846
Views
10
CrossRef citations to date
0
Altmetric
Review

The application of spectroscopy technology in the monitoring of microalgae cells concentration

, &

References

  • Liang, F.; Ya, Q.; Du, W.; Wen, X.; Geng, Y.; Li, Y. The Relationships between Optical Density, Cell Number, and Biomass of Fourmicroalgae. Acta Ecologica Sinica 2014, 34, 6156–6163.
  • He, Y.; Zhang, P.; Huang, S.; Wang, T.; Ji, Y.; Xu, J. Label-Free, Simultaneous Quantification of Starch, Protein and Triacylglycerol in Single Microalgal Cells. Biotechnol. Biofuels. 2017, 10, 275. doi:10.1186/s13068-017-0967-x
  • Zhao, W.-Y.; Sun, H.; Ren, Y.; Wu, T.; He, Y.; Chen, F. Chlorella Zofingiensis as a Promising Strain in Waste Water Treatment. Bioresour. Technol 2018, 268, 286–291. doi:10.1016/j.biortech.2018.07.144
  • Rashid, N.; Park, W. K.; Selvaratnam, T. Binary Culture of Microalgae as an Integrated Approach for Enhanced Biomass and Metabolites Productivity, Wastewater Treatment, and Bioflocculation. Chemosphere 2018, 194, 67–75. doi:10.1016/j.chemosphere.2017.11.108
  • Martínez-Guijarro, R.; Pachés, M.; Ferrer, J.; Seco, A. Model Performance of Partial Least Squares in Utilizing the Visible Spectroscopy Data for Estimation of Algal Biomass in a Photobioreactor. Environ. Technol. Inno 2018, 10, 122–131. doi:10.1016/j.eti.2018.01.005
  • Griffiths, M. J.; Garcin, C.; Hille, R. P. V.; Harrison, S. T. L. Interference by Pigment in the Estimation of Microalgal Biomass Concentration by Optical Density. J. Microbiol. Meth 2011, 85, 119–123. doi:10.1016/j.mimet.2011.02.005
  • Wang, H.; Zhu, R.; Zhang, J.; Ni, L.; Shen, H.; Xie, P. A Novel and Convenient Method for Early Warning of Algal Cell Density by Chlorophyll Fluorescence Parameters and Its Application in a Highland Lake. Front. Plant Sci 2018, 9 , 869. doi:10.3389/fpls.2018.00869
  • Lee, T.-H.; Chang, J.-S.; Wang, H.-Y. Current Developments in High-Throughput Analysis for Microalgae Cellular Contents. Biotechnol. J 2013, 8, 1301–1314. doi:10.1002/biot.201200391
  • Sarrafzadeh, M. H.; La, H.; Seo, S.; Asgharnejad, H.; Oh, H. Evaluation of Various Techniques for Microalgal Biomass Quantification. J. Biotechnol 2015, 216, 90–97.
