868
Views
20
CrossRef citations to date
0
Altmetric
Review

Review of aerosol analysis by laser-induced breakdown spectroscopy

, , , &

References

  • Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C. F. Climate Impacts from a Removal of Anthropogenic Aerosol Emissions. Geophys. Res. Lett. 2018, 45, 1020–1029. doi:10.1002/2017GL076079
  • Hadioui, M.; Knapp, G.; Azimzada, A.; Jreije, I.; Frechette-Viens, L.; Wilkinson, K. J. Lowering the Size Detection Limits of Ag and TiO2 Nanoparticles by Single Particle ICP-MS. Anal. Chem. 2019, 91, 13275–13284. doi:10.1021/acs.analchem.9b04007
  • Blumberger, Z. I.; Vasanits-Zsigrai, A.; Farkas, G.; Salma, I. Mass Size Distribution of Major Monosaccharide Anhydrides and Mass Contribution of Biomass Burning. Atmos. Res. 2019, 220, 1–9. doi:10.1016/j.atmosres.2019.01.001
  • Ghadimi, S.; Forghani, G.; Kazemi, G. A. Distribution, Geochemistry, and Mineralogy of Aerosols in the Angouran Mine Area, Northwest Iran. Environ. Geochem. Health. 2018, 40, 2087–2100. doi:10.1007/s10653-018-0084-1
  • Al Hejami, A.; Beauchemin, D. Effect of Sheathing the Sample Aerosol with Hydrogen, Nitrogen or Water Vapour on the Analytical Performance of Solid Sampling Electrothermal Vaporisation Coupled to Inductively Coupled Plasma Optical Emission Spectrometry. J. Anal. At. Spectrom. 2019, 34, 1426–1432. doi:10.1039/C8JA00266E
  • Li, N.; Han, W.; Wei, X.; Shen, M.; Sun, S. Chemical Characteristics and Human Health Assessment of PM1 during the Chinese Spring Festival in Changchun, Northeast China. Atmos. Pollut. Res. 2019, 10, 1823–1831. doi:10.1016/j.apr.2019.07.014
  • Wang, J.; Hu, Z.; Chen, Y.; Chen, Z.; Xu, S. Contamination Characteristics and Possible Sources of PM10 and PM2.5 in Different Functional Areas of Shanghai, China. Atmos. Environ. 2013, 68, 221–229. doi:10.1016/j.atmosenv.2012.10.070
  • Hahn, D. W. Laser-Induced Breakdown Spectroscopy for Analysis of Aerosol Particles: The Path toward Quantitative Analysis. Spectroscopy-US. 2010, 17, 23–28.
  • Ding, Y.; Yan, F.; Yang, G.; Chen, H.; Song, Z. Quantitative Analysis of Sinters Using Laser-Induced Breakdown Spectroscopy (LIBS) Coupled with Kernel-Based Extreme Learning Machine (K-ELM). Anal. Methods 2018, 10, 1074–1079. doi:10.1039/C7AY02748F
  • Diwakar, P. K.; Kulkarni, P. Laser Induced Breakdown Spectroscopy for Analysis of Aerosols. Laser-Induced Breakdown Spectrosc. 2014, 56, 227–256.
  • Ding, Y.; Xia, G.; Ji, H.; Xiong, X. Accurate Quantitative Determination of Heavy Metals in Oily Soil by Laser Induced Breakdown Spectroscopy (LIBS) Combined with Interval Partial Least Squares (IPLS). Anal. Methods 2019, 11, 3657–3664. doi:10.1039/C9AY01030K
  • Asgill, M. E.; Groh, S.; Niemax, K.; Hahn, D. W. The Use of Multi-Element Aerosol Particles for Determining Temporal Variations in Temperature and Electron Density in Laser-Induced Plasmas in Support of Quantitative Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta. Part B. 2015, 109, 1–7. doi:10.1016/j.sab.2015.04.005
  • Ding, Y.; Zhang, W.; Zhao, X.; Zhang, L.; Yan, F. A Hybrid Random Forest Method Fusing Wavelet Transform and Variable Importance for Quantitative Analysis of K in Potassic Salt Ore Using Laser-Induced Breakdown Spectroscopy. J. Anal. At. Spectrom. 2020, 35, 1131–1138.
