • Shehata, A. B., Mohamed, G. G., and Gab-Allah, M. A. (2017) Development of crude oil reference material certified for the concentrations of sulfur, iron, nickel, vanadium and magnesium MAPAN – J. Metrol. Soc. India 32 (2): 101–112.
  • Sańchez, R., Todolí, J. L., Lienemann, C. P., and Mermet, J. M. (2013) Determination of trace elements in petroleum products by inductively coupled plasma techniques: A critical review. Spectrochim. Acta Part B At. Spectrosc. 88: 104–126.
  • Bader, N. R. (2011) Sample preparation for flame atomic absorption spectroscopy: An overview. Rasayan J.Chem. 4 (1): 49–55.
  • Bok, R. (1984) A handbook of decomposition methods in analytical chemistry. John Wiley and Sons, New York, USA.
  • Oliveira, E. (2003) Sample preparation for atomic spectroscopy: Evolution and future trends. J. Braz. Chem. Soc. 14 (2): 174–182.
  • Vandecasteele, C., and Block, C. B. (1997) Modern methods for trace element determination. Eds. John Wiley and Sons, Chichesters, UK.
  • ASTM. (2015) D7455 − 14 Standard Practice for Sample Preparation of Petroleum and Lubricant Products for Elemental Analysis 1. Astm: 5 (4): 1–8.
  • ASTM. (2013) D5708-15 Standard Test Methods for Determination of Nickel, Vanadium, and Iron in Crude Oils and Residual Fuels by Inductively Coupled Plasma (ICP). 5 (2):1–9.
  • Silveira, E. L. C., Coelho, R. C., Neto, J. M. M., De Moura, C. V. R., and De Moura, E. M. (2010) Determinação de metais em óleos lubrificantes, provenientes de motores de ônibus urbano, utilizando a faas. Quimica Nova 33 (9): 1863–1867.
  • Pereira, J. S. F., Moraes, D. P., Antes, F. G., Diehl, L. O., Santos, M. F. P., Guimarães, R. C. L., Fonseca, T. C. O., Dressler, V. L., and Flores, É. M. M. (2010) Determination of metals and metalloids in light and heavy crude oil by ICP-MS after digestion by microwave-induced combustion. Microchem. J. 96 (1): 4–11.
  • Pontes, F. V. M., Carneiro, M. C., Vaitsman, D. S., Monteiro, M. I. C., Neto, A. A., Tristão, M. L. B., and Guerrante, M. D. F. (2013) Comparative study of sample decomposition methods for the determination of total Hg in crude oil and related products. Fuel Process. Technol. 106: 122–126.
  • Sanabria Ortega, G., Pécheyran, C., Hudin, G., Marosits, E., and Donard, O. F. X. (2013) Different approaches of crude oil mineralisation for trace metal analysis by ICPMS. Microchem. J. 106: 250–254.
  • Druzian, G. T., Pereira, L. S. F., Mello, P. A., Mesko, M. F., Duarte, F. A., and Flores, E. M. M. (2016) Rare earth element determination in heavy crude oil by USN-ICP-MS after digestion using a microwave-assisted single reaction chamber. J. Anal. At. Spectrom. 31: 1185–1191.
  • Knapp, G. (1991) Mechanized techniques for sample decomposition and element preconcentration. Mikrochim. Acta 104 (1–6): 445–455.
  • Oliveira, J. S. S., Picoloto, R. S., Bizzi, C. A., Mello, P. A., Barin, J. S., and Flores, E. M. M. (2015) Microwave-assisted ultraviolet digestion of petroleum coke for the simultaneous determination of nickel, vanadium and sulfur by ICP-OES. Talanta 144: 1052–1058.
  • ASTM. (2016) D5863-00a (Reapproved 2016) Standard test method for determination of nickel, vanadium, iron, and sodium in crude oils and residual fuels by flame atomica absorption spectrometry. Book of standards. 5 (2): 1–7.
  • Corazza, G., Henn, A. S., Mesko, M. F., Duarte, F. A., Flores, E. M. M., and Mello, P. A. (2016) Microwave-induced combustion of coal for further sulfur determination by inductively coupled plasma optical emission spectrometry or ion chromatography. J. Braz. Chem. Soc. 27 (9): 1569–1576.