  • Thatipamala, R.; Rohani, S.; Hill, G. A. Spectrophotometric Method for High Biomass Concentration Measurements. Biotechnol. Bioeng. 1991, 38, 1007–1011. doi:10.1002/bit.260380908
  • Turner, M. Microalgae-Biotechnology and Microbiology. J. Exp. Mar. Bio. Ecol. 1994, 183, 300–301. doi:10.1016/0022-0981(94)90095-7
  • Souliès, A.; Legrand, J.; Marec, H.; Pruvost, J.; Castelain, C.; Burghelea, T.; Cornet, J.-F. Investigation and Modeling of the Effects of Light Spectrum and Incident Angle on the Growth of Chlorella Vulgaris in Photobioreactors. Biotechnol. Progress. 2016, 32, 247–261. doi:10.1002/btpr.2244
  • Takache, H.; Christophe, G.; Cornet, J.-F.; Pruvost, J. Experimental and Theoretical Assessment of Maximum Productivities for the Microalgae chlamydomonas reinhardtii in Two Different Geometries of Photobioreactors. Biotechnol. Progress. 2010, 26, 431–440. doi:10.1002/btpr.356
  • Takache, H.; Pruvost, J.; Cornet, J.-F. Kinetic Modeling of the Photosynthetic Growth of chlamydomonas reinhardtii in a Photobioreactor. Biotechnol. Progress. 2012, 28, 681–692. doi:10.1002/btpr.1545
  • Garcia-Ochoa, F.; Gomez, E.; Santos, V. E.; Merchuk, J. C. Oxygen Uptake Rate in Microbial Processes: An Overview. Biochem. Eng. J 2010, 49, 289–307. doi:10.1016/j.bej.2010.01.011
  • Jeon, H. J.; Choi, Y.; Song, K.; Lee, S. H.; Yang, Y.; Kim, H.; Kim, S.; Kumaran, R.; Hong, S. W.; Kim, H. J. Development of a Photoelectrochemical Sensor for Monitoring Algal Biomass (Chlorella Vulgaris). Sensor. Actuat. B-Chem 2013, 185, 405–410. doi:10.1016/j.snb.2013.05.026
  • Cogne, G.; Lasseur, C.; Cornet, J. F.; Dussap, C. G.; Gros, J. B. Growth Monitoring of a Photosynthetic Micro-Organism (Spirulina Platensis) by Pressure Measurement. Biotechnol. Lett 2001, 23, 1309–1314.
  • Liu, J.-Y.; Zeng, L.-H.; Ren, Z. H. Recent Application of Spectroscopy for the Detection of Microalgae Life Information: A Review. Appl. Spectrosc. Rev 2019, 2019, 1–34.
  • Podevin, M.; Fotidis, I. A.; Angelidaki, I. Microalgal Process-Monitoring Based on High -Selectivity Spectroscopy Tools: status and Future Perspectives. Crit. Rev. Biotechnol 2018, 38, 704–718. doi:10.1080/07388551.2017.1398132
  • Horvath, H. Experimental Investigation on the Validity of the Lambert-Beer Law at High Particle Concentrations. J.Aerosol. Sci 1988, 19, 0–840.
  • Eaton, A. D.; Clesceri, L. S.; Greenberg, A. E.; Franson, M. A. H. Standard Methods for the Examination of Water and Wastewater. Am. J. Public Health Nations Health 1995, 56, 387–388.
  • Nguyen, B. T.; Rittmann, B. E. Low-Cost Optical Sensor to Automatically Monitor and Control Biomass Concentration in Microalgal Cultivation. Algal Res 2018, 32, 101–106. doi:10.1016/j.algal.2018.03.013
  • Jia, F.; Kacira, M.; Ogden, K. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae. Sensors-Basel 2015, 15, 22234–22248. doi:10.3390/s150922234
  • Sandnes, J. M.; Ringstad, T.; Wenner, D.; Heyerdahl, P. H.; Källqvist, T.; Gislerød, H. R. Real-Time Monitoring and Automatic Density Control of Large-Scale Microalgal Cultures Using near Infrared (NIR) Optical Density Sensors. J. Biotechnol 2006, 122, 209–215. doi:10.1016/j.jbiotec.2005.08.034
  • Briassoulis, D.; Panagakis, P.; Chionidis, M.; Tzenos, D.; Lalos, A.; Tsinos, C.; Berberidis, K.; Jacobsen, A. An Experimental Helical-Tubular Photobioreactor for Continuous Production of Nannochloropsis sp. Bioresource Technol 2010, 101, 6768–6777. doi:10.1016/j.biortech.2010.03.103
  • Nedbal, L.; Trtílek, M.; Červený, J.; Komárek, O.; Pakrasi, H. B. A Photobioreactor System for Precision Cultivation of Photoautotrophic Microorganisms and for High-Content Analysis of Suspension Dynamics. Biotechnol. Bioeng. 2008, 100, 902–910. doi:10.1002/bit.21833
  • Lemmens, E.; Jansen, M. 2014 Cell Concentration Sensor for micro-bioreactors: Optical sensor system.