  • Ruan, F.; Zhang, T.; Li, H. Laser-Induced Breakdown Spectroscopy in Archeological Science: A Review of Its Application and Future Perspectives. Appl. Spectrosc. Rev. 2019, 54, 573–601. doi:10.1080/05704928.2018.1491857
  • Li, W.; Li, X.; Li, X.; Hao, Z.; Lu, Y.; Zeng, X. A Review of Remote Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. Rev. 2020, 55, 1–25. doi:10.1080/05704928.2018.1472102
  • Fan, D.; Yu, D.; Yujuan, C.; Shaonong, Z.; Feifan, C. Quantitative Analysis of the Content of Nitrogen and Sulfur in Coal Based on LIBS: Effects of Variable Selection. Plasma Sci. Technol. 2020, 22, 074005.
  • Yu, X.-L.; He, Y. Challenges and Opportunities in Quantitative Analyses of Lead, Cadmium, and Hexavalent Chromium in Plant Materials by Laser-Induced Breakdown Spectroscopy: A Review. Appl. Spectrosc. Rev. 2017, 52, 605–622. doi:10.1080/05704928.2016.1267644
  • Lithgow, G. A. Aerosol Measurements with Laser-Induced Breakdown Spectroscopy; University of California: San Diego, 2007.
  • Radziemski, L. J.; Loree, T. R.; Cremers, D. A.; Hoffman, N. M. Time-Resolved Laser-Induced Breakdown Spectrometry of Aerosols. Anal. Chem. 1983, 55, 1246–1252. doi:10.1021/ac00259a016
  • Tjärnhage, T.; Gradmark, P.-Å.; Larsson, A.; Mohammed, A.; Landström, L.; Sagerfors, E.; Jonsson, P.; Kullander, F.; Andersson, M. Development of a Laser-Induced Breakdown Spectroscopy Instrument for Detection and Classification of Single-Particle Aerosols in Real-Time. Opt. Commun. 2013, 296, 106–108. doi:10.1016/j.optcom.2013.01.044
  • Lithgow, G. A.; Robinson, A. L.; Buckley, S. G. Ambient Measurements of Metal-Containing PM2.5 in an Urban Environment Using Laser-Induced Breakdown Spectroscopy. Atmos. Environ. 2004, 38, 3319–3328. doi:10.1016/j.atmosenv.2004.03.017
  • Gallou, G.; Sirven, J. B.; Dutouquet, C.; Bihan, O. L.; Frejafon, E. Aerosols Analysis by LIBS for Monitoring of Air Pollution by Industrial Sources. Aerosol. Sci. Technol. 2011, 45, 918–926. doi:10.1080/02786826.2011.566899
  • Tran, M.; Smith, B. W.; Hahn, D. W.; Winefordner, J. D. Detection of Gaseous and Particulate Fluorides by Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 2001, 55, 1455–1461. doi:10.1366/0003702011953865
  • Neuhauser, R.; Panne, U.; Niessner, R.; Petrucci, G.; Cavalli, P.; Omenetto, N. On-Line and in-Situ Detection of Lead Aerosols by Plasma-Spectroscopy and Laser-Excited Atomic Fluorescence Spectroscopy. Anal. Chim. Acta 1997, 346, 37–48. doi:10.1016/S0003-2670(97)00244-4
  • Xu, L.; Bulatov, V.; Gridin, V. V.; Schechter, I. Absolute Analysis of Particulate Materials by Laser-Induced Breakdown Spectroscopy. Anal. Chem. 1997, 69, 2103–2108. doi:10.1021/ac970006f
  • Carranza, J. E.; Hahn, D. W. Assessment of the Upper Particle Size Limit for Quantitative Analysis of Aerosols Using Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2002, 74, 5450–5454. doi:10.1021/ac020261m
  • Hahn, D. Laser-Induced Breakdown Spectroscopy for Sizing and Elemental Analysis of Discrete Aerosol Particles. Appl. Phys. Lett. 1998, 72, 2960–2962. doi:10.1063/1.121507