  • Krzyzaniak, S. R., Santos, R. F., Dalla Nora, F. M., Cruz, S. M., Flores, E. M. M., and Mello, P. A. (2016) Determination of halogens and sulfur in high-purity polyimide by IC after digestion by MIC. Talanta 158: 193–197.
  • Christopher, S. J., and Vetter, T. W. (2016) Application of microwave-induced combustion and isotope dilution strategies for quantification of sulfur in coals via sector-field inductively coupled plasma mass spectrometry. Anal. Chem. 88 (9): 4635–4643.
  • Pereira, L. S. F., Iop, G. D., Nascimento, M. S., Diehl, L. O., Bizzi, C. A., Barin, J. S., and Flores, E. M. M. (2016) Alternative igniters based on oxidant salts for microwave-induced combustion method. J. Braz. Chem. Soc. 27 (3): 526–533.
  • Bjerketvedt, D., Bakke, J. R., and van Wingerden, K.. (2015) Gas explosion handbook. Christian Michelsen Research, Bergen, Norway.
  • Dalla Nora, F. M., Cruz, S. M., Giesbrecht, C. K., Knapp, G., Wiltsche, H., Bizzi, C. A., Barin, J. S., and Flores, E. M. M. (2017) A new approach for the digestion of diesel oil by microwave-induced combustion and determination of inorganic impurities by ICP-MS. J. Anal. At. Spectrom. 32 (2): 408–414.
  • D’Agostino, F., Oliveri, E., Bagnato, E., Falco, F., Mazzola, S., and Sprovieri, M. (2014) Direct determination of total mercury in phosphate rock using alkaline fusion digestion. Anal. Chim. Acta 852: 8–12.
  • Singh, A. K., Padmasubashini, V., and Gopal, L. (2012) Determination of uranium, thorium and rare-earth elements in zircon samples using ICP-MS. J. Radioanal. Nucl. Chem. 294 (1): 19–25.
  • Aydin, I., Aydin, F., and Hamamci, C. (2013) Vanadium fractions determination in asphaltite combustion waste using sequential extraction with ICP-OES. Microchem. J. 108: 64–67.
  • ASTM. (2015) D5600-14 Standard Test Method for Trace Metals in Petroleum Coke by Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES) 1. Astm: 5 (2): 1–5.
  • ASTM. (2015) D5056-15 Standard Test Method for Trace Metals in Petroleum Coke by Atomic Absorption 1. 1–5.
  • ASTM. (2010) D6376-10 Standard Test Method for Determination of Trace Metals in Petroleum Coke by Wavelength Dispersive X-ray Fluorescence Spectroscopy 1. 5: 1–5.
  • Korn, M. D. G. A., Morte, E. S. D. B., dos Santos, D. C. M. B., Castro, J. T., Barbosa, J. T. P., Teixeira, A. P., Fernandes, A. P., Welz, B., dos Santos, W. P. C., dos Santos, E. B. G. N., and Korn, M. (2008) Sample preparation for the determination of metals in food samples using spectroanalytical methods - A review. Appl. Spectrosc. Rev. 43 (2): 67–92.
  • Sedykh, E. M., Bannykh, L. N., Korobeinik, G. S., and Starshinova, N. P. (2011) Determination of nickel and vanadium in crude oils by electrothermal atomic absorption spectrometry and inductively coupled plasma atomic emission spectroscopy after mineralization in an autoclave. Inorg. Mater. 47 (14): 1539–1543.
  • Akinlua, A., Torto, N., and McCrindle, R. I. (2013) A new approach to sample preparation for the determination of trace metals in petroleum source rocks. Anal. Methods 5 (18): 4929.
  • Aydin, I., Aydin, F., Kilinc, E., and Hamamci, C. (2010) Determination of vanadium in Turkish asphaltites. Oil Shale 27 (4): 331–338.
