1,071
Views
31
CrossRef citations to date
0
Altmetric
Review

Recent advances in ratiometric luminescence sensors

, , &

References

  • Park, S. H.; Kwon, N.; Lee, J. H.; Yoon, J.; Shin, I. Synthetic Ratiometric Fluorescent Probes for Detection of Ions. Chem. Soc. Rev. 2020, 49, 143–179. doi:10.1039/c9cs00243j
  • Wu, P.; Hou, X. D.; Xu, J. J.; Chen, H. Y. Ratiometric Fluorescence, Electrochemiluminescence, and Photoelectrochemical Chemo/Biosensing Based on Semiconductor Quantum Dots. Nanoscale 2016, 8, 8427–8442. doi:10.1039/c6nr01912a
  • Wu, Y.; Xiao, F.; Wu, Z.; Yu, R. Novel Aptasensor Platform Based on Ratiometric Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2017, 89, 2852–2858. doi:10.1021/acs.analchem.6b04010
  • Wu, Y.; Jiang, T.; Wu, Z.; Yu, R. Novel Ratiometric Surface-Enhanced Raman Spectroscopy Aptasensor for Sensitive and Reproducible Sensing of Hg2. Biosens. Bioelectron. 2018, 99, 646–652. doi:10.1016/j.bios.2017.08.041
  • Li, L.; Zhang, Y.; Ge, S.; Zhang, L.; Cui, K.; Zhao, P.; Yan, M.; Yu, J. Triggerable H2O2-Cleavable Switch of Paper-Based Biochips Endows Precision of Chemometer/Ratiometric Electrochemical Quantification of Analyte in High-Efficiency Point-of-Care Testing. Anal. Chem. 2019, 91, 10273–10281. doi:10.1021/acs.analchem.9b02459
  • Li, S.; Duan, Y.; Lei, S.; Qiao, J.; Li, G.; Ye, B. A New Electrochemical Sensing Strategy for Echinacoside Based on an Original Nanocomposite. Sens. Actuator B-Chem. 2018, 274, 218–227. doi:10.1016/j.snb.2018.07.123
  • Wang, C. Q.; Zhao, X.; Liu, R.; Zhong, Z. J.; Hu, J. Y.; Lv, Y. Isotopic core-Satellites Enable Accurate and Sensitive Bioassay of Adenosine Triphosphate. Chem. Commun. (Camb.) 2019, 55, 10665–10668. doi:10.1039/c9cc04988f
  • Wang, C. Q.; Liu, R.; Hu, J. Y.; Lv, Y. Ratiometric DNA Walking Machine for Accurate and Amplified Bioassay. Chemistry 2019, 25, 12270–12274. doi:10.1002/chem.201903034
  • Bonanno, A.; Perez-Herraez, I.; Zaballos-Garcia, E.; Perez-Prieto, J. Gold Nanoclusters for Ratiometric Sensing of pH in Extremely Acidic Media. Chem. Commun. (Camb.) 2020, 56, 587–590. doi:10.1039/c9cc08539d
  • Han, Z.; Nan, D.; Yang, H.; Sun, Q.; Pan, S.; Liu, H.; Hu, X. Carbon Quantum Dots Based Ratiometric Fluorescence Probe for Sensitive and Selective Detection of Cu2+ and Glutathione. Sens. Actuator B-Chem. 2019, 298, 126842. doi:10.1016/j.snb.2019.126842
  • Zhan, Z. X.; Liu, R.; Chai, L.; Dai, Y. C.; Lv, Y. Visualization of Lung Inflammation to Pulmonary Fibrosis via Peroxynitrite Fluctuation. Anal. Chem. 2019, 91, 11461–11466. doi:10.1021/acs.analchem.9b02971
  • Chen, Z.; Zhang, K. Y.; Tong, X.; Liu, Y.; Hu, C.; Liu, S.; Yu, Q.; Zhao, Q.; Huang, W. Phosphorescent Polymeric Thermometers for in Vitro and in Vivo Temperature Sensing with Minimized Background Interference. Adv. Funct. Mater. 2016, 26, 4386–4396. doi:10.1002/adfm.201600706
  • Huang, Y.-Y.; Tian, Y.; Liu, X.-Q.; Niu, Z.; Yang, Q.-Z.; Ramamurthy, V.; Tung, C.-H.; Chen, Y.-Z.; Wu, L.-Z. Luminescent Supramolecular Polymer Nanoparticles for Ratiometric Hypoxia Sensing, Imaging and Therapy. Mater. Chem. Front. 2018, 2, 1893–1899. doi:10.1039/C8QM00309B
  • Wang, Y.; Shan, D.; Wu, G.; Wang, H.; Ru, F.; Zhang, X.; Li, L.; Qian, Y.; Lu, X. A Novel “Dual-Potential” Ratiometric Electrochemiluminescence DNA Sensor Based on Enhancing and Quenching Effect by G-Quadruplex / Hemin and Au-Luminol Bifunctional Nanoparticles. Biosens. Bioelectron. 2018, 106, 64–70. doi:10.1016/j.bios.2018.01.052
  • Jiang, J.; Chen, D.; Du, X. Ratiometric Electrochemiluminescence Sensing Platform for Sensitive Glucose Detection Based on in Situ Generation and Conversion of Coreactants. Sens. Actuator B-Chem. 2017, 251, 256–263. doi:10.1016/j.snb.2017.05.066
