1,383
Views
5
CrossRef citations to date
0
Altmetric
Review

Surface enhanced Raman spectroscopy for bacteria analysis: a review

, , , &

References

  • Granger, J. H.; Schlotter, N. E.; Crawford, A. C.; Porter, M. D. Prospects for Point-of-Care Pathogen Diagnostics Using Surface-Enhanced Raman Scattering (SERS). Chem. Soc. Rev. 2016, 45, 3865–3882. doi:10.1039/c5cs00828j
  • Pahlow, S.; Meisel, S.; Cialla-May, D.; Weber, K.; Rösch, P.; Popp, J. Isolation and Identification of bacteria by Means of Raman Spectroscopy. Adv. Drug Deliv. Rev. 2015, 89, 105–120. doi:10.1016/j.addr.2015.04.006
  • Holmes, B.; Willcox, W. R.; Lapage, S. P. Identification of Enterobacteriaceae by the API 20E System. J. Clin. Pathol. 1978, 31, 22–30. doi:10.1136/jcp.31.1.22
  • Galikowska, E.; Kunikowska, D.; Tokarska-Pietrzak, E.; Dziadziuszko, H.; Loś, J. M.; Golec, P.; Węgrzyn, G.; Loś, M. Specific Detection of Salmonella enterica and Escherichia coli Strains by Using ELISA with Bacteriophages as Recognition Agents. Eur. J. Clin. Microbiol. Infect. Dis. 2011, 30, 1067–1073. doi:10.1007/s10096-011-1193-2
  • Zhu, L.; He, J.; Cao, X.; Huang, K.; Luo, Y.; Xu, W. Development of a Double-Antibody Sandwich ELISA for Rapid Detection of Bacillus Cereus in Food. Sci. Rep. 2016, 6, 16092. doi:10.1038/srep16092
  • Gunasekera, T. S.; Attfield, P. V.; Veal, D. A. A Flow Cytometry Method for Rapid Detection and Enumeration of Fungal Spores in the Atmosphere. Appl. Environ. Microbiol. 2000, 66, 1228–1232. doi:10.1128/AEM.66.3.1228-1232.2000
  • Huletsky, A.; Giroux, R.; Rossbach, V.; Gagnon, M.; Vaillancourt, M.; Bernier, M.; Gagnon, F.; Truchon, K.; Bastien, M.; Picard, F. J.; et al. New Real-Time PCR Assay for Rapid Detection of Methicillin-Resistant Staphylococcus aureus Directly from Specimens Containing a Mixture of Staphylococci. J Clin Microbiol 2004, 42, 1875–1884. doi:10.1128/JCM.42.5.1875-1884.2004
  • Lehmann, L. E.; Hunfeld, K. P.; Emrich, T.; Haberhausen, G.; Wissing, H.; Hoeft, A.; Stüber, F. A Multiplex Real-Time PCR Assay for Rapid Detection and Differentiation of 25 Bacterial and Fungal Pathogens from Whole Blood Samples. Med. Microbiol. Immunol. 2008, 197, 313–324. doi:10.1007/s00430-007-0063-0
  • Fukushima, M.; Kakinuma, K.; Hayashi, H.; Nagai, H.; Ito, K.; Kawaguchi, R. Detection and Identification of Mycobacterium Species Isolates by DNA Microarray. Society 2003, 41, 2605–2615. doi:10.1128/JCM.41.6.2605-2615.2003
  • Cleven, B. E. E.; Palka-Santini, M.; Gielen, J.; Meembor, S.; Krönke, M.; Krut, O. Identification and Characterization of Bacterial Pathogens Causing Bloodstream Infections by DNA Microarray. J. Clin. Microbiol. 2006, 44, 2389–2397. doi:10.1128/JCM.02291-05
  • Sauer, S.; Kliem, M. Mass Spectrometry Tools for the Classification and Identification of Bacteria. Nat. Rev. Microbiol. 2010, 8, 74–82. doi:10.1038/nrmicro2243
  • Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C. SERS Detection of Bacteria in Water by in Situ Coating with Ag Nanoparticles. Anal Chem 2014, 861, 525–1533.