  • Carranza, J.; Fisher, B.; Yoder, G.; Hahn, D. On-Line Analysis of Ambient Air Aerosols Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B. 2001, 56, 851–864. doi:10.1016/S0584-8547(01)00183-5
  • Hahn, D. W.; Flower, W. L.; Hencken, K. R. Discrete Particle Detection and Metal Emissions Monitoring Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 1997, 51, 1836–1844. doi:10.1366/0003702971939659
  • Carranza, J.; Hahn, D. Sampling Statistics and Considerations for Single-Shot Analysis Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B. 2002, 57, 779–790. doi:10.1016/S0584-8547(02)00007-1
  • Carranza, J. E.; Iida, K.; Hahn, D. W. Conditional Data Processing for Single-Shot Spectral Analysis by Use of Laser-Induced Breakdown Spectroscopy. Appl. Opt. 2003, 42, 6022–6028. doi:10.1364/ao.42.006022
  • Ding, Y.; Tian, D.; Li, C.; Duan, Y.; Yang, G. Design and Development of a Miniature Digital Delay Generator for Laser-Induced Breakdown Spectroscopy. Instrum Sci Technol. 2014,43, 115–124. doi:10.1080/10739149.2014.940534
  • Boudhib, M.; Hermann, J.; Dutouquet, C. Compositional Analysis of Aerosols Using Calibration-Free Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2016, 88, 4029–4035. doi:10.1021/acs.analchem.6b00329
  • Hahn, D. W.; Lunden, M. M. Detection and Analysis of Aerosol Particles by Laser-Induced Breakdown Spectroscopy. Aerosol. Sci. Technol. 2000, 33, 30–48. doi:10.1080/027868200410831
  • Asgill, M. E.; Brown, M. S.; Frische, K.; Roquemore, W. M.; Hahn, D. W. Double-Pulse and Single-Pulse Laser-Induced Breakdown Spectroscopy for Distinguishing between Gaseous and Particulate Phase Analytes. Appl. Opt. 2010, 49, C110–C119. doi:10.1364/AO.49.00C110
  • Aras, N.; Yeşiller, S. Ü.; Ateş, D. A.; Yalçın, Ş. Ultrasonic Nebulization-Sample Introduction System for Quantitative Analysis of Liquid Samples by Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B. 2012, 74–75, 87–94. doi:10.1016/j.sab.2012.06.017
  • Bulatov, V.; Khalmanov, A.; Schechter, I. Study of the Morphology of a Laser-Produced Aerosol Plume by Cavity Ringdown Laser Absorption Spectroscopy. Anal. Bioanal. Chem. 2003, 375, 1282–1286. doi:10.1007/s00216-003-1775-7
  • Daigle, J. F.; Mathieu, P.; Roy, G.; Simard, J. R.; Chin, S. L. Multi-Constituents Detection in Contaminated Aerosol Clouds Using Remote-Filament-Induced Breakdown Spectroscopy. Opt. Commun. 2007, 278, 147–152. doi:10.1016/j.optcom.2007.05.044
  • Davari, S. A.; Taylor, P. A.; Standley, R. W.; Mukherjee, D. Detection of Interstitial Oxygen Contents in Czochralski Grown Silicon Crystals Using Internal Calibration in Laser-Induced Breakdown Spectroscopy (LIBS). Talanta 2019, 193, 192–198. doi:10.1016/j.talanta.2018.09.078
  • Abdelhamid, M.; Fortes, F.; Laserna, J.; Harith, M. Optical Catapulting Laser Induced Breakdown Spectroscopy (OC-LIBS) and Conventional LIBS: A Comparative Study. AIP Conf. Proceed. 2011, 1380, 55–59.