  • Zhang, R. K.; Cao, X. A.; Liu, Y. H.; Chang, X. Y. Development of a Simple Cataluminescence Sensor System for Detecting and Discriminating Volatile Organic Compounds at Different Concentrations. Anal. Chem. 2013, 85, 3802–3806. doi:10.1021/ac400208k
  • Hu, J. X.; Zhang, L. C.; Song, H. J.; Hu, J. Y.; Lv, Y. Ratiometric Cataluminescence for Rapid Recognition of Volatile Organic Compounds Based on Energy Transfer Process. Anal. Chem. 2019, 91, 4860–4867. doi:10.1021/acs.analchem.9b00592
  • Hu, J.; Zhang, L.; Lv, Y. Recent Advances in Cataluminescence Gas Sensor: Materials and Methodologies. Appl. Spectrosc. Rev. 2019, 54, 306–324. doi:10.1080/05704928.2018.1464932
  • Huy, B. T.; Kim Phuong, N. T.; Nguyen, T.-T. T.; Lee, Y.-I. Photoluminescence Spectroscopy of Cd-Based Quantum Dots for Optosensing Biochemical Molecules. Appl. Spectrosc. Rev. 2018, 53, 313–332. doi:10.1080/05704928.2017.1309424
  • Krishna Rao, K. S. V.; Liu, H.-G.; Lee, Y.-I. Fluorescence Spectroscopy of Polymer Systems Doped with Rare-Earth Metal Ions and Their Complexes. Appl. Spectrosc. Rev. 2010, 45, 409–446. doi:10.1080/05704921003718991
  • Tawfik, S. M.; Elmasry, M. R.; Lee, Y.-I. Recent Advances on Amphiphilic Polymer-Based Fluorescence Spectroscopic Techniques for Sensing and Imaging. Appl. Spectrosc. Rev. 2019, 54, 204–236. doi:10.1080/05704928.2018.1548356
  • Pal, U. M.; Saxena, M.; Anil Vishnu, G. K.; Parsana, D.; Sarvani, B. S. R.; Varma, M.; Jayachandra, M.; Kurpad, V.; Baruah, D.; Gogoi, G.; et al. Optical Spectroscopy-Based Imaging Techniques for the Diagnosis of Breast Cancer: A Novel Approach. Appl. Spectrosc. Rev. 2020, 1–27.doi:10.1080/05704928.2020.1749651.
  • Allos, T. I. Y.; Bingham, J.; Birss, R. R.; Parker, M. R. Novel Low-Cost Ratiometric Photometer. J. Phys. E: Sci. Instrum. 1978, 11, 1195–1199. doi:10.1088/0022-3735/11/12/012
  • Defreese, J. D.; Walczak, K. M.; Malmstadt, H. V. Microcomputer-Controlled Monochromator Accessory Module for Dual Wavelength Spectrochemical Procedures. Anal. Chem. 1978, 50, 2042–2046. doi:10.1021/ac50036a026
  • Montana, V.; Farkas, D. L.; Loew, L. M. Dual-Wavelength Ratiometric Fluorescence Measurements of Membrane Potential. Biochemistry 1989, 28, 4536–4539. doi:10.1021/bi00437a003
  • Snee, P. T.; Somers, R. C.; Nair, G.; Zimmer, J. P.; Bawendi, M. G.; Nocera, D. G. A Ratiometric CdSe/ZnS Nanocrystal pH Sensor. J. Am. Chem. Soc. 2006, 128, 13320–13321. doi:10.1021/ja0618999
  • Wei, R.; Guo, J.; Li, K.; Yang, L.; Tian, X.; Li, X.; Hu, F.; Guo, H. Dual-Emitting SrY2O4:Bi3+, Eu3+ Phosphor for Ratiometric Temperature Sensing. J. Lumin. 2019, 216, 116737. doi:10.1016/j.jlumin.2019.116737
  • Jiang, Q.; Wang, Z.; Li, M.; Song, J.; Yang, Y.; Xu, X.; Xu, H.; Wang, S. A Novel Nopinone-Based Colorimetric and Ratiometric Fluorescent Probe for Detection of Bisulfite and Its Application in Food and Living Cells. Dyes Pigment 2019, 171, 107702. doi:10.1016/j.dyepig.2019.107702
  • Li, W.; Shi, Y.; Hu, X.; Li, Z.; Huang, X.; Holmes, M.; Gong, Y.; Shi, J.; Zou, X. Visual Detection of Nitrite in Sausage Based on a Ratiometric Fluorescent System. Food Control 2019, 106, 106704. doi:10.1016/j.foodcont.2019.06.030
  • Champagne, P.-L.; Kumar, R.; Ling, C.-C. Multi-Responsive Self-Assembled Pyrene-Appended β-Cyclodextrin Nanoaggregates: Discriminative and Selective Ratiometric Detection of Pirimicarb Pesticide and Trinitroaromatic Explosives. Sens. Actuator B-Chem. 2019, 281, 229–238. doi:10.1016/j.snb.2018.10.066
  • Ghasemi, F.; Hormozi-Nezhad, M. R. Determination and Identification of Nitroaromatic Explosives by a Double-Emitter Sensor Array. Talanta 2019, 201, 230–236. doi:10.1016/j.talanta.2019.04.012
  • Pettiwala, A. M.; Singh, P. K. Supramolecular Dye Aggregate Assembly Enables Ratiometric Detection and Discrimination of Lysine and Arginine in Aqueous Solution. ACS Omega. 2017, 2, 8779–8787. doi:10.1021/acsomega.7b01546