  • Driskell, J. D.; Kwarta, K. M.; Lipert, R. J.; Porter, M. D.; Neill, J. D.; Ridpath, J. F. Low-Level Detection of Viral Pathogens by a Surface-Enhanced Raman Scattering Based Immunoassay. Anal. Chem. 2005, 77, 6147–6154. doi:10.1021/ac0504159
  • Helm, D.; Labischinski, H.; Schallehn, G.; Naumann, D. Classification and Identification of Bacteria by Fourier-Transform Infrared Spectroscopy. J. Gen. Microbiol. 1991, 137, 69–79. doi:10.1099/00221287-137-1-69
  • Maquelin, K.; Kirschner, C.; Choo-Smith, L. P.; Ngo-Thi, N. A.; Van Vreeswijk, T.; Stämmler, M.; Endtz, H. P.; Bruining, H. A.; Naumann, D.; Puppels, G. J. Prospective Study of the Performance of Vibrational Spectroscopies for Rapid Identification of Bacterial and Fungal Pathogens Recovered from Blood Cultures. J. Clin. Microbiol. 2003, 41, 324–329. doi:10.1128/jcm.41.1.324-329.2003
  • Howard, W. F.; Nelson, W. H.; Sperry, J. F. Resonance Raman Method for the Rapid Detection and Identification of Bacteria in Water Applied Spectroscopy. Appl. Spectrosc. 1980, 34, 72–75. doi:10.1366/0003702804730790
  • Assaf, A.; Cordella, C. B. Y.; Thouand, G. Raman Spectroscopy Applied to the Horizontal Methods ISO 6579:2002 to Identify Salmonella Spp. in the Food Industry. Anal. Bioanal. Chem. 2014, 406, 4899–4910. doi:10.1007/s00216-014-7909-2
  • Bittel, M.; Cordella, C. B. Y.; Assaf, A.; Jouanneau, S.; Durand, M. J.; Thouand, G. Potential of Raman Spectroscopy to Monitor Arsenic Toxicity on Bacteria: Insights toward Multiparametric Bioassays. Environ. Sci. Technol. 2015, 49, 12324–12332. doi:10.1021/acs.est.5b03013
  • Larkin, P. J. Infrared and Raman Spectroscopy - Principles and Spectral Interpretation. USA: Elsevier Inc; 2011.
  • Efrima, S.; Zeiri, L. Understanding SERS of Bacteria. J. Raman Spectrosc. 2009, 40, 277–288. doi:10.1002/jrs.2121
  • Mamián-López, M. B.; Poppi, R. J. Quantification of Moxifloxacin in Urine Using Surface-Enhanced Raman Spectroscopy (SERS) and Multivariate Curve Resolution on a Nanostructured Gold Surface. Anal. Bioanal. Chem. 2013, 405, 7671–7677. doi:10.1007/s00216-013-7200-y
  • Procházka, M. Surface-Enhanced Raman Spectroscopy: Bioanalytical, Biomolecular and Medical Applications. USA: Springer; 2016.
  • Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem Phys Lett. 1974, 26, 163–166. doi:10.1016/0009-2614(74)85388-1
  • Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J Electroanal Chem. 1977, 84, 1–20. doi:10.1016/S0022-0728(77)80224-6
  • Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. doi:10.1021/ja00457a071
  • Mosier-Boss, P. A.; Sorensen, K. C.; George, R. D.; Obraztsova, A. SERS Substrates Fabricated Using Ceramic Filters for the Detection of Bacteria. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 153, 591–598. doi:10.1016/j.saa.2015.09.012
  • Zhang, L.; Xu, J.; Mi, L.; Gong, H.; Jiang, S.; Yu, Q. Multifunctional Magnetic-Plasmonic Nanoparticles for Fast Concentration and Sensitive Detection of Bacteria Using SERS. Biosens. Bioelectron. 2012, 31, 130–136. doi:10.1016/j.bios.2011.10.006
  • Liu, Y.; Chen, Y. R.; Nou, X.; Chao, K. Potential of Surface-Enhanced Raman Spectroscopy for the Rapid Identification of Escherichia Coli and Listeria Monocytogenes Cultures on Silver Colloidal Nanoparticles. Appl. Spectrosc. 2007, 61, 824–831. doi:10.1366/000370207781540060