  • Fortes, F.; Cabalín, L.; Laserna, J. Laser-Induced Breakdown Spectroscopy of Solid Aerosols Produced by Optical Catapulting. Spectrochim. Acta Part B. 2009, 64, 642–648. doi:10.1016/j.sab.2009.05.006
  • Fortes, F. J.; Fernández-Bravo, A.; Laserna, J. J. Chemical Characterization of Single Micro- and Nano-Particles by Optical Catapulting–Optical Trapping–Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B. 2014, 100, 78–85. doi:10.1016/j.sab.2014.08.023
  • Fortes, F. J.; Laserna, J. J. Characteristics of Solid Aerosols Produced by Optical Catapulting Studied by Laser-Induced Breakdown Spectroscopy. Appl. Surf. Sci. 2010, 256, 5924–5928. doi:10.1016/j.apsusc.2010.03.077
  • Abdelhamid, M.; Fortes, F.; Fernández-Bravo, A.; Harith, M.; Laserna, J. Production of Aerosols by Optical Catapulting: Imaging, Performance Parameters and Laser-Induced Plasma Sampling Rate. Spectrochim. Acta Part B. 2013, 89, 1–6. doi:10.1016/j.sab.2013.08.003
  • Cheng, M.-D. Real-Time Measurement of Trace Metals on Fine Particles by Laser-Induced Plasma Techniques. Fuel Process. Technol. 2000, 65–66, 219–229. doi:10.1016/S0378-3820(99)00099-5
  • Park, K.; Cho, G.; Kwak, J.-H. Development of an Aerosol Focusing-Laser Induced Breakdown Spectroscopy (Aerosol Focusing-LIBS) for Determination of Fine and Ultrafine Metal Aerosols. Aerosol. Sci. Technol. 2009, 43, 375–386. doi:10.1080/02786820802662947
  • Maeng, H.; Chae, H.; Lee, H.; Kim, G.; Lee, H.; Kim, K.; Kwak, J.; Cho, G.; Park, K. Development of Laser-Induced Breakdown Spectroscopy (LIBS) with Timed Ablation to Improve Detection Efficiency. Aerosol. Sci. Technol. 2017, 51, 1009–1015. doi:10.1080/02786826.2017.1344352
  • Liu, P. S.; Deng, R.; Smith, K. A.; Williams, L. R.; Jayne, J. T.; Canagaratna, M. R.; Moore, K.; Onasch, T. B.; Worsnop, D. R.; Deshler, T. Transmission Efficiency of an Aerodynamic Focusing Lens System: Comparison of Model Calculations and Laboratory Measurements for the Aerodyne Aerosol Mass Spectrometer. Aerosol. Sci. Technol. 2007, 41, 721–733. doi:10.1080/02786820701422278
  • Williams, L. R.; Gonzalez, L. A.; Peck, J.; Trimborn, D.; McInnis, J.; Farrar, M. R.; Moore, K. D.; Jayne, J. T.; Robinson, W. A.; Lewis, D. K.; et al. Characterization of an Aerodynamic Lens for Transmitting Particles Greater than 1 Micrometer in Diameter into the Aerodyne Aerosol Mass Spectrometer. Atmos. Meas. Tech. 2013, 6, 3271–3280., doi:10.5194/amt-6-3271-2013
  • Wang, X.; Kruis, F. E.; McMurry, P. H. Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles. Aerosol. Sci. Technol. 2005, 39, 611–623. doi:10.1080/02786820500181901
  • Wang, X.; McMurry, P. H. A Design Tool for Aerodynamic Lens Systems. Aerosol. Sci. Technol. 2006, 40, 320–334. doi:10.1080/02786820600615063
  • Wang, X.; McMurry, P. H. An Experimental Study of Nanoparticle Focusing with Aerodynamic Lenses. Int. J. Mass Spectrom. 2006, 258, 30–36. doi:10.1016/j.ijms.2006.06.008
  • Diwakar, P. K.; Loper, K. H.; Matiaske, A.-M.; Hahn, D. W. Laser-Induced Breakdown Spectroscopy for Analysis of Micro and Nanoparticles. J. Anal. At. Spectrom. 2012, 27, 1110–1119. doi:10.1039/c2ja30012e
  • Dewalle, P.; Sirven, J.-B.; Roynette, A.; Gensdarmes, F.; Golanski, L.; Motellier, S. Airborne Nanoparticle Detection by Sampling on Filters and Laser-Induced Breakdown Spectroscopy Analysis. J. Phys. Conf. Ser. 2011, 304, 012012. doi:10.1088/1742-6596/304/1/012012
  • Després, V.; Huffman, J. A.; Burrows, S. M.; Hoose, C.; Safatov, A.; Buryak, G.; Fröhlich-Nowoisky, J.; Elbert, W.; Andreae, M.; Pöschl, U.; Jaenicke, R. Primary Biological Aerosol Particles in the Atmosphere: A Review. Tellus. B. 2012, 64, 15998.
