508
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Bibliometric insights into the spectroscopy research field: A food science and technology case study

, , &

References

  • Bansal, S.; Singh, A.; Mangal, M.; Mangal, A. K.; Kumar, S. Food Adulteration: Sources, Health Risks, and Detection Methods. Crit. Rev. Food Sci. Nutr. 2017, 57, 1174–1189. doi:10.1080/10408398.2014.967834
  • Csapó, J.; Némethy, S.; Albert, C. Food Counterfeiting in General; Counterfeiting of Milk and Dairy Products. Ecocycles 2019, 5, 26–41. doi:10.19040/ecocycles.v5i1.138
  • Cozzolino, D. Recent Trends on the Use of Infrared Spectroscopy to Trace and Authenticate Natural and Agricultural Food Products. Appl. Spectrosc. Rev. 2012, 47, 518–530. doi:10.1080/05704928.2012.667858
  • Yu, J.; Wang, H.; Zhan, J.; Huang, W. Review of Recent UV-Vis and Infrared Spectroscopy Researches on Wine Detection and Discrimination. Appl. Spectrosc. Rev. 2018, 53, 65–86. doi:10.1080/05704928.2017.1352511.
  • Prieto, N.; Roehe, R.; Lavín, P.; Batten, G.; Andrés, S. Application of Near Infrared Reflectance Spectroscopy to Predict Meat and Meat Products Quality: A Review. Meat Sci. 2009, 83, 175–186. doi:10.1016/j.meatsci.2009.04.016
  • Rohman, A.; Man, Y. B. C. Application of Fourier Transform Infrared Spectroscopy for Authentication of Functional Food Oils. Appl. Spectrosc. Rev. 2012, 47, 1–13. doi:10.1080/05704928.2011.619020
  • Rohman, A. The Use of Infrared Spectroscopy in Combination with Chemometrics for Quality Control and Authentication of Edible Fats and Oils: A Review. Appl. Spectrosc. Rev. 2017, 52, 589–604. doi:10.1080/05704928.2016.1266493
  • Wang, P.; Sun, J.; Zhang, T.; Liu, W. Vibrational Spectroscopic Approaches for the Quality Evaluation and Authentication of Virgin Olive Oil. Appl. Spectrosc. Rev. 2016, 51, 763–790. doi:10.1080/05704928.2016.1176034
  • Se, K. W.; Wahab, R. A.; Syed Yaacob, S. N.; Ghoshal, S. K. Detection Techniques for Adulterants in Honey: Challenges and Recent Trends. J. Food Compos. Anal. 2019, 80, 16–32. doi:10.1016/j.jfca.2019.04.001
  • Flynn, K.; Villarreal, B. P.; Barranco, A.; Belc, N.; Björnsdóttir, B.; Fusco, V.; Rainieri, S.; Elsa, S.; Smeu, I.; Teixeira, P. An Introduction to Current Food Safety Needs. Trends Food Sci. Technol. 2019, 84, 1–3. doi:10.1016/j.tifs.2018.09.012
  • He, H.; Sun, D.; Pu, H.; Chen, L.; Lin, L. Applications of Raman Spectroscopic Techniques for Quality and Safety Evaluation of Milk : A Review of Recent Developments. Crit. Rev. Food Sci. 2019, 59, 770-793. doi:10.1080/10408398.2018.1528436.
  • Gowen, A.; Odonnell, C.; Cullen, P.; Downey, G.; Frias, J. Hyperspectral Imaging - An Emerging Process Analytical Tool for Food Quality and Safety Control. Trends Food Sci. Technol. 2007, 18, 590–598. doi:10.1016/j.tifs.2007.06.001
  • Benito, M. T. J.; Ojeda, C. B.; Rojas, F. S. Process Analytical Chemistry: Applications of near Infrared Spectrometry in Environmental and Food Analysis: An Overview. Appl. Spectrosc. Rev. 2008, 43, 452–484. doi:10.1080/05704920802031382.