  • AlgaeTorch-Chlorophyll and Cyanobacteria measurement. Available online: http://www.bbe-moldaenke.de/chlorophyll/algaetorch/ (accessed July 12, 2013).
  • Blue-Green Algae by Sensor Turner Designs. Available online: http://www.hachhydromet.com/web/ott_hach.nsf/id/pa_blue-green_algae_by_turner_designs.html (accessed February 10, 2012).
  • Santos-Ballardo, D. U.; Rossi, S.; Hernández, V.; Gómez, R. V.; Rendón-Unceta, D.,M. C.; Caro-Corrales, J.; Valdez-Ortiz, A. A Simple Spectrophotometric Method for Biomass Measurement of Important Microalgae Species in Aquaculture. Aquaculture 2015, 448, 87–92. doi:10.1016/j.aquaculture.2015.05.044
  • Bricaud, A.; Morel, A.; Babin, M.; Allali, K.; Claustre, H. Variations of Light Absorption by Suspended Particles with Chlorophyll a Concentration in Oceanic (Case 1) Eaters: analysis and Implications for Bio-Optical Models. J. Geophys. Res. 1998, 103, 31033–31044. doi:10.1029/98JC02712
  • Li, X.-X.; Zhu, C.-G.; Zhou, J.; Sun, L.-Q.; Cao, X.-M.; Zhang, X. S. Application Progress and Trend of Spectral Technology in Aquaculture Water Quality Monitoring. Journal of Agricultural Engineering 2018, 34, 184–194.
  • Johan, F.; Jafri, M. Z.; Lim, H. S.; Wan, W. O. Maznah, 2015 Estimating the Chlorophyll a Concentration of Phytoplankton from an Empirical Analysis. IEEE, Kuala Lumpur, Malaysia.
  • Yu, W. Estimation of Microcystis aeruginosa Proportion in Taihu Lake Based on Absorption Spectrum. Nanjing: Nanjing Normal University, 2014
  • Kasprzak, P.; Padisák, J.; Koschel, R.; Krienitz, L.; Gervais, F. Chlorophyll a Concentration across a Trophic Gradient of Lakes: An Estimator of Phytoplankton Biomass? Limnologica 2008, 38, 327–338. doi:10.1016/j.limno.2008.07.002
  • Challagulla, V.; Walsh, K.-B.; Subedi, P. Biomass and Total Lipid Content Assessment of Microalgal Cultures Using near and ShortWave Infrared Spectroscopy. Bioenerg. Res. 2014, 7, 306–318. doi:10.1007/s12155-013-9373-9
  • Organelli, E.; Bricaud, A.; Antoine, D.; Uitz, J. Multivariate Approach for the Retrieval of Phytoplankton Size Structure from Measured Light Absorption Spectra in the Mediterranean Sea (Boussole Site). Appl. Opt. 2013, 52, 2257. doi:10.1364/AO.52.002257
  • Gitelson, A. The Peak near 700nm on Radiance Spectra of Algae and Water:Relationships of Its Magnitude and Position with Chloro- Phyll Concentration. Int.J.Remote Sensing 1992, 13, 3367–3373. doi:10.1080/01431169208904125
  • Poryvkina, L.; Babichenko, S.; Kaitala, S.; Kuosa, H.; Shalapjonok, A. Spectral Fluorescence Signatures in the Characterization of Phytoplankton Community Composition. J. Plankton Res. 1994, 16, 1315–1327. doi:10.1093/plankt/16.10.1315
  • Lee, T. Y.; Tsuzuki, M.; Takeuchi, T.; Yokoyama, K.; Karube, I. Quantitative Determination of Cyanobacteria in Mixed Phytoplankton Assemblages by an in Vivo Fluorimetric Method. Anal. Chim. Acta 1995, 302, 81–87. doi:10.1016/0003-2670(94)00425-L
  • Beutler, M.; Wiltshire, K. H.; Meyer, B.; Moldaenke, C.; Lüring, C.; Meyerhöfer, M.; Hansen, U.-P.; Dau, H. A Fluorometric Method for the Differentiation of Algal Populations in Vivo and in Situ. Photosynth. Res 2002, 72, 39–53.