  • Diwakar, P.; Kulkarni, P.; Birch, M. E. New Approach for near-Real-Time Measurement of Elemental Composition of Aerosol Using Laser-Induced Breakdown Spectroscopy. Aerosol. Sci. Technol. 2012, 46, 316–332. doi:10.1080/02786826.2011.625059
  • Kwak, J.-H.; Kim, G.; Kim, Y.-J.; Park, K. Determination of Heavy Metal Distribution in PM10During Asian Dust and Local Pollution Events Using Laser Induced Breakdown Spectroscopy (LIBS). Aerosol. Sci. Technol. 2012, 46, 1079–1089. doi:10.1080/02786826.2012.692492
  • Chen, Y.; Bulatov, V.; Singer, L.; Stricker, J.; Schechter, I. Mapping and Elemental Fractionation of Aerosols Generated by Laser-Induced Breakdown Ablation. Anal. Bioanal. Chem. 2005, 383, 1090–1097. doi:10.1007/s00216-005-0126-2
  • Kuhlen, T.; Fricke-Begemann, C.; Strauss, N.; Noll, R. Analysis of Size-Classified Fine and Ultrafine Particulate Matter on Substrates with Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta Part B. 2008, 63, 1171–1176. doi:10.1016/j.sab.2008.08.012
  • Heikkilä, P.; Rossi, J.; Rostedt, A.; Huhtala, J.; Järvinen, A.; Toivonen, J.; Keskinen, J. Toward Elemental Analysis of Ambient Single Particles Using Electrodynamic Balance and Laser-Induced Breakdown Spectroscopy. Aerosol. Sci. Technol. 2020, 54, 834–848.
  • Álvarez-Trujillo, L. A.; Ferrero, A.; Javier Laserna, J. Preliminary Studies on Stand-off Laser Induced Breakdown Spectroscopy Detection of Aerosols. J. Anal. At. Spectrom. 2008, 23, 885. doi:10.1039/b716762h
  • Yao, S.; Xu, J.; Dong, X.; Zhang, B.; Zheng, J.; Lu, J. Optimization of Laser-Induced Breakdown Spectroscopy for Coal Powder Analysis with Different Particle Flow Diameters. Spectrochim. Acta Part B. 2015, 110, 146–150. doi:10.1016/j.sab.2015.06.011
  • Alvarez-Trujillo, L. A.; Ferrero, A.; Laserna, J. J.; Hahn, D. W. Alternative Statistical Methods for Spectral Data Processing: applications to Laser-Induced Breakdown Spectroscopy of Gaseous and Aerosol Systems. Appl. Spectrosc. 2008, 62, 1144–1152. doi:10.1366/000370208786049178
  • Yao, S.; Zhang, L.; Yin, K.; Bai, K.; Xu, J.; Lu, Z.; Lu, J. Identifying Laser-Induced Plasma Emission Spectra of Particles in a Gas–Solid Flow Based on the Standard Deviation of Intensity across an Emission Line. J. Anal. At. Spectrom. 2018, 33, 1676–1682. doi:10.1039/C8JA00194D
  • Zheng, J.; Lu, J.; Zhang, B.; Dong, M.; Yao, S.; Lu, W.; Dong, X. Experimental Study of Laser-Induced Breakdown Spectroscopy (LIBS) for Direct Analysis of Coal Particle Flow. Appl. Spectrosc. 2014, 68, 672–679. doi:10.1366/13-07278
  • Lithgow, G.; Buckley, S. Influence of Particle Location within Plasma and Focal Volume on Precision of Single-Particle LIBS Measurements. Spectrochim. Acta Part B. 2005, 60, 1060–1069. doi:10.1016/j.sab.2005.05.013