  • Luo, X.; Wang, R.; Lv, C.; Chen, G.; You, J.; Yu, F. Detection of Selenocysteine with a Ratiometric Near-Infrared Fluorescent Probe in Cells and in Mice Thyroid Diseases Model. Anal. Chem. 2020, 92, 1589–1597. doi:10.1021/acs.analchem.9b04860
  • Hu, Y.; Su, L.; Wang, S.; Guo, Z.; Hu, Y.; Xie, H. A Ratiometric Electrochemiluminescent Tetracycline Assay Based on the Combined Use of Carbon Nanodots, Ru(Bpy)32+, and Magnetic Solid Phase Microextraction. Mikrochim. Acta. 2019, 186, 512. doi:10.1007/s00604-019-3611-6
  • Yu, L.; Zheng, Q.; Wang, H.; Liu, C.; Huang, X.; Xiao, Y. Double Color Lanthanide Metal-Organic Framework Based Logic Device and Visual Ratiometric Fluorescence Water Microsensor for Solid Pharmaceuticals. Anal. Chem. 2020, 92, 1402–1408. doi:10.1021/acs.analchem.9b04575
  • Bai, H.; Tu, Z.; Liu, Y.; Tai, Q.; Guo, Z.; Liu, S. Dual-Emission Carbon Dots-Stabilized Copper Nanoclusters for Ratiometric and Visual Detection of Cr2O72− Ions and Cd2+ Ions. J. Hazard. Mater. 2020, 386, 121654. doi:10.1016/j.jhazmat.2019.121654
  • Ran, X.; Wang, Z.; Pu, F.; Liu, Z.; Ren, J.; Qu, X. Aggregation-Induced Emission-Active Au Nanoclusters for Ratiometric Sensing and Bioimaging of Highly Reactive Oxygen Species. Chem. Commun. (Camb.) 2019, 55, 15097–15100. doi:10.1039/c9cc08170d
  • Wang, N.; Yu, X.; Deng, T.; Zhang, K.; Yang, R.; Li, J. Two-Photon Excitation/Red Emission, Ratiometric Fluorescent Nanoprobe for Intracellular pH Imaging. Anal. Chem. 2020, 92, 583–587. doi:10.1021/acs.analchem.9b04782
  • Wang, Y.; Wu, N.; Guo, F.; Gao, R.; Yang, T.; Wang, J. g-C3N4 Nanosheet-Based Ratiometric Fluorescent Probes for the Amplification and Imaging of miRNA in Living Cells . J. Mater. Chem. B 2019, 7, 7566–7573. doi:10.1039/c9tb02021g
  • Xiong, M.; Yang, Z.; Lake, R. J.; Li, J.; Hong, S.; Fan, H.; Zhang, X. B.; Lu, Y. DNAzyme-Mediated Genetically Encoded Sensors for Ratiometric Imaging of Metal Ions in Living Cells. Angew. Chem. Int. Ed. Engl. 2020, 59, 1891–1896. doi:10.1002/anie.201912514
  • Li, G.; Ma, Y.; Pei, M.; Lin, W. A Unique Approach to Development of a Multiratiometric Fluorescent Composite Probe for Multichannel Bioimaging. Anal. Chem. 2019, 91, 14586–14590. doi:10.1021/acs.analchem.9b03653
  • Sidhu, J. S.; Singh, A.; Garg, N.; Kaur, N.; Singh, N. Gold Conjugated Carbon Dots Nano Assembly: FRET Paired Fluorescence Probe for Cysteine Recognition. Sens. Actuator B-Chem 2019, 282, 515–522. doi:10.1016/j.snb.2018.11.105
  • Wei, W.; He, J.; Wang, Y.; Kong, M. Ratiometric Method Based on Silicon Nanodots and Eu3+ System for Highly-Sensitive Detection of Tetracyclines. Talanta 2019, 204, 491–498. doi:10.1016/j.talanta.2019.06.036
  • Zhang, F.; Wang, M.; Zeng, D.; Zhang, H.; Li, Y.; Su, X. A Molybdenum Disulfide Quantum Dots-Based Ratiometric Fluorescence Strategy for Sensitive Detection of Epinephrine and Ascorbic Acid. Anal. Chim. Acta. 2019, 1089, 123–130. doi:10.1016/j.aca.2019.09.005
  • Kong, X.; Li, M.; Dong, B.; Yin, Y.; Song, W.; Lin, W. An Ultrasensitivity Fluorescent Probe Based on the ICT-FRET Dual Mechanisms for Imaging beta-Galactosidase in Vitro and Ex Vivo. Anal. Chem. 2019, 91, 15591–15598. doi:10.1021/acs.analchem.9b03639
  • Lou, Y.; Wang, C.; Chi, S.; Li, S.; Mao, Z.; Liu, Z. Construction of a Two-Photon Fluorescent Probe for Ratiometric Imaging of Hypochlorous Acid in Alcohol-Induced Liver Injury. Chem. Commun. (Camb.) 2019, 55, 12912–12915. doi:10.1039/c9cc06888k
  • Tian, X.; Yan, F.; Zheng, J.; Cui, X.; Feng, L.; Li, S.; Jin, L.; James, T. D.; Ma, X. Endoplasmic Reticulum Targeting Ratiometric Fluorescent Probe for Carboxylesterase 2 Detection in Drug-Induced Acute Liver Injury. Anal. Chem. 2019, 91, 15840–15845. doi:10.1021/acs.analchem.9b04189