  • Zhang, J., Li, L., Zhang, J., Zhang, Q., Yang, Y., and Jin, Q. (2007) Determination of silicon, iron, and vanadium in petroleum coke by microwave digestion-microwave plasma torch atomic emission spectrometry. Pet. Sci. Technol. 25 (4): 443–451.
  • Matusiewicz, H. (2005) Wet Digestion methods. In Elsevier Ltd (1995), Mester, Sturgeon, Eds., Elsevier B.V: Amsterdam, pp 193–233.
  • Sugiyama, I., and Williams-Jones, A. E. E. (2018) An approach to determining nickel, vanadium and other metal concentrations in crude oil. Anal. Chim. Acta 1002: 18–25.
  • Grindlay, G., Mora, J., De Loos-Vollebregt, M., and Vanhaecke, F. (2013) A systematic study on the influence of carbon on the behavior of hard-to-ionize elements in inductively coupled plasma-mass spectrometry. Spectrochim. Acta Part B At Spectrosc. 86: 42–49.
  • PlasmaQuant® PQ 9000 Elite - Analytik Jena AG. https://www.analytik-jena.de/en/analytical-instrumentation/products/optical-emission-spectrometry/plasmaquantr-pq-9000-elite.html (accessed 13 August 2018).
  • Niedzielski, P., Kozak, L., Wachelka, M., Jakubowski, K., and Wybieralska, J. (2015) The microwave induced plasma with optical emission spectrometry (MIP-OES) in 23 elements determination in geological samples. Talanta 132: 591–599.
  • Daltin, D. (2011) Tensoativos: Química, propriedades e aplicações. 1a reimpre. Edgard Blücher Ltda: São Paulo – SP.
  • Burguera, J. L., Avila-Gómez, R. M., Burguera, M., De Salager, R. A., Salager, J. L., Bracho, C. L., Burguera-Pascu, M., Burguera-Pascu, C., Brunetto, R., Gallignani, M., and De Peña, Y. P. (2003) Optimum phase-behavior formulation of surfactant/oil/water systems for the determination of chromium in heavy crude oil and in bitumen-in-water emulsion. Talanta 61 (3): 353–361.
  • Al-Swaidan, H. M. (1996) The determination of lead, nickel and vanadium in Saudi Arabian crude oil by sequential injection analysis/inductively-coupled plasma mass spectrometry. Talanta 43 (8): 1313–1319.
  • Reboucas, M. V., Domingos, D., Santos, A. S. O., and Sampaio, L. (2010) Determination of trace metals in naphtha by graphite furnace atomic absorption spectrometry: Comparison between direct injection and microemulsion pretreatment procedures. Fuel Process. Technol. 91 (11): 1702–1709.
  • Mendonça, C. R. B. (2005) Desenvolvimento de metodologias para análise direta de óleos vegetais empregando microemulsões de água em óleo e meios não aquosos. Doctoral thesis, Universidade Federal do Rio Grande do Sul, 172 p.
  • Ozcan, M., and Akman, S. (2005) Determination of Cu, Co and Pb in gasoline by electrothermal atomic absorption spectrometry using aqueous standard addition in gasoline-ethanol- water three-component system. Spectrochim. Acta Part B At. Spectrosc. 60 (3): 399–402.
  • Kara, D., Fisher, A., and Hill, S. (2015) Extraction of trace elements by ultrasound-assisted emulsification from edible oils producing detergentless microemulsions. Food Chem. 188: 143–148.
  • Viana, C., Bohrer, D., de Carvalho, L. M., do Nascimento, P. C., and da Rosa, M. B. (2014) Emulsified systems for metal determination by spectrometric methods. TrAC - Trends Anal. Chem. 53: 49–59.
  • Santos, D. S. S., Teixeira, A. P., Korn, M. G. A. and Teixeira, L. S. G. (2006) Determination of Mo and V in multiphase gasoline emulsions by electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 61 (5): 592–595.
  • Santelli, R. E., Bezerra, M. A., Freire, A. S., Oliveira, E. P., and de Carvalho, M. de F. B. (2008) Non-volatile vanadium determination in petroleum condensate, diesel and gasoline prepared as detergent emulsions using GF AAS. Fuel 87 (8–9): 1617–1622.