  • Asgill, M. E.; Hahn, D. W. Particle Size Limits for Quantitative Aerosol Analysis Using Laser-Induced Breakdown Spectroscopy: Temporal Considerations. Spectrochim. Acta Part B. 2009, 64, 1153–1158. doi:10.1016/j.sab.2009.07.026
  • Hohreiter, V.; Hahn, D. W. Plasma-Particle Interactions in a Laser-Induced Plasma: Implications for Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2006, 78, 1509–1514. doi:10.1021/ac051872s
  • Hohreiter, V.; Hahn, D. W. Calibration Effects for Laser-Induced Breakdown Spectroscopy of Gaseous Sample Streams: Analyte Response of Gas-Phase Species versus Solid-Phase Species. Anal. Chem. 2005, 77, 1118–1124. doi:10.1021/ac048587d
  • Hieftje, G. M.; Miller, R. M.; Pak, Y.; Wittig, E. P. Theoretical Examination of Solute Particle Vaporization in Analytical Atomic Spectrometry. Anal. Chem. 1987, 59, 2861–2872. doi:10.1021/ac00151a008
  • Diwakar, P. K.; Jackson, P. B.; Hahn, D. W. The Effect of Multi-Component Aerosol Particles on Quantitative Laser-Induced Breakdown Spectroscopy: Consideration of Localized Matrix Effects. Spectrochim. Acta Part B. 2007, 62, 1466–1474. doi:10.1016/j.sab.2007.10.001
  • Dalyander, P. S.; Gornushkin, I. B.; Hahn, D. W. Numerical Simulation of Laser-Induced Breakdown Spectroscopy: Modeling of Aerosol Analysis with Finite Diffusion and Vaporization Effects. Spectrochim. Acta Part B. 2008, 63, 293–304. doi:10.1016/j.sab.2007.11.023
  • Cremers, D. A.; Radziemski, L. J. Direct Detection of Beryllium on Filters Using the Laser Spark. Appl. Spectrosc. 1985, 39, 57–63. doi:10.1366/0003702854249349
  • Essien, M.; Radziemski, L. J.; Sneddon, J. Detection of Cadmium, Lead and Zinc in Aerosols by Laser-Induced Breakdown Spectrometry. J. Anal. At. Spectrom. 1988, 3, 985–988. doi:10.1039/ja9880300985
  • Ottesen, D. K.; Wang, J.; Radziemski, L. J. Real-Time Laser Spark Spectroscopy of Particulates in Combustion Environments. Appl. Spectrosc. 1989, 43, 967–976. doi:10.1366/0003702894203778
  • Yalcin, S.; Crosley, D.; Smith, G.; Faris, G. Spectroscopic Characterization of Laser-Produced Plasmas for in Situ Toxic Metal Monitoring. Hazard Waste Hazard Mater. 1996, 13, 51–61. doi:10.1089/hwm.1996.13.51
  • Vors, E.; Salmon, L. Laser-Induced Breakdown Spectroscopy (LIBS) for Carbon Single Shot Analysis of Micrometer-Sized Particles. Anal. Bioanal. Chem. 2006, 385, 281–286. doi:10.1007/s00216-006-0320-x
  • Li, Y.; Tian, D.; Ding, Y.; Yang, G.; Liu, K.; Wang, C.; Han, X. A Review of Laser-Induced Breakdown Spectroscopy Signal Enhancement. Appl. Spectrosc. Rev. 2018, 53, 1–35. doi:10.1080/05704928.2017.1352509
  • Galbacs, G. A Critical Review of Recent Progress in Analytical Laser-Induced Breakdown Spectroscopy. Anal. Bioanal. Chem. 2015, 407, 7537–7562.