  • Xu, S.; Jiang, L.; Wang, J.; Gao, Y.; Luo, X. Ratiometric Multicolor Analysis of Intracellular microRNA Using a Chain Hybrid Substitution-Triggered Self-Assembly of Silver Nanocluster-Based Label-Free Sensing Platform. ACS Appl. Mater. Interfaces 2020, 12, 373–379. doi:10.1021/acsami.9b19709
  • Yao, T.; Liu, A.; Liu, Y.; Wei, M.; Wei, W.; Liu, S. Ratiometric Fluorescence Sensor for Organophosphorus Pesticide Detection Based on opposite Responses of Two Fluorescence Reagents to MnO2 Nanosheets. Biosens. Bioelectron. 2019, 145, 111705. doi:10.1016/j.bios.2019.111705
  • Zhou, E.; Gong, S.; Feng, G. Rapid Detection of CO in Vitro and in Vivo with a Ratiometric Probe Showing near-Infrared Turn-on Fluorescence, Large Stokes Shift, and High Signal-to-Noise Ratio. Sens. Actuator B-Chem. 2019, 301, 127075. doi:10.1016/j.snb.2019.127075
  • Chen, Z.; Mu, X.; Han, Z.; Yang, S.; Zhang, C.; Guo, Z.; Bai, Y.; He, W. An Optical/Photoacoustic Dual-Modality Probe: Ratiometric in/Ex Vivo Imaging for Stimulated H2S Upregulation in Mice. J. Am. Chem. Soc. 2019, 141, 17973–17977. doi:10.1021/jacs.9b09181
  • Luo, Z.; Lv, T.; Zhu, K.; Li, Y.; Wang, L.; Gooding, J.; Liu, G.; Liu, B. Paper-Based Ratiometric Fluorescence Analytical Devices towards Point-of-Care Testing of Human Serum Albumin. Angew. Chem. Int. Ed. Engl. 2020, 59, 3131–3136. doi:10.1002/anie.201915046
  • Roy, R.; Sajeev, N. R.; Sharma, V.; Koner, A. L. Aggregation Induced Emission Switching Based Ultrasensitive Ratiometric Detection of Biogenic Diamines Using a Perylenediimide-Based Smart Fluoroprobe. ACS Appl. Mater. Interfaces 2019, 11, 47207–47217. doi:10.1021/acsami.9b14690
  • Zhai, B.; Zhang, Y.; Hu, Z.; He, J.; Liu, J.; Gao, C.; Li, W. A Ratiometric Fluorescent Probe for the Detection of Formaldehyde in Aqueous Solution and Air via Aza-Cope Reaction. Dyes Pigment 2019, 171, 107743. doi:10.1016/j.dyepig.2019.107743
  • Zhang, F.; Liu, Y.; Ma, P.; Tao, S.; Sun, Y.; Wang, X.; Song, D. A Mn-Doped ZnS Quantum Dots-Based Ratiometric Fluorescence Probe for Lead Ion Detection and “Off-On” Strategy for Methyl Parathion Detection. Talanta 2019, 204, 13–19. doi:10.1016/j.talanta.2019.05.071
  • Zhong, X.; Yang, Q.; Chen, Y.; Jiang, Y.; Wang, B.; Shen, J. A Mitochondria-Targeted Fluorescent Probe Based on Coumarin-Pyridine Derivatives for Hypochlorite Imaging in Living Cells and Zebrafish. J. Mater. Chem. B 2019, 7, 7332–7337. doi:10.1039/c9tb01948k
  • Pan, E.; Bai, G.; Wang, L.; Lei, L.; Chen, L.; Xu, S. Lanthanide Ion-Doped Bismuth Titanate Nanocomposites for Ratiometric Thermometry with Low Pump Power Density. ACS Appl. Nano Mater. 2019, 2, 7144–7151. doi:10.1021/acsanm.9b01631
  • Chen, Z.; Yan, P.; Zou, L.; Zhao, M.; Jiang, J.; Liu, S.; Zhang, K. Y.; Huang, W.; Zhao, Q. Using Ultrafast Responsive Phosphorescent Nanoprobe to Visualize Elevated Peroxynitrite in Vitro and in Vivo via Ratiometric and Time-Resolved Photoluminescence Imaging. Adv. Healthcare Mater. 2018, 7, 1800309. doi:10.1002/adhm.201800309
  • Zhou, X.; Liang, H.; Jiang, P.; Zhang, K. Y.; Liu, S.; Yang, T.; Zhao, Q.; Yang, L.; Lv, W.; Yu, Q.; Huang, W. Multifunctional Phosphorescent Conjugated Polymer Dots for Hypoxia Imaging and Photodynamic Therapy of Cancer Cells. Adv. Sci. (Weinh) 2016, 3, 1500155. doi:10.1002/advs.201500155
  • Zhang, H.; Jiang, J.; Gao, P.; Yang, T.; Zhang, K. Y.; Chen, Z.; Liu, S.; Huang, W.; Zhao, Q. Dual-Emissive Phosphorescent Polymer Probe for Accurate Temperature Sensing in Living Cells and Zebrafish Using Ratiometric and Phosphorescence Lifetime Imaging Microscopy. ACS Appl. Mater. Interfaces 2018, 10, 17542–17550. doi:10.1021/acsami.8b01565
  • Lu, X.; Zhang, J.; Xie, Y. N.; Zhang, X.; Jiang, X.; Hou, X.; Wu, P. Ratiometric Phosphorescent Probe for Thallium in Serum, Water, and Soil Samples Based on Long-Lived, Spectrally Resolved, Mn-Doped ZnSe Quantum Dots and Carbon Dots. Anal. Chem. 2018, 90, 2939–2945. doi:10.1021/acs.analchem.7b05365