  • Wild-Allen, K.; Tett, P.; Bowers, D. Observations of Diffuse Upwelling Irradiance and Chlorophyll in Case i Waters near the canaryislands (spain). Opt. Laser Technol 1997, 29, 3–8. doi:10.1016/S0030-3992(96)00047-3
  • Proctor, C.-W.; Roesler, C.-S. New Insights on Obtaining Phytoplankton Concentration and Composition from in Situ Multispectral Chlorophyll Fluorescence. Limnol. Oceanogr. Methods 2010, 8, 695–708. doi:10.4319/lom.2010.8.0695
  • Bowling, L. C.; Zamyadi, A.; Henderson, R. K. Assessment of in Situ Fluorometry to Measure Cyanobacterial Presence in Water Bodies with Diverse Cyanobacterial Populations. Water Res 2016, 105, 22–33. doi:10.1016/j.watres.2016.08.051
  • Brient, L.; Lengronne, M.; Bertrand, E.; Rolland, D.; Sipel, A.; Steinmann, D.; Baudin, I.; Legeas, M.; Le Rouzic, B.; Bormans, M. A Phycocyanin Probe as a Tool for Monitoring Cyanobacteria in Freshwater Bodies. J. Environ. Monit 2008, 10, 248–255. doi:10.1039/B714238B
  • Kong, Y.; Lou, I.; Zhang, Y.; Lou, C. U.; Mok, K. M. Using an Online Phycocyanin Fluorescence Probe for Rapid Monitoring of Cyanobacteria on Macau Freshwater Reservoir. Hydrobiologia 2014, 741, 33–49. doi:10.1007/s10750-013-1759-3
  • Loisa, O.; Kääriä, J.; Laaksonlaita, J.; Niemi, J.; Sarvala, J.; Saario, J. From Phycocyanin Fluorescence to Absolute Cyanobacteria Biomass: An Application Using in-Situ Fluorometer Probes in the Monitoring of Potentially Harmful Cyanobacteria Blooms. Water Practice and Technology 2015, 10, 695–698. doi:10.2166/wpt.2015.083
  • Yang, F.; Tao, Z.-H.; Zheng, G.-L. Design of a Long-Term and Real-Time in-Situ Monitor for Cyanobacterial Biomass. Chinese Journal of Sensors & Actuators 2016, 5, 769–775.
  • Choo, F.; Zamyadi, A.; Stuetz, R. M.; Newcombe, G.; Newton, K.; Henderson, R. K. Enhanced Real-Time Cyanobacterial Fluorescence Monitoring through Chlorophyll-a Interference Compensation Corrections. Water Res 2019, 148, 86–96. doi:10.1016/j.watres.2018.10.034
  • Bertone, E.; Burford, M. A.; Hamilton, D. P. Fluorescence Probes for Real-Time Remote Cyanobacteria Monitoring: A Review of Challenges and Opportunities. Water Res 2018, 141, 152–162. doi:10.1016/j.watres.2018.05.001
  • Wang, S.; Xiao, C.; Ishizaka, J.; Qiu, Z.; Sun, D.; Xu, Q.; Zhu, Y.; Huan, Y.; Watanabe, Y. Statistical Approach for the Retrieval of Phytoplankton Community Structures from in Situ Fluorescence Measurements. Opt. Express 2016, 24, 23635–23653. doi:10.1364/OE.24.023635
  • Bodemer, U. Variability of Phycobiliproteins in Cyanobacteria Detected by Delayed Fluorescence Excitation Spectroscopy and Its Relevance for Determination of Phytoplankton Composition of Natural Water Samples. J. Plankton Re 2004, 26, 1147–1162. doi:10.1093/plankt/fbh105
  • Yacobi, Y. Z.; Gerhardt, V.; Gonen-Zurgil, Y.; Sukenik, A. Delayed Fluorescence Excitation Spectroscopy: A Rapid Method for Qualitative and Quantitative Assessment of Natural Population of Phytoplankton. Water Res 1998, 32, 0–2582.