  • López-Gómez, A.; Fernández, P. S.; Palop, A.; Periago, P. M.; Martinez-López, A.; Marin-Iniesta, F.; Barbosa-Cánovas, G. V. Food Safety Engineering: An Emergent Perspective. Food Eng. Rev. 2009, 1, 84–104. doi:10.1007/s12393-009-9005-5
  • Jin, H.; Lu, Q.; Chen, X.; Ding, H.; Gao, H.; Jin, S. The Use of Raman Spectroscopy in Food Processes: A Review. Appl. Spectrosc. Rev. 2016, 51, 12–22. doi:10.1080/05704928.2015.1087404
  • Parfitt, J.; Barthel, M.; MacNaughton, S. Food Waste within Food Supply Chains: Quantification and Potential for Change to 2050. Philos. Trans. R. Soc. B 2010, 365, 3065–3081. doi:10.1098/rstb.2010.0126
  • Dambergs, R.; Gishen, M.; Cozzolino, D. A Review of the State of the Art, Limitations, and Perspectives of Infrared Spectroscopy for the Analysis of Wine Grapes, Must, and Grapevine Tissue. Appl. Spectrosc. Rev. 2015, 50, 261–278. doi:10.1080/05704928.2014.966380
  • Cozzolino, D. The Role of Visible and Infrared Spectroscopy Combined with Chemometrics to Measure Phenolic Compounds in Grape and Wine Samples. Molecules 2015, 20, 726–737. doi:10.3390/molecules20010726
  • Cozzolino, D.; Cynkar, W. U.; Shah, N.; Smith, P. Multivariate Data Analysis Applied to Spectroscopy: Potential Application to Juice and Fruit Quality. Food Res. Int. 2011, 44, 1888–1896. doi:10.1016/j.foodres.2011.01.041
  • Porep, J. U.; Kammerer, D. R.; Carle, R. On-Line Application of near Infrared (NIR) Spectroscopy in Food Production. Trends Food Sci. Technol. 2015, 46, 211–230. doi:10.1016/j.tifs.2015.10.002
  • Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Du Toit, W. Towards on-Line Monitoring of Phenolic Content in Red Wine Grapes: A Feasibility Study. Food Chem. 2019, 270, 322–331. doi:10.1016/j.foodchem.2018.07.118
  • Lourenço, N. D.; Lopes, J. A.; Almeida, C. F.; Sarraguça, M. C.; Pinheiro, H. M. Bioreactor Monitoring with Spectroscopy and Chemometrics: A Review. Anal. Bioanal. Chem. 2012, 404, 1211–1237. doi:10.1007/s00216-012-6073-9
  • Ricci, A.; Parpiniello, G.; Laghi, L.; Lambri, M.; Versari, A. Application of Infrared Spectroscopy to Grape and Wine Analysis. In Infrared Spectroscopy: Theory, Developments and Applications 2013; Cozzolino, D., Ed. Nova Science Publishers, Inc.: Hauppauge, NY, 2013; pp. 17–41.
  • Roberts, J. J.; Cozzolino, D. An Overview on the Application of Chemometrics in Food Science and Technology-An Approach to Quantitative Data Analysis. Food Anal. Methods 2016, 9, 3258–3267. doi:10.1007/s12161-016-0574-7
  • Granato, D.; Putnik, P.; Kovačević, D. B.; Santos, J. S.; Calado, V.; Rocha, R. S.; Cruz, A. G.; Da Jarvis, B.; Rodionova, O. Y.; Pomerantsev, A. Trends in Chemometrics: Food Authentication, Microbiology, and Effects of Processing. Compr. Rev. Food Sci. Food Saf. 2018, 17, 663–677. doi:10.1111/1541-4337.12341
  • Bro, R.; Van den Berg, F.; Thybo, A.; Andersen, C. M.; Jørgensen, B. M.; Andersen, H. Multivariate Data Analysis as a Tool in Advanced Quality Monitoring in the Food Production Chain. Trends Food Sci. Technol. 2002, 13, 235–244. doi:10.1016/S0924-2244(02)00138-3
  • Aleixandre-Tudo, J. L.; Nieuwoudt, H.; Aleixandre, J. L.; Du Toit, W. Chemometric Compositional Analysis of Phenolic Compounds in Fermenting Samples and Wines Using Different Infrared Spectroscopy Techniques. Talanta 2018, 176, 526–536. doi:10.1016/j.talanta.2017.08.065
  • Magwaza, L. S.; Opara, U. L.; Nieuwoudt, H.; Cronje, P. J. R.; Saeys, W.; Nicolaï, B. NIR Spectroscopy Applications for Internal and External Quality Analysis of Citrus Fruit-A Review. Food Bioprocess Technol. 2012, 5, 425–444. doi:10.1007/s11947-011-0697-1
  • Petrovic, G.; Aleixandre-Tudo, J.-L.; Buica, A. Viability of IR Spectroscopy for the Accurate Measurement of Yeast Assimilable Nitrogen Content of Grape Juice. Talanta 2020, 206, 120241. doi:10.1016/j.talanta.2019.120241
  • Nunes, K. M.; Andrade, M. V. O.; Santos Filho, A. M. P.; Lasmar, M. C.; Sena, M. M. Detection and Characterisation of Frauds in Bovine Meat in Natura by Non-Meat Ingredient Additions Using Data Fusion of Chemical Parameters and ATR-FTIR Spectroscopy. Food Chem. 2016, 205, 14–22. doi:10.1016/j.foodchem.2016.02.158
  • Jaiswal, P.; Jha, S. N.; Borah, A.; Gautam, A.; Grewal, M. K.; Jindal, G. Detection and Quantification of Soymilk in Cow-Buffalo Milk Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR). Food Chem. 2015, 168, 41–47. doi:10.1016/j.foodchem.2014.07.010
  • Aleixandre-Benavent, R.; Valderrama-Zurián, J. C.; González-Alcaide, G. Scientific Journals Impact Factor: Limitations and Alternative Indicators. Prof. Inf. 2017, 16, 4–11.