  • Liu, J.; Wu, Y.; Yu, Y.; Li, K.; Ji, Y.; Wu, D. Quantitative Ratiometric Phosphorescence Hypoxia-Sensing Nanoprobes Based on Quantum Dots/Ir(III) Glycerol Monoolein Cubic-Phase Nanoparticles. Biosens. Bioelectron. 2017, 98, 119–125. doi:10.1016/j.bios.2017.06.043
  • Zang, L.; Zhao, H.; Hua, J.; Qin, F.; Zheng, Y.; Zhang, Z.; Cao, W. Ratiometric Dissolved Oxygen Sensitive Indicator Based on Lutetium Labeled Hematoporphyrin Monomethyl Ether with Balanced Phosphorescence and Fluorescence Dual Emission. Sens. Actuator B-Chem. 2016, 231, 539–546. doi:10.1016/j.snb.2016.03.072
  • Liu, S.; Wei, L.; Guo, S.; Jiang, J.; Zhang, P.; Han, J.; Ma, Y.; Zhao, Q. Anionic Iridium(III) Complexes and Their Conjugated Polymer Soft Salts for Time-Resolved Luminescent Detection of Intracellular Oxygen Levels. Sens. Actuator B-Chem. 2018, 262, 436–443. doi:10.1016/j.snb.2018.01.201
  • Huo, X. L.; Lu, H. J.; Xu, J. J.; Zhou, H.; Chen, H. Y. Recent Advances of Ratiometric Electrochemiluminescence Biosensors. J. Mater. Chem. B 2019, 7, 6469–6475. doi:10.1039/c9tb01823a
  • Shao, K.; Wang, B.; Nie, A.; Ye, S.; Ma, J.; Li, Z.; Lv, Z.; Han, H. Target-Triggered Signal-on Ratiometric Electrochemiluminescence Sensing of PSA Based on MOF/Au/G-Quadruplex. Biosens. Bioelectron. 2018, 118, 160–166. doi:10.1016/j.bios.2018.07.029
  • Huo, X. L.; Zhang, N.; Yang, H.; Xu, J. J.; Chen, H. Y. Electrochemiluminescence Resonance Energy Transfer System for Dual-Wavelength Ratiometric miRNA Detection. Anal. Chem. 2018, 90, 13723–13728. doi:10.1021/acs.analchem.8b04141
  • Ding, C.; Li, Y.; Wang, L.; Luo, X. Ratiometric Electrogenerated Chemiluminescence Cytosensor Based on Conducting Polymer Hydrogel Loaded with Internal Standard Molecules. Anal. Chem. 2019, 91, 983–989. doi:10.1021/acs.analchem.8b04116
  • Feng, Q. M.; Shen, Y. Z.; Li, M. X.; Zhang, Z. L.; Zhao, W.; Xu, J. J.; Chen, H. Y. Dual-Wavelength Electrochemiluminescence Ratiometry Based on Resonance Energy Transfer between Au Nanoparticles Functionalized g-C3N4 Nanosheet and Ru(bpy)3(2+) for microRNA Detection. Anal. Chem. 2016, 88, 937–944. doi:10.1021/acs.analchem.5b03670
  • Liang, R. P.; Yu, L. D.; Tong, Y. J.; Wen, S. H.; Cao, S. P.; Qiu, J. D. An Ultratrace Assay of Arsenite Based on the Synergistic Quenching Effect of Ru(Bpy)32+ and Arsenite on the Electrochemiluminescence of Au-g-C3N4 Nanosheets. Chem. Commun. (Camb.) 2018, 54, 14001–14004. doi:10.1039/c8cc08353c
  • Liu, Y.; Wang, M.; Nie, Y.; Zhang, Q.; Ma, Q. Sulfur Regulated Boron Nitride Quantum Dots Electrochemiluminescence with Amplified Surface Plasmon Coupling Strategy for BRAF Gene Detection. Anal. Chem. 2019, 91, 6250–6258. doi:10.1021/acs.analchem.9b00965
  • Lu, H. J.; Zhao, W.; Xu, J. J.; Chen, H. Y. Visual Electrochemiluminescence Ratiometry on Bipolar Electrode for Bioanalysis. Biosens. Bioelectron. 2018, 102, 624–630. doi:10.1016/j.bios.2017.12.008
  • Wang, Y. Z.; Ji, S. Y.; Xu, H. Y.; Zhao, W.; Xu, J. J.; Chen, H. Y. Bidirectional Electrochemiluminescence Color Switch: An Application in Detecting Multimarkers of Prostate Cancer. Anal. Chem. 2018, 90, 3570–3575. doi:10.1021/acs.analchem.8b00014
  • Wang, Y. Z.; Xu, C. H.; Zhao, W.; Guan, Q. Y.; Chen, H. Y.; Xu, J. J. Bipolar Electrode Based Multicolor Electrochemiluminescence Biosensor. Anal. Chem. 2017, 89, 8050–8056. doi:10.1021/acs.analchem.7b01494
  • Zhang, R. K.; Hu, Y. F.; Li, G. K. Development of a Cyclic System for Chemiluminescence Detection. Anal. Chem. 2014, 86, 6080–6087. doi:10.1021/ac5012359
  • Zhong, Y.; Hu, Y.; Li, G.; Zhang, R. Multistage Signals Based on Cyclic Chemiluminescence for Decoding Complex Samples. Anal. Chem. 2019, 91, 12063–12069. doi:10.1021/acs.analchem.9b03189