  • Windom, B. C.; Diwakar, P. K.; Hahn, D. W. Dual-Pulse Laser Induced Breakdown Spectroscopy for Analysis of Gaseous and Aerosol Systems: Plasma-Analyte Interactions. Spectrochim. Acta Part B. 2006, 61, 788–796. doi:10.1016/j.sab.2006.06.003
  • Girón, D.; Delgado, T.; Ruiz, J.; Cabalín, L. M.; Laserna, J. J. In-Situ Monitoring and Characterization of Airborne Solid Particles in the Hostile Environment of a Steel Industry Using Stand-off LIBS. Measurement 2018, 115, 1–10. doi:10.1016/j.measurement.2017.09.046
  • Hussain, A.; Tanveer, M.; Farid, G.; Hussain, M. B.; Azam, M.; Khan, W. Combined Effects of Magnetic Field and Ambient Gas Condition in the Enhancement of Laser-Induced Breakdown Spectroscopy Signal. Optik 2018, 172, 1012–1018. doi:10.1016/j.ijleo.2018.07.071
  • Colao, F.; Fantoni, R.; Lazic, V.; Paolini, A. LIBS Application for Analyses of Martian Crust Analogues: search for the Optimal Experimental Parameters in Air and CO2 Atmosphere. Appl. Phys. A. 2004, 79, 143–152. doi:10.1007/s00339-003-2262-x
  • Henry, C. A.; Diwakar, P. K.; Hahn, D. W. Investigation of Helium Addition for Laser-Induced Plasma Spectroscopy of Pure Gas Phase Systems: Analyte Interactions and Signal Enhancement. Spectrochim. Acta Part B. 2007, 62, 1390–1398. doi:10.1016/j.sab.2007.10.002
  • Yalcin, S.; Crosley, D.; Smith, G.; Faris, G. Influence of Ambient Conditions on the Laser Air Spark. Appl. Phys. B. 1999, 68, 121–130. doi:10.1007/s003400050596
  • Harmon, R. S.; Russo, R. E.; Hark, R. R. Applications of Laser-Induced Breakdown Spectroscopy for Geochemical and Environmental Analysis: A Comprehensive Review. Spectrochim. Acta Part B. 2013, 87, 11–26. doi:10.1016/j.sab.2013.05.017
  • Park, J. Y.; Kim, M.; Han, S.; Lim, S.; Kim, G.; Park, K. Measurement of Insoluble Submicrometer Particles and Biological Materials in Seawater to Investigate Marine Aerosol Production. J. Aerosol. Sci. 2014, 75, 22–34. doi:10.1016/j.jaerosci.2014.04.004
  • Pisonero, J.; Fliegel, D.; Günther, D. High Efficiency Aerosol Dispersion Cell for Laser ablation-ICP-MS. J. Anal. At. Spectrom. 2006, 21, 922–931. doi:10.1039/B603867K
  • Hybl, J. D.; Lithgow, G. A.; Buckley, S. G. Laser-Induced Breakdown Spectroscopy Detection and Classification of Biological Aerosols. Appl. Spectrosc. 2003, 57, 1207–1215. doi:10.1366/000370203769699054
  • Dixon, P. B.; Hahn, D. W. Feasibility of Detection and Identification of Individual Bioaerosols Using Laser-Induced Breakdown Spectroscopy. Anal. Chem. 2005, 77, 631–638. doi:10.1021/ac048838i
  • Yao, S.; Zhang, L.; Zhu, Y.; Wu, J.; Lu, Z.; Lu, J. Evaluation of Heavy Metal Element Detection in Municipal Solid Waste Incineration Fly Ash Based on LIBS Sensor. Waste Manag. 2020, 102, 492–498. doi:10.1016/j.wasman.2019.11.010