  • Lanza, E.; Svendsen, B. A. Tell Me Who Your Friends Are and I Might Be Able to Tell You What Language(s) You Speak: Social Network Analysis, Multilingualism, and Identity. Int. J. Biling. 2007, 11, 275–300. doi:10.1177/13670069070110030201
  • Batagelj, V.; Mrvar, A. Pajek—Analysis and Visualization of Large Networks. In Graph Drawing. GD 2001. Lecture Notes in Computer Science; Mutzel P., Jünger M., Leipert S., Eds.; Springer: Berlin, Heidelberg, 2002; Vol. 2265. doi:10.1007/3-540-45848-4_54.
  • Dudnik, N. S.; Thormann, I.; Hodgkin, T. The Extent of Use of Plant Genetic Resources in Research - A Literature Survey. Crop Sci. 2001, 41, 6–10. doi:10.2135/cropsci2001.4116
  • Dalpé, R. Bibliometric Analysis of Biotechnology. Scientometrics 2002, 55, 189–213. doi:10.1023/A:1019663607103
  • Konur, O. The Scientometric Evaluation of the Research on the Production of Bioenergy from Biomass. Biomass and Bioenergy 2012, 47, 504–515. doi:10.1016/j.biombioe.2012.09.047
  • Vain, P. Trends in GM Crop, Food and Feed Safety Literature. Nat. Biotechnol. 2007, 25, 624–626. doi:10.1038/nbt0607-624b
  • Aleixandre-Benavent, R.; Aleixandre Tudó, J. L.; González Alcaide, G.; Aleixandre, J. L. Analysis of the Collaboration between the US and the EU in Viticulture and Oenology. Ital. J. Food Sci. 2013, 25, 3–15.
  • Aleixandre, J. L.; Aleixandre-Tudó, J. L.; Bolaños-Pizarro, M.; Aleixandre-Benavent, R. Viticulture and Oenology Scientific Research: The Old World versus the New World Wine-Producing Countries. Int. J. Inf. Manage. 2016, 36, 389–396. doi:10.1016/j.ijinfomgt.2016.01.003
  • Guo, K.; Liu, Y. F.; Zeng, C.; Chen, Y. Y.; Wei, X. J. Global Research on Soil Contamination from 1999 to 2012: A Bibliometric Analysis. Acta Agric. Scand. Sect. B Soil Plant Sci. 2014, 64, 377–391. doi:10.1080/09064710.2014.913679
  • Li, J.; Wang, M. H.; Ho, Y. S. Trends in Research on Global Climate Change: A Science Citation Index Expanded-Based Analysis. Glob. Planet. Change 2011, 77, 13–20. doi:10.1016/j.gloplacha.2011.02.005
  • Wang, B.; Pan, S. Y.; Ke, R. Y.; Wang, K.; Wei, Y. M. An Overview of Climate Change Vulnerability: A Bibliometric Analysis Based on Web of Science Database. Nat. Hazards 2014, 74, 1649–1666. doi:10.1007/s11069-014-1260-y
  • Bjurström, A.; Polk, M. Physical and Economic Bias in Climate Change Research: A Scientometric Study of IPCC Third Assessment Report. Clim. Change 2011, 108, 1–22. doi:10.1007/s10584-011-0018-8
  • Aleixandre-Benavent, R.; Aleixandre-Tudo, J. L.; Castelló-Cogollos, L.; Aleixandre, J. L. Trends in Scientific Research on Climate Change in Agriculture and Forestry Subject Areas (2005-2014). J. Clean, Pro. 2017, 147, 406–418. doi:10.1016/j.jclepro.2017.01.112
  • Aleixandre-Benavent, R.; Aleixandre-Tudó, J. L.; Castelló-Cogollos, L.; Aleixandre, J. L. Trends in Global Research in Deforestation. A Bibliometric Analysis. Land Use Policy 2018, 72, 293–302. doi:10.1016/j.landusepol.2017.12.060
  • Aleixandre-Tudo, J. L.; Buica, A.; Nieuwoudt, H.; Aleixandre, J. L.; Du Toit, W. Spectrophotometric Analysis of Phenolic Compounds in Grapes and Wines. J. Agric. Food Chem. 2017, 65, 4009–4026. doi:10.1021/acs.jafc.7b01724
  • Murphy, K. R.; Stedmon, C. A.; Graeber, D.; Bro, R. Fluorescence Spectroscopy and Multi-Way Techniques PARAFAC. Anal. Methods 2013, 5, 6557–6566. doi:10.1039/c3ay41160e