  • Vale, M. G. R., Silva, M. M., Damin, I. C. F., Sanches Filho, P. J., and Welz, B. (2008) Determination of volatile and non-volatile nickel and vanadium compounds in crude oil using electrothermal atomic absorption spectrometry after oil fractionation into saturates, aromatics, resins and asphaltenes. Talanta 74 (5): 1385–1391.
  • Quadros, D. P. C., Chaves, E. S., Lepri, F. G., Borges, D. L. G., Welz, B., Becker-Ross, H., and Curtius, A. J. (2010) Evaluation of brazilian and venezuelan crude oil samples by means of the simultaneous determination of ni and v as their total and non-volatile fractions using high-resolution continuum source graphite furnace atomic absorption spectrometry. Energy Fuels 24 (11): 5907–5911.
  • Damin, I. C. F., Dessuy, M. B., Castilhos, T. S., Silva, M. M., Vale, M. G. R., Welz, B., and Katskov, D. A. (2009) Comparison of direct sampling and emulsion analysis using a filter furnace for the determination of lead in crude oil by graphite furnace atomic absorption spectrometry. Spectrochim. Acta Part B At Spectrosc. 64 (6): 530–536.
  • Pessoa, H. M., Hauser-Davis, R. A., de Campos, R. C., de Castro, E. V. R., Carneiro, M. T. W. D., and Brandão, G. P. (2012) Determination of Ca, Mg, Sr and Ba in crude oil samples by atomic absorption spectrometry. J. Anal. At. Spectrom. 27 (9): 1568.
  • Aucélio, R. Q., Doyle, A., Pizzorno, B. S., Tristão, M. L. B., and Campos, R. C. (2004) Electrothermal atomic absorption spectrometric method for the determination of vanadium in diesel and asphaltene prepared as detergentless microemulsions. Microchem. J. 78 (1): 21–26.
  • Amorim, F. A. C., Lima, D. C., Amaro, J. A. A., Valea, M. G. R., and Ferreira, S. L. C. (2007) Methods for vanadium determination in fuel oil by GF AAS with microemulsification and acid digestion sampling. J. Braz. Chem. Soc. 18 (8): 1566–1570.
  • Doyle, A., Saavedra, A., Tristão, M. L. B., and Aucelio, R. Q. (2015) Determination of S, Ca, Fe, Ni and V in crude oil by energy dispersive X-ray fluorescence spectrometry using direct sampling on paper substrate. Fuel 162: 39–46.
  • Ellis, J., Rechsteiner, C., Moir, M., and Wilbur, S. (2011) Determination of volatile nickel and vanadinum species in crude oil and crude oil fractions by gas chromatography coupled to inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 26 (8): 1674.
  • Sánchez, R., Sánchez, C., Todolí, J. L., Lienemann, C.-P., and Mermet, J.-M. (2014) Quantification of nickel, vanadium and manganese in petroleum products and biofuels through inductively coupled plasma mass spectrometry equipped with a high temperature single pass spray chamber. J. Anal. At. Spectrom. 29 (2): 242–248.
  • Dittert, I. M., Silva, J. S. A., Araujo, R. G. O., Curtius, A. J., Welz, B., and Becker-Ross, H. (2010) Simultaneous determination of cobalt and vanadium in undiluted crude oil using high-resolution continuum source graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 25 (4): 590–595.
  • Brandão, G. P., de Campos, R. C., de Castro, E. V. R., and de Jesus, H. C. (2007) Determination of copper, iron and vanadium in petroleum by direct sampling electrothermal atomic absorption spectrometry. Spectrochim. Acta Part B At. Spectrosc. 62 (9): 962–969.
  • Silva, M. M., Damin, I. C. F., Vale, M. G. R., and Welz, B. (2007) Feasibility of using solid sampling graphite furnace atomic absorption spectrometry for speciation analysis of volatile and non-volatile compounds of nickel and vanadium in crude oil. Talanta 71 (5): 1877–1885.