  • Xu, H. L.; Li, Q. Y.; Zhang, L. C.; Zeng, B. R.; Deng, D. Y.; Lv, Y. Transient Cataluminescence on Flowerlike MgO for Discrimination and Detection of Volatile Organic Compounds. Anal. Chem. 2016, 88, 8137–8144. doi:10.1021/acs.analchem.6b01881
  • Zeng, L.; Zeng, H.; Wang, S.; Wang, S.; Hou, J. T.; Yoon, J. A Paper-Based Chemosensor for Highly Specific, Ultrasensitive, and Instantaneous Visual Detection of Toxic Phosgene. Chem. Commun. (Camb.) 2019, 55, 13753–13756. doi:10.1039/c9cc07437f
  • Lv, Y.; Jin, Y.; Wu, H.; Liu, D.; Xiong, G.; Ju, G.; Chen, L.; Hu, Y. An All-Optical Ratiometric Thermometer Based on Reverse Thermal Response from Interplay among Diverse Emission Centers and Traps with High-Temperature Sensitivity. Ind. Eng. Chem. Res. 2019, 58, 21242–21251. doi:10.1021/acs.iecr.9b05286
  • Mi, C.; Zhou, J.; Wang, F.; Lin, G.; Jin, D. Ultrasensitive Ratiometric Nanothermometer with Large Dynamic Range and Photostability. Chem. Mater. 2019, 31, 9480–9487. doi:10.1021/acs.chemmater.9b03466
  • Meng, L.; Lan, C.; Liu, Z.; Xu, N.; Wu, Y. A Novel Ratiometric Fluorescence Probe for Highly Sensitive and Specific Detection of Chlorotetracycline among Tetracycline Antibiotics. Anal. Chim. Acta. 2019, 1089, 144–151. doi:10.1016/j.aca.2019.08.065
  • Wang, J.; Song, J.; Zheng, H.; Zheng, X.; Dai, H.; Hong, Z.; Lin, Y. Application of NiFe2O4 Nanotubes as Catalytically Promoted Sensing Platform for Ratiometric Electrochemiluminescence Analysis of Ovarian Cancer Marker. Sens. Actuator B-Chem. 2019, 288, 80–87. doi:10.1016/j.snb.2019.02.099
  • Liu, N.; Hao, J.; Chen, L.; Song, Y.; Wang, L. Ratiometric Fluorescent Detection of Cu2+ Based on Dual-Emission ZIF-8@rhodamine-B Nanocomposites. Luminescence 2019, 34, 193–199. doi:10.1002/bio.3593
  • Wang, Y.; Ding, H.; Wang, S.; Fan, C.; Tu, Y.; Liu, G.; Pu, S. Hg2+ -Selective Ratiometric and Colorimetric Probe Based on Dansyl-Rhodamine and its Staining Function in Cell Imaging. Luminescence 2019, 34, 911–917. doi:10.1002/bio.3690
  • Rasheed, L.; Yousuf, M.; Youn, I. S.; Yoon, T.; Kim, K. Y.; Seo, Y. K.; Shi, G.; Saleh, M.; Hur, J. H.; Kim, K. S. Turn-On Ratiometric Fluorescent Probe for Selective Discrimination of Cr(3+) from Fe(3+) in Aqueous Media for Living Cell Imaging. Chemistry 2015, 21, 16349–16353. doi:10.1002/chem.201501892
  • Chen, H.; Li, W.; Wang, Q.; Jin, X.; Nie, Z.; Yao, S. Nitrogen Doped Graphene Quantum Dots Based Single-Luminophor Generated Dual-Potential Electrochemiluminescence System for Ratiometric Sensing of Co2+ Ion. Electrochim. Acta 2016, 214, 94–102. doi:10.1016/j.electacta.2016.08.028
  • Aswathy, P. R.; Sharma, S.; Tripathi, N. P.; Sengupta, S. Regioisomeric BODIPY Benzodithiophene Dyads and Triads with Tunable Red Emission as Ratiometric Temperature and Viscosity Sensors. Chemistry 2019, 25, 14870–14880. doi:10.1002/chem.201902952
  • Liu, X.-L.; Niu, L.-Y.; Chen, Y.-Z.; Yang, Y.; Yang, Q.-Z. A Ratiometric Fluorescent Probe Based on Monochlorinated BODIPY for the Discrimination of Thiophenols over Aliphatic Thiols in Water Samples and in Living Cells. Sens. Actuator B-Chem. 2017, 252, 470–476. doi:10.1016/j.snb.2017.05.176
  • Zheng, H.; Ke, Y.; Yi, H.; Dai, H.; Fang, D.; Lin, Y.; Hong, Z.; Li, X. A Bifunctional Reagent Regulated Ratiometric Electrochemiluminescence Biosensor Constructed on Surfactant-Assisted Synthesis of TiO2 Mesocrystals for the Sensing of Deoxynivalenol. Talanta 2019, 196, 600–607. doi:10.1016/j.talanta.2018.12.077
  • Chen, H.; Zhang, H.; Yuan, R.; Chen, S. Novel Double-Potential Electrochemiluminescence Ratiometric Strategy in Enzyme-Based Inhibition Biosensing for Sensitive Detection of Organophosphorus Pesticides. Anal. Chem. 2017, 89, 2823–2829. doi:10.1021/acs.analchem.6b03883
  • Guo, Z.; Qiao, B.; Guo, Q.; Zhang, H.; Cai, C.; Feng, J. J. Dual-Signal Ratiometric Electrochemiluminescence Assay for Detecting the Activity of Human Methyltransferase. Analyst 2018, 143, 3353–3359. doi:10.1039/c8an00611c