  • Craig, A. P.; Franca, A. S.; Irudayaraj, J. Surface-Enhanced Raman Spectroscopy Applied to Food Safety. Annu. Rev. Food Sci. Technol. 2013, 4, 369–380. doi:10.1146/annurev-food-022811-101227
  • Lerma-García, M. J.; Ramis-Ramos, G.; Herrero-Martínez, J. M.; Simó-Alfonso, E. F. Authentication of Extra Virgin Olive Oils by Fourier-Transform Infrared Spectroscopy. Food Chem. 2010, 118, 78–83. doi:10.1016/j.foodchem.2009.04.092
  • Rohman, A.; Man, Y. B. C. Fourier Transform Infrared (FTIR) Spectroscopy for Analysis of Extra Virgin Olive Oil Adulterated with Palm Oil. Food Res. Int. 2010, 43, 886–892. doi:10.1016/j.foodres.2009.12.006
  • Maggio, R. M.; Kaufman, T. S.; Del Carlo, M.; Cerretani, L.; Bendini, A.; Cichelli, A.; Compagnone, D. Monitoring of Fatty Acid Composition in Virgin Olive Oil by Fourier Transformed Infrared Spectroscopy Coupled with Partial Least Squares. Food Chem. 2009, 114, 1549–1554. doi:10.1016/j.foodchem.2008.11.029
  • Bobelyn, E.; Serban, A. S.; Nicu, M.; Lammertyn, J.; Nicolai, B. M.; Saeys, W. Postharvest Quality of Apple Predicted by NIR-Spectroscopy: Study of the Effect of Biological Variability on Spectra and Model Performance. Postharvest Biol. Technol. 2010, 55, 133–143. doi:10.1016/j.postharvbio.2009.09.006
  • Li, J.; Huang, W.; Zhao, C.; Zhang, B. A Comparative Study for the Quantitative Determination of Soluble Solids Content, PH and Firmness of Pears by Vis/NIR Spectroscopy. J. Food Eng. 2013, 116, 324–332. doi:10.1016/j.jfoodeng.2012.11.007
  • Liu, B.; Zhou, P.; Liu, X.; Sun, X.; Li, H.; Lin, M. Detection of Pesticides in Fruits by Surface-Enhanced Raman Spectroscopy Coupled with Gold Nanostructures. Food Bioprocess Technol. 2013, 6, 710–718. doi:10.1007/s11947-011-0774-5
  • Yang, D.; Ying, Y. Applications of Raman Spectroscopy in Agricultural Products and Food Analysis: A Review. Appl. Spectrosc. Rev. 2011, 46, 539–560. doi:10.1080/05704928.2011.593216
  • Cai, J.; Chen, Q.; Wan, X.; Zhao, J. Determination of Total Volatile Basic Nitrogen (TVB-N) Content and Warner-Bratzler Shear Force (WBSF) in Pork Using Fourier Transform near Infrared (FT-NIR) Spectroscopy. Food Chem. 2011, 126, 1354–1360. doi:10.1016/j.foodchem.2010.11.098
  • Armenteros, M.; Heinonen, M.; Ollilainen, V.; Toldrá, F.; Estévez, M. Analysis of Protein Carbonyls in Meat Products by Using the DNPH-Method, Fluorescence Spectroscopy and Liquid Chromatography-Electrospray Ionisation-Mass Spectrometry (LC-ESI-MS). Meat Sci. 2009, 83, 104–112. doi:10.1016/j.meatsci.2009.04.007
  • Boyaci, I. H.; Temiz, H. T.; Uysal, R. S.; Velioǧlu, H. M.; Yadegari, R. J.; Rishkan, M. M. A Novel Method for Discrimination of Beef and Horsemeat Using Raman Spectroscopy. Food Chem. 2014, 148, 37–41. doi:10.1016/j.foodchem.2013.10.006
  • Prieto, N.; Ross, D. W.; Navajas, E. A.; Nute, G. R.; Richardson, R. I.; Hyslop, J. J.; Simm, G.; Roehe, R. On-Line Application of Visible and near Infrared Reflectance Spectroscopy to Predict Chemical-Physical and Sensory Characteristics of Beef Quality. Meat Sci. 2009, 83, 96–103. doi:10.1016/j.meatsci.2009.04.005
  • Rohman, A.; Sismindari Erwanto, Y.; Che Man, Y. B. Analysis of Pork Adulteration in Beef Meatball Using Fourier Transform Infrared (FTIR) Spectroscopy. Meat Sci. 2011, 88, 91–95. doi:10.1016/j.meatsci.2010.12.007.