  • Culha, M.; Kahraman, M.; Çam, D.; Sayın, I.; Keseroǧlu, K. Rapid Identification of Bacteria and Yeast Using Surface-Enhanced Raman Scattering. Surf. Interface Anal. 2010, 42, 462–465. doi:10.1002/sia.3256
  • Mircescu, N. E.; Zhou, H.; Leopold, N.; Chiş, V.; Ivleva, N. P.; Niessner, R.; Wieser, A.; Haisch, C. Towards a Receptor-Free Immobilization and SERS Detection of Urinary Tract Infections Causative Pathogens. Anal. Bioanal. Chem. 2014, 406, 3051–3058. doi:10.1007/s00216-014-7761-4
  • Ankamwar, B.; Sur, U. K.; Das, P. SERS Study of Bacteria Using Biosynthesized Silver Nanoparticles as the SERS Substrate. Anal. Methods 2016, 8, 2335–2340. doi:10.1039/C5AY03014E
  • Akanny, E.; Bonhommé, A.; Commun, C.; Doleans-Jordheim, A.; Bessueille, F.; Bourgeois, S.; Bordes, C. Development of Uncoated near-Spherical Gold Nanoparticles for the Label-Free Quantification of Lactobacillus rhamnosus GG by Surface-Enhanced Raman Spectroscopy. Anal. Bioanal. Chem. 2019, 411, 5563–5576. doi:10.1007/s00216-019-01938-4
  • Akanny, E.; Bonhommé, A.; Commun, C.; Doleans-Jordheim, A.; Farre, C.; Bessueille, F.; Bourgeois, S.; Bordes, C. Surface-Enhanced Raman Spectroscopy Using Uncoated Gold Nanoparticles for Bacteria Discrimination. J. Raman Spectrosc. 2020, 51, 619–629. doi:10.1002/jrs.5827
  • Lin, C. C.; Yang, Y. M.; Liao, P. H.; Chen, D. W.; Lin, H. P.; Chang, H. C. A Filter-like AuNPs@MS SERS Substrate for Staphylococcus aureus Detection. Biosens. Bioelectron. 2014, 53, 519–527. doi:10.1016/j.bios.2013.10.017
  • Yang, D.; Zhou, H.; Haisch, C.; Niessner, R.; Ying, Y. Reproducible E. coli Detection Based on Label-Free SERS and Mapping. Talanta 2016, 146, 457–463. doi:10.1016/j.talanta.2015.09.006
  • Premasiri, V. R.; Moir, D. T.; Klempner, M. S.; Krieger, N.; Jones, I. I.; G.; Ziegler, L. D. Characterization of the Surface Enhanced Raman Scattering (SERS) of Bacteria. J. Phys. Chem. B 2005, 109, 312–320. doi:10.1021/jp040442n
  • Jarvis, R. M.; Goodacre, R. Discrimination of Bacteria Using Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2004, 76, 40–47. doi:10.1021/ac034689c
  • Fan, C.; Hu, Z.; Mustapha, A.; Lin, M. Rapid Detection of Food- and Waterborne Bacteria Using Surface-Enhanced Raman Spectroscopy Coupled with Silver Nanosubstrates. Appl. Microbiol. Biotechnol. 2011, 92, 1053–1061. doi:10.1007/s00253-011-3634-3
  • Sundaram, J.; Park, B.; Kwon, Y.; Lawrence, K. C. Surface Enhanced Raman Scattering (SERS) with Biopolymer Encapsulated Silver Nanosubstrates for Rapid Detection of Foodborne Pathogens. Int. J. Food Microbiol. 2013, 167, 67–73. doi:10.1016/j.ijfoodmicro.2013.05.013
  • Dina, N. E.; Zhou, H.; Colniţă, A.; Leopold, N.; Szoke-Nagy, T.; Coman, C.; Haisch, C. Rapid Single-Cell Detection and Identification of Pathogens by Using Surface-Enhanced Raman Spectroscopy. Analyst 2017, 142, 1782–1789. doi:10.1039/c7an00106a
  • Lemma, T.; Saliniemi, A.; Hynninen, V.; Hytönen, V. P.; Toppari, J. J. SERS Detection of Cell Surface and Intracellular Components of Microorganisms Using Nano-Aggregated Ag Substrate. Vib Spectrosc 2016, 83, 36–45. doi:10.1016/j.vibspec.2016.01.006
  • Cam, D.; Keseroglu, K.; Kahraman, M.; Sahin, F.; Culha, M. Multiplex Identification of Bacteria in Bacterial Mixtures with Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2009, 41, 484–489. doi:10.1002/jrs.2475
  • McCreery, R. Raman Spectroscopy for Chemical Analysis, USA: John Wiley & Sons; 2000.