  • Isildak, I.; Navaeipour, F.; Afsharan, H.; Kanberoglu, G. S.; Agir, I.; Ozer, T.; Annabi, N.; Totu, E. E.; Khalilzadeh, B. Electrochemiluminescence Methods Using CdS Quantum Dots in Aptamer-Based Thrombin Biosensors: A Comparative Study. Mikrochim. Acta. 2019, 187, 25. doi:10.1007/s00604-019-3882-y
  • Li, Y.; Wang, L.; Ding, C.; Luo, X. Highly Selective Ratiometric Electrogenerated Chemiluminescence Assay of DNA Methyltransferase Activity via Polyaniline and Anti-Fouling Peptide Modified Electrode. Biosens. Bioelectron. 2019, 142, 111553. doi:10.1016/j.bios.2019.111553
  • Zhang, J. D.; Mei, J.; Hu, X. L.; He, X. P.; Tian, H. Ratiometric Detection of β-Amyloid and Discrimination from Lectins by a Supramolecular AIE Glyconanoparticle. Small 2016, 12, 6562–6567. doi:10.1002/smll.201601470
  • Zhang, H.; Zhang, C.; Liu, D.; Zuo, F.; Chen, S.; Yuan, R.; Xu, W. A Ratiometric Electrochemiluminescent Biosensor for Con a Detecting Based on Competition of Dissolved Oxygen. Biosens. Bioelectron. 2018, 120, 40–46. doi:10.1016/j.bios.2018.08.001
  • Wang, Y.; Zhang, Y.; Sha, H.; Xiong, X.; Jia, N. Design and Biosensing of a Ratiometric Electrochemiluminescence Resonance Energy Transfer Aptasensor between a g-C3N4 Nanosheet and Ru@MOF for Amyloid-β Protein. ACS Appl. Mater. Interfaces 2019, 11, 36299–36306. doi:10.1021/acsami.9b09492
  • Fang, D.; Zhang, S.; Dai, H.; Lin, Y. An Ultrasensitive Ratiometric Electrochemiluminescence Immunosensor Combining Photothermal Amplification for Ovarian Cancer Marker Detection. Biosens. Bioelectron. 2019, 146, 111768. doi:10.1016/j.bios.2019.111768
  • Tian, M.; Sun, J.; Dong, B.; Lin, W. Unique pH-Sensitive RNA Binder for Ratiometric Visualization of Cell Apoptosis. Anal. Chem. 2019, 91, 10056–10063. doi:10.1021/acs.analchem.9b01959
  • Wang, Y. L.; Liu, F. R.; Cao, J. T.; Ren, S. W.; Liu, Y. M. Spatial-Resolved Dual-Signal-Output Electrochemiluminescent Ratiometric Strategy for Accurate and Sensitive Immunoassay. Biosens. Bioelectron. 2018, 102, 525–530. doi:10.1016/j.bios.2017.11.067
  • Gui, R.; Jin, H.; Bu, X.; Fu, Y.; Wang, Z.; Liu, Q. Recent Advances in Dual-Emission Ratiometric Fluorescence Probes for Chemo/Biosensing and Bioimaging of Biomarkers. Coord. Chem. Rev. 2019, 383, 82–103. doi:10.1016/j.ccr.2019.01.004
  • Banerjee, M.; Ta, S.; Ghosh, M.; Ghosh, A.; Das, D. Sequential Fluorescence Recognition of Molybdenum(VI), Arsenite, and Phosphate Ions in a Ratiometric Manner: A Facile Approach for Discrimination of AsO2− and H2PO4. ACS Omega. 2019, 4, 10877–10890. doi:10.1021/acsomega.9b00377
  • Liao, X.; Fang, J. A.; Zhao, J. L.; Ruan, Q.; Zeng, X.; Luo, Q. Y.; Redshaw, C. An Efficient ICT-Based Ratio/Colorimetric Tripodal Azobenzene Probe for the Recognition/Discrimination of F−, AcO− and H2PO4− Anions. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 221, 117174. doi:10.1016/j.saa.2019.117174
  • Gharami, S.; Aich, K.; Patra, L.; Mondal, T. K. Detection and Discrimination of Zn2+ and Hg2+ Using a Single Molecular Fluorescent Probe. New J. Chem. 2018, 42, 8646–8652. doi:10.1039/C8NJ01212A
  • Ghosh, M.; Ta, S.; Banerjee, M.; Mahiuddin, M.; Das, D. Exploring the Scope of Photo-Induced Electron Transfer-Chelation-Enhanced Fluorescence-Fluorescence Resonance Energy Transfer Processes for Recognition and Discrimination of Zn2+, Cd2+, Hg2+, and Al3+ in a Ratiometric Manner: Application to Sea Fish Analysis. ACS Omega. 2018, 3, 4262–4275. doi:10.1021/acsomega.8b00266
  • Banerjee, M.; Ghosh, M.; Ta, S.; Das, J.; Das, D. A Smart Optical Probe for Detection and Discrimination of Zn2+, Cd2+ and Hg2+ at Nano-Molar Level in Real Samples. J. Photochem. Photobiol. A: Chem. 2019, 377, 286–297. doi:10.1016/j.jphotochem.2019.04.002