  • Trichard, F., Gilon, N., Lienemann, C. P., and Baco-Antoniali, F. (2016) Evaluation of laser induced breakdown spectroscopy in view of nickel and vanadium on-line determination in petroleum products. J. Anal. At. Spectrom. 31 (3): 712–721.
  • Martínez, M., Lobinski, R., Bouyssiere, B., Piscitelli, V., Chirinos, J., and Caetano, M. (2015) Determination of Ni and v in Crude Oil Samples Encapsulated in Zr Xerogels by Laser-Induced Breakdown Spectroscopy. Energy Fuels 29 (9): 5573–5577.
  • Donati, G. L., Amais, R. S., Schiavo, D., and Nóbrega, J. A. (2013) Determination of Cr, Ni, Pb and V in gasoline and ethanol fuel by microwave plasma optical emission spectrometry. J. Anal. At. Spectrom. 28 (5): 755.
  • Nesbitt, J. A., Lindsay, M. B. J., and Chen, N. (2017) Geochemical characteristics of oil sands fluid petroleum coke. Appl. Geochem. 76: 148–158.
  • Gregoire, D. C., Lamoureux, M., Chakrabarti, C. L., Al-Maawali, S., and Byrne, J. P. (1992) Electrothermal vaporization for inductively coupled plasma mass spectrometry and atomic absorption spectrometry: symbiotic analytical techniques. J. Anal. At. Spectrom. 7 (4): 579–585.
  • Moens, L., Verrept, P., Boonen, S., Vanhaecke, F., and Dams, R. (1995) Solid sampling electrothermal vaporization for sample introduction in inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry. Spectrochim. Acta Part B At. Spectrosc. 50 (4–7): 463–475.
  • Skoog, W. H., West, D. M., Holler, F. J., and Crouch, S. R. (2012) Fundamentos de Química Analítica. Cengage Learning, Ed., Tradução d. São Paulo- SP.
  • Vicentino, P. O., and Cassella, R. J. (2017) Novel extraction induced by microemulsion breaking: A model study for Hg extraction from Brazilian gasoline. Talanta 162 (October 2016): 249–255.
  • Trindade, A. S. N., Dantas, A. F., Lima, D. C., Ferreira, S. L. C., and Teixeira, L. S. G. (2015) Multivariate optimization of ultrasound-assisted extraction for determination of Cu, Fe, Ni and Zn in vegetable oils by high-resolution continuum source atomic absorption spectrometry. Food Chem. 185: 145–150.
  • Shiraishi, Y., Hirai, T., and Komasawa, I. (2000) A novel demetalation process for vanadyl- and nickelporphyrins from petroleum residue by photochemical reaction and liquid-liquid extraction. Ind. Eng. Chem. Res. 39 (5): 1345–1355.
  • Nomngongo, P. N., Ngila, J. C., Kamau, J. N., Msagati, T. A. M., and Moodley, B. (2013) Preconcentration of molybdenum, antimony and vanadium in gasolsine samples using Dowex 1-x8 resin and their determination with inductively coupled plasma-optical emission spectrometry. Talanta 110: 153–159.
  • Jardim, I. C. S. F. (2010) Extração em Fase Sólida: Fundamentos Teóricos e Novas Estratégias para Preparação de Fases Sólidas. Sci. Chromatogr. 2 (1): 13–25.
  • Oliveira, E. P., Yang, L., Sturgeon, R. E., Santelli, R. E., Bezerra, M. A., Willie, S. N., and Capilla, R. (2011) Determination of trace metals in high-salinity petroleum produced formation water by inductively coupled plasma mass spectrometry following on-line analyte separation/preconcentration. J. Anal. At. Spectrom. 26 (3): 578.
  • Cassella, R. J., Brum, D. M., Lima, C. F., and Fonseca, T. C. O. (2011) Stabilization of aviation gasoline as detergent emulsion for lead determination by electrothermal atomic absorption spectrometry. Fuel Process. Technol. 92 (5): 933–938.
  • Cassella, R. J., Brum, D. M., Robaina, N. F., Rocha, A. A., and Lima, C. F. (2012) Extraction induced by emulsion breaking for metals determination in diesel oil by ICP-MS. J. Anal. At. Spectrom. 27 (2): 364–370.