  • Gregor, J.; Geriš, R.; Maršálek, B.; Heteša, J.; Marvan, P. In Situquantification of Phytoplankton in Reservoirs Using a Submersible Spectrofluorometer. Hydrobiologia 2005, 548, 141–151. doi:10.1007/s10750-005-4268-1
  • Jin, X.-R. 2018 Study on identification and concentration measurement of dominant algae based on fluorescence ratio, 2018, Zhejiang University. 101.
  • Liu, J.; Liu, W.-Q.; Zhao, N.; -J.; Zhang, Y. J.; Ma, M. J.; Yin, G. F. In-Situ Measurement of Phytoplankton Photosynthetic Activity Based on Light-Induced Fluorescence Technology. Spectrosc. Spect. Anal 2013, 33, 2443–2447.
  • Kolbowski, J.; Schreiber, U. Computer-Controlled Phytoplankton Analyzer Based on a 4-Wavelengths Pam Chlorophyll Fluorometer. DordrechffBoston/London: KluwerAcademic Publishers 1995, 825–828.
  • Gsponer, N.-S.; Rodríguez, M.-C.; Palacios, R.-E.; Chesta, C. A. On the Simultaneous Identification and Quantification of Microalgae Populations Based on Fluorometric Techniques. Photochem. Photobiol. 2018, 94, 875–880. doi:10.1111/php.12936
  • Liang, Y.; Wang, Z. H. Determination of Microalgae Biomass by Chlorophyll Fluorescence Method. Ecological Science 2009, 28, 420–423.
  • Becker, S.; Matthijs, H. C. P.; Donk, E. Biotic Factors in Induced Defencerevisited: cell Aggregate Formation in the Toxic Cyanobacterium Microcystisaeruginosa PCC 7806 is Triggered by spentDaphnia Medium and Disrupted Cells. Hydrobiologia 2010, 644, 159–168. doi:10.1007/s10750-010-0109-y
  • Wang, T.; Zeng, L.-H.; Li, D.-L. A Review on the Methods for Correcting the Fluorescence Inner-Filter Effect of Fluorescence Spectrum. Appl. Spectrosc. Rev 2017, 52, 883–908. doi:10.1080/05704928.2017.1345758
  • Xiao, X.; He, J.; Huang, H.; Miller, T. R.; Christakos, G.; Reichwaldt, E. S.; Ghadouani, A.; Lin, S.; Xu, X.; Shi, J. A Novel Single-Parameter Approach for Forecasting Algal Blooms. Water Res 2017, 108, 222–231. doi:10.1016/j.watres.2016.10.076
  • Liu, J.-Y.; Zeng, L.-H.; Ren, Z.-H.; Du, T.-M.; Liu, X. Rapid in Situ Measurements of Algal Cell Concentrations Using an Artificial Neural Network and Single-Excitation Fluorescence Spectrometry. Algal Res 2020, 45, 101739. ) doi:10.1016/j.algal.2019.101739
  • Sá, M.; Monte, J.; Brazinha, C.; Galinha, C. F.; Crespo, J. G. 2D Fluorescence Spectroscopy for Monitoring Dunaliella Salina Concentration and Integrity during Membrane Harvesting. Algal Res 2017, 24, 325–332. doi:10.1016/j.algal.2017.04.013
  • Miguel, V.; Córdoba-Matson, J.; Gutiérrez, M. Á. Porta-Gándara, Evaluation Ofisochrysis Galbana(Clonet-Iso) Cell Numbers by Digital Image Analysis of Color Intensity. J. Appl. Phycol. 2010, 22, 427–434. doi:10.1007/s10811-009-9475-0
  • Sarrafzadeh, M.; La, H. J.; Lee, J. Y.; Cho, D. H.; Oh, H. M. Microalgae Biomass Quantification by Digital Image Processing and Rgb Color Analysis. J. Appl. Phycol 2014, 27, 1–5.