  • Lachenmeier, D. W.; Eberhard, H.; Fang, F.; Birk, S.; Peter, D.; Constanze, S.; Manfred, S. NMR-Spectroscopy for Nontargeted Screening and Simultaneous Quantification of Health-Relevant Compounds in Foods: The Example of Melamine. J. Agric. Food Chem. 2009, 57, 7194–7199. doi:10.1021/jf902038j
  • Sneharani, A. H.; Karakkat, J. V.; Singh, S. A.; Rao, A. G. A. Interaction of Curcumin with SS-Lactoglobulin;Stability, Spectroscopic Analysis, and Molecular Modeling of the Complex. J. Agric. Food Chem. 2010, 58, 11130–11139. doi:10.1021/jf102826q
  • De Marchi, M.; Fagan, C. C.; O’Donnell, C. P.; Cecchinato, A.; Dal Zotto, R.; Cassandro, M.; Penasa, M.; Bittante, G. Prediction of Coagulation Properties, Titratable Acidity, and PH of Bovine Milk Using Mid-Infrared Spectroscopy. J. Dairy Sci. 2009, 92, 423–432. doi:10.3168/jds.2008-1163
  • Sacco, D.; Brescia, M. A.; Sgaramella, A.; Casiello, G.; Buccolieri, A.; Ogrinc, N.; Sacco, A. Discrimination between Southern Italy and Foreign Milk Samples Using Spectroscopic and Analytical Data. Food Chem. 2009, 114, 1559–1563. doi:10.1016/j.foodchem.2008.11.056
  • Hacisalihoglu, G.; Larbi, B.; Mark Settles, A. Near-Infrared Reflectance Spectroscopy Predicts Protein, Starch, and Seed Weight in Intact Seeds of Common Bean (Phaseolus vulgaris L.). J. Agric. Food Chem. 2010, 58, 702–706. doi:10.1021/jf9019294
  • Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Near Infrared Reflectance Spectroscopy for Determination of the Geographical Origin of Wheat. Food Chem. 2013, 138, 1902–1907. doi:10.1016/j.foodchem.2012.11.037
  • Martelli, M. R.; Brygo, F.; Sadoudi, A.; Delaporte, P.; Barron, C. Laser-Induced Breakdown Spectroscopy and Chemometrics: A Novel Potential Method to Analyze Wheat Grains. J. Agric. Food Chem. 2010, 58, 7126–7134. doi:10.1021/jf100665u
  • Soylak, M.; Unsal, Y. E.; Tuzen, M. Spectrophotometric Determination of Trace Levels of Allura Red in Water Samples after Separation and Preconcentration. Food Chem. Toxicol. 2011, 49, 1183–1187. doi:10.1016/j.fct.2011.02.013
  • Fernández-Novales, J.; López, M. I.; Sánchez, M. T.; Morales, J.; González-Caballero, V. Shortwave-near Infrared Spectroscopy for Determination of Reducing Sugar Content during Grape Ripening, Winemaking, and Aging of White and Red Wines. Food Res. Int. 2009, 42, 285–291. doi:10.1016/j.foodres.2008.11.008
  • Son, H. S.; Hwang, G. S.; Ahn, H. J.; Park, W. M.; Lee, C. H.; Hong, Y. S. Characterization of Wines from Grape Varieties through Multivariate Statistical Analysis of 1H NMR Spectroscopic Data. Food Res. Int. 2009, 42, 1483–1491. doi:10.1016/j.foodres.2009.08.006
  • Airado-Rodríguez, D.; Durán-Merás, I.; Galeano-Díaz, T.; Wold, J. P. Front-Face Fluorescence Spectroscopy: A New Tool for Control in the Wine Industry. J. Food Compos. Anal. 2011, 24, 257–264. doi:10.1016/j.jfca.2010.10.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.