  • Dutouquet, C.; Gallou, G.; Le Bihan, O.; Sirven, J.; Dermigny, A.; Torralba, B.; Frejafon, E. Monitoring of Heavy Metal Particle Emission in the Exhaust Duct of a Foundry Using LIBS. Talanta 2014, 127, 75–81. doi:10.1016/j.talanta.2014.03.063
  • Álvarez-Trujillo, L. A.; Lazic, V.; Moros, J.; Laserna, J. J. Simultaneous Imaging and Emission Spectroscopy for the Laser-Based Remote Probing of Polydisperse Saline Aerosols. J. Aerosol. Sci. 2018, 123, 52–62. doi:10.1016/j.jaerosci.2018.06.007
  • Chen, X.; Wang, J.; Ju, X.; Wang, X. The Role of Na + in Al Surface Corrosion Studied by Single-Shot Laser-Induced Breakdown Spectroscopy. Appl. Surf. Sci. 2020, 501, 144238. doi:10.1016/j.apsusc.2019.144238
  • Dong, M.; Lu, J.; Yao, S.; Li, J.; Li, J.; Zhong, Z.; Lu, W. Application of LIBS for Direct Determination of Volatile Matter Content in Coal. J. Anal. At. Spectrom. 2011, 26, 2183–2188. doi:10.1039/c1ja10109a
  • Suyanto, H.; Lie, Z. S.; Niki, H.; Kagawa, K.; Fukumoto, K.; Rinda, H.; Abdulmadjid, S. N.; Marpaung, A. M.; Pardede, M.; Suliyanti, M. M.; et al. Quantitative Analysis of Deuterium in Zircaloy Using Double-Pulse Laser-Induced Breakdown Spectrometry (LIBS) and Helium Gas Plasma without a Sample Chamber. Anal. Chem. 2012, 84, 2224–2231. doi:10.1021/ac202744r
  • Alvira, F. C.; Bilmes, G. M.; Flores, T.; Ponce, L. Laser-Induced Breakdown Spectroscopy (LIBS) Quality Control and Origin Identification of Handmade Manufactured Cigars. Appl. Spectrosc. 2015, 69, 1205–1209. doi:10.1366/15-07935
  • Williams, A. N.; Phongikaroon, S. Laser-Induced Breakdown Spectroscopy (LIBS) in a Novel Molten Salt Aerosol System. Appl. Spectrosc. 2017, 71, 744–749. doi:10.1177/0003702816648965
  • Palásti, D. J.; Metzinger, A.; Ajtai, T.; Bozóki, Z.; Hopp, B.; Kovács-Széles, É.; Galbács, G. Qualitative Discrimination of Coal Aerosols by Using the Statistical Evaluation of Laser-Induced Breakdown Spectroscopy Data. Spectrochim. Acta Part B. 2019, 153, 34–41. doi:10.1016/j.sab.2019.01.009
  • Mukherjee, D.; Rai, A.; Zachariah, M. R. Quantitative Laser-Induced Breakdown Spectroscopy for Aerosols via Internal Calibration: Application to the Oxidative Coating of Aluminum Nanoparticles. J. Aerosol. Sci. 2006, 37, 677–695. doi:10.1016/j.jaerosci.2005.05.005
  • Lee, H.; Maeng, H.; Kim, K.; Kim, G.; Park, K. Application of Laser-Induced Breakdown Spectroscopy for Real-Time Detection of Contamination Particles during the Manufacturing Process. Appl. Opt. 2018, 57, 3288–3292. doi:10.1364/AO.57.003288
  • Kim, G.; Kim, K.; Maeng, H.; Lee, H.; Park, K. Development of Aerosol-LIBS (Laser Induced Breakdown Spectroscopy) for Real-Time Monitoring of Process-Induced Particles. Aerosol. Air Qual. Res. 2019, 19, 455–460. doi:10.4209/aaqr.2018.08.0312

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.