  • Jung, S. K.; Lee, S. B. In Situ Monitoring of Cell Concentration in a Photobioreactor Using Image Analysis: comparison of Uniform Light Distribution Model and Artificial Neural Networks. Biotechnol. Progress 2006, 22, 1443–1450. doi:10.1021/bp0600886
  • Uyar, B. A Novel Non-Invasive Digital Imaging Method for Continuous Biomass Monitoring and Cell Distribution Mapping in Photobioreactors. J. Chem. Technol. Biotechnol. 2013, 88, 1144–1149. doi:10.1002/jctb.3954
  • Murphy, T. E.; Macon, K.; Berberoglu, H. Multispectral Image Analysis for Algal Biomass Quantification. Biotechnol. Progress 2013, 29, 808–816. doi:10.1002/btpr.1714
  • Mishra, S.; Stumpf, R. P.; Schaeffer, B. A.; Werdell, P. J.; Loftin, K. A.; Meredith, A. Measurement of Cyanobacterial Bloom Magnitude Using Satellite Remote Sensing. Sci. Rep. 2019, 9, 1–17. doi:10.1038/s41598-019-54453-y
  • Shi, K.; Zhang, Y.; Qin, B.; Zhou, B. Remote Sensing of Cyanobacterial Blooms in Inland Waters: present Knowledge and Future Challenges. Sci Bull 2019, 64, 1540–1556. doi:10.1016/j.scib.2019.07.002
  • Zhang, D.-Y.; Yin, X.; She, B.; Ding, Y. W.; Liang, D.; Huang, L.-S.; Zhao, J.-L.; Gao, Y.-B. Multi-Source Satellite Remote Sensing Data Monitoring Chaohu Lake Bloom. Infrared Laser Eng 2019, 48, 303–314.
  • Shao, Y.; Jiang, L.; Zhou, H.; Pan, J.; He, Y. Identification of Pesticide Varieties by Testing Microalgae Using Visible/near Infrared Hyperspectral Imaging Technology. Sc.Rep 2016, 6, 24221.
  • Murphy, T. E.; Macon, K.; Berberoglu, H. Rapid Algal Culture Diagnostics for Open Ponds Using Multispectral Image Analysis. Biotechnol. Progress 2014, 30, 233–240. doi:10.1002/btpr.1843
  • Kazemipour, F.; Méléder, V.; Launeau, P. Optical Properties of Microphytobenthic Biofilms (Mpbom): Biomass Retrieval Implication. J. Quant. Spectrosc. Radiat. Transf. 2011, 112, 131–142. doi:10.1016/j.jqsrt.2010.08.029
  • Pyo, J.; Duan, H.; Baek, S.; Kim, M. S.; Jeon, T.; Kwon, Y. S.; Lee, H.; Cho, K. H. A Convolutional Neural Network Regression for Quantifying Cyanobacteria Using Hyperspectral Imagery. Remote Sens. Environ 2019, 233, 111350. doi:10.1016/j.rse.2019.111350
  • Jiang, L.-L.; Wei, X.; Zhao, Y.-R.; Shao, Y.-N.; Qiu, Z.-J.; He, Y. Visualization of Hyperspectral Imaging of Chlorella and Spirulina Biomass. Spectrosc. Spect. Anal 2016, 36, 191–195.
  • Liang, M.; Huang, R.; He, X.-J.; Chen, X.-D. Algae Identification Study Using Fluorescence Spectrum Imaging Combined with Cluster Analysis and Principal Component Analysis. Spectrosc. Spect. Anal 2014, 34, 2132–2136.
  • Wang, M. Background Light Source Improvement of Red Tide Biological Monitoring Fluorescence Imaging System. Spectrosc. Spect. Anal 2008, 28, 143–145.
  • Endo, R.; Omasa, K. Chlorophyll Fluorescence Imaging of Individual Algal Cells:? Effects of Herbicide on\r, Spirogyra Distenta\r, at. Different Growth Stages. Environmental Science & Technology 2004, 38, 4165–4168.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.