  • Shi, W. J.; Li, C. F.; Huang, Y.; Tan, H. Y.; Wei, Y. F.; Liu, F. G.; Feng, L. X.; Zheng, L. Y.; Chen, G. S.; Yan, J. W. A Remarkable Colorimetric Probe for Fluorescent Ratiometric and on-off Discriminative Detection of Hg2+ and Cu2+ by Double-Channel Imaging in Living Cells. Dyes Pigment 2019, 171, 107782. doi:10.1016/j.dyepig.2019.107782
  • Niu, H.; Ni, B.; Chen, K.; Yang, X.; Cao, W.; Ye, Y.; Zhao, Y. A Long-Wavelength-Emitting Fluorescent Probe for Simultaneous Discrimination of H2S/Cys/GSH and Its Bio-Imaging Applications. Talanta 2019, 196, 145–152. doi:10.1016/j.talanta.2018.12.031
  • Wu, Y.; Zhang, Y.; Wang, L.; Huyan, Y.; Li, H.; Pei, Z.; Tang, Y.; Sun, S.; Xu, Y. A Simple Ratiometric Fluorescent Sensor Selectively Compatible of Different Combinations of Characteristic Groups for Identification of Glutathione, Cysteine and Homocysteine. Sens. Actuator B-Chem. 2020, 302, 127181. doi:10.1016/j.snb.2019.127181
  • Wang, J.; Xu, W.; Yang, Z.; Yan, Y.; Xie, X.; Qu, N.; Wang, Y.; Wang, C.; Hua, J. New Diketopyrrolopyrrole-Based Ratiometric Fluorescent Probe for Intracellular Esterase Detection and Discrimination of Live and Dead Cells in Different Fluorescence Channels. ACS Appl. Mater. Interfaces 2018, 10, 31088–31095. doi:10.1021/acsami.8b11365
  • Rana, S.; Elci, S. G.; Mout, R.; Singla, A. K.; Yazdani, M.; Bender, M.; Bajaj, A.; Saha, K.; Bunz, U. H.; Jirik, F. R.; Rotello, V. M. Ratiometric Array of Conjugated Polymers-Fluorescent Protein Provides a Robust Mammalian Cell Sensor. J. Am. Chem. Soc. 2016, 138, 4522–4529. doi:10.1021/jacs.6b00067
  • Abbasi-Moayed, S.; Golmohammadi, H.; Hormozi-Nezhad, M. R. A Nanopaper-Based Artificial Tongue: A Ratiometric Fluorescent Sensor Array on Bacterial Nanocellulose for Chemical Discrimination Applications. Nanoscale 2018, 10, 2492–2502. doi:10.1039/c7nr05801b
  • Wang, X.; Qin, L.; Lin, M.; Xing, H.; Wei, H. Fluorescent Graphitic Carbon Nitride-Based Nanozymes with Peroxidase-Like Activities for Ratiometric Biosensing. Anal. Chem. 2019, 91, 10648–10656. doi:10.1021/acs.analchem.9b01884
  • Bo, Y.; Fan, J.; Yan, S.; Ding, M.; Liu, J.; Peng, J.; Ding, L. Surfactant Modulation Effect on the Fluorescence Emission of a Dual-Fluorophore: Realizing a Single Discriminative Sensor for Identifying Different Proteins in Aqueous Solutions. Sens. Actuator B-Chem. 2019, 295, 168–178. doi:10.1016/j.snb.2019.05.078
  • Wang, X.; Zhao, X.; Zheng, K.; Guo, X.; Yan, Y.; Xu, Y. Ratiometric Nanoparticle Array-Based near-Infrared Fluorescent Probes for Quantitative Protein Sensing. Langmuir 2019, 35, 5599–5607. doi:10.1021/acs.langmuir.9b00788
  • Abbasi-Moayed, S.; Golmohammadi, H.; Bigdeli, A.; Hormozi-Nezhad, M. R. A Rainbow Ratiometric Fluorescent Sensor Array on Bacterial Nanocellulose for Visual Discrimination of Biothiols. Analyst 2018, 143, 3415–3424. doi:10.1039/c8an00637g
  • He, C.; Liu, Z.; Wu, Q.; Zhao, J.; Liu, R.; Liu, B.; Zhao, T. Ratiometric Fluorescent Biosensor for Visual Discrimination of Cancer Cells with Different Telomerase Expression Levels. ACS Sens. 2018, 3, 757–762. doi:10.1021/acssensors.8b00059
  • Long, S.; Miao, L.; Li, R.; Deng, F.; Qiao, Q.; Liu, X.; Yan, A.; Xu, Z. Rapid Identification of Bacteria by Membrane-Responsive Aggregation of a Pyrene Derivative. ACS Sens. 2019, 4, 281–285. doi:10.1021/acssensors.8b01466
  • Feng, Y.; Song, H.; Deng, D.; Lv, Y. Engineering Ratiometric Persistent Luminous Sensor Arrays for Biothiols Identification. Anal. Chem. 2020, 92, 6645–6653. doi:10.1021/acs.analchem.0c00464
  • Pei, X. Y.; Pu, S. R.; Zhang, L. C.; Lv, Y. Discrimination and Detection of Oxygenated Volatile Organic Compounds Utilizing Energy Transfer Cataluminescence of La2O2CO3:Eu3. Sens. Actuator B-Chem. 2020, 316, 128069. doi:10.1016/j.snb.2020.128069

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.