  • Cassella, R. J., Brum, D. M., de Paula, C. E. R., and Lima, C. F. (2010) Extraction induced by emulsion breaking: A novel strategy for the trace metals determination in diesel oil samples by electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 25 (11): 1704.
  • Skoog, D. A., West, D. M., Holler, F. J., and Crouch S. R. (2017) Principles of Instrumental Analysis. Cegange Learning, Boston, Massachusetts, USA.
  • Welz, B., and Sperling, M. (1999) Atomic absorption spectrometry. 3rd ed. Wiley, Weinheim, Germany.
  • Winge, R. K., Peterson, V. J., and Fassel, V. A. (1979) Inductively coupled plasma-atomic emission spectroscopy: Prominent lines. Appl. Spectrosc. 33 (3): 206–219.
  • dos Anjos, S. L., Alves, J. C., Rocha Soares, S. A., Araujo, R. G. O., de Oliveira, O. M. C., Queiroz, A. F. S., and Ferreira, S. L. C. (2018) Multivariate optimization of a procedure employing microwave-assisted digestion for the determination of nickel and vanadium in crude oil by ICP OES. Talanta 178: 842–846.
  • Bettmer, J., Heilmann, J., Kutscher, D. J., Sanz-Medel, A., and Heumann, K. G. (2012) Direct μ-flow injection isotope dilution ICP-MS for the determination of heavy metals in oil samples. Anal. Bioanal. Chem. 402 (1): 269–275.
  • May, T. W., and Wiedmeyer, R. H. (1998) A Table of Polyatomic Interferences in ICP-MS. At. Spectrosc. 19 (October): 143–186.
  • Marcó P., L. M., and Hernández-Caraballo, E. A. (2004) Direct analysis of biological samples by total reflection X-ray fluorescence. Spectrochim. Acta Part B At. Spectrosc. 59 (8): 1077–1090.
  • Galarraga, F., Reategui, K., Martïnez, A., Martínez, M., Llamas, J. F., and Márquez, G. (2008) V/Ni ratio as a parameter in palaeoenvironmental characterisation of nonmature medium-crude oils from several Latin American basins. J. Pet. Sci. Eng. 61 (1): 9–14.
  • Dobrowolski, R., Adamczyk, A., and Otto, M. (2013) Determination of vanadium in soils and sediments by the slurry sampling graphite furnace atomic absorption spectrometry using permanent modifiers. Talanta 113: 19–25.
  • Meeravali, N. N., and Jai Kumar, S. (2001) The utility of a W–Ir permanent chemical modifier for the determination of Ni and V in emulsified fuel oils and naphtha by transverse heated electrothermal atomic absorption spectrometer. J. Anal. At. Spectrom. 16 (5): 527–532.
  • Lepri, F. G., Welz, B., Borges, D. L. G., Silva, A. F., Vale, M. G. R., and Heitmann, U. (2006) Speciation analysis of volatile and non-volatile vanadium compounds in Brazilian crude oils using high-resolution continuum source graphite furnace atomic absorption spectrometry. Anal. Chim. Acta 558 (1–2): 195–200.
  • Yaroshchyk, P., Morrison, R. J. S., Body, D., and Chadwick, B. L. (2005) Quantitative determination of wear metals in engine oils using laser-induced breakdown spectroscopy: A comparison between liquid jets and static liquids. Spectrochim. Acta Part B At. Spectrosc. 60 (7–8): 986–992.
  • Yaroshchyk, P., Morrison, R. J. S., Body, D., and Chadwick, B. L. (2005) Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS. Spectrochim. Acta Part B At. Spectrosc. 60 (11): 1482–1485.
  • Tonsa, I. R., Pajovic, M. T., Lopez, L., and Pavlovic, M. S. (2001) Electron spin resonance study of the kerogen/asphaltene vanadyl porphyrins: Air oxidation. Fuel 80: 635–639.
  • Zeng, Y. D., and Uden, P. C. (1994) High temperature gas chromatography - atomic emission detection of metalloporphyrins in crude oils. HRC - J. High Res. Chromatogr. 17: 223–229.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.