  • Le Ru, E. C.; Etchegoin, P. G. Principles of surface enhanced Raman scattering.;, and related plasmonic effects. First ed. Elsevier Science; 2009.
  • Petry, R.; Schmitt, M.; Popp, J. Raman spectroscopy-a prospective tool in the life sciences. Chemphyschem 2003, 4, 14–30. doi:10.1002/cphc.200390004
  • Yeo, B. S.; Schmid, T.; Zhang, W.; Zenobi, R. A Strategy to Prevent Signal Losses, Analyte Decomposition, and Fluctuating Carbon Contamination Bands in Surface-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2008, 62, 708–713. doi:10.1366/000370208784658165
  • Le Ru, E. C.; Etchegoin, P. G. Quantifying SERS Enhancements. MRS Bull. 2013, 38, 631–640. doi:10.1557/mrs.2013.158
  • Culha, M.; Cullum, B.; Lavrik, N.; Klutse, C. K. Surface-Enhanced Raman Scattering as an Emerging Characterization and Detection Technique. J Nanotechnol 2012, 2012, 1–15. doi:10.1155/2012/971380
  • Willets, K. A.; Van Duyne, R. P. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–297. doi:10.1146/annurev.physchem.58.032806.104607
  • Schlücker, S. Surface-Enhanced Raman Spectroscopy: Concepts and Chemical Applications. Angew. Chem. Int. Ed. Engl. 2014, 53, 4756–4795. doi:10.1002/anie.201205748
  • Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy. Annu Rev Anal Chem (Palo Alto Calif) 2008, 1, 601–626. doi:10.1146/annurev.anchem.1.031207.112814
  • Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. Plasmonic Materials for Surface-Enhanced Sensing and Spectroscopy. MRS Bull. 2005, 30, 368–375. doi:10.1557/mrs2005.100
  • Mayer, K. M.; Hafner, J. H. Localized Surface Plasmon Resonance Sensors. Chem. Rev. 2011, 111, 3828–3857. doi:10.1021/cr100313v
  • Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Anal. Chem. 2007, 79, 4215–4221. doi:10.1021/ac0702084
  • Nikoobakht, B.; Wang, J.; El-Sayed, M. A. Surface-Enhanced Raman Scattering of Molecules Adsorbed on Gold Nanorods: Off-Surface Plasmon Resonance Condition. Chem Phys Lett 2002, 366, 17–23. doi:10.1016/S0009-2614(02)01492-6
  • Pérez-Juste, J.; Pastoriza-Santos, I.; Liz-Marzán, L. M.; Mulvaney, P. Gold Nanorods: Synthesis, Characterization and Applications. Coord Chem Rev 2005, 249, 1870–1901. doi:10.1016/j.ccr.2005.01.030
  • Agnihotri, S.; Mukherji, S.; Mukherji, S. Size-Controlled Silver Nanoparticles Synthesized over the Range 5–100 nm Using the Same Protocol and Their Antibacterial Efficacy. RSC Adv 2014, 4, 3974–3983. doi:10.1039/C3RA44507K
  • Hopkins, P. E.; Duda, J. C.; Salaway, R. N.; Smoyer, J. L.; Norris, P. M. Effects of Intra- and Interband Transitions on Electron-Phonon Coupling and Electron Heat Capacity after Short-Pulsed Laser Heating. Nanoscale Microscale Thermophys Eng 2008, 12, 320–333. doi:10.1080/15567260802591985
  • West, P. R.; Ishii, S.; Naik, G. V.; Emani, N. K.; Shalaev, V. M.; Boltasseva, A. Searching for Better Plasmonic Materials. Laser & Photon. Rev. 2010, 4, 795–808. doi:10.1002/lpor.200900055
  • Israelsen, N. D.; Hanson, C.; Vargis, E. Nanoparticle Properties and Synthesis Effects on Surface-Enhanced Raman Scattering Enhancement Factor: An Introduction. ScientificWorldJournal 2015, 2015, 124582doi:10.1155/2015/124582
  • McFarland, A. D.; Young, M. A.; Dieringer, J. A.; Van Duyne, R. P. Wavelength-scanned surface-enhanced Raman excitation spectroscopy . J. Phys. Chem. B 2005, 109, 11279–11285. doi:10.1021/jp050508u
  • Grand, J.; De La Chapelle, M. L.; Bijeon, J. L.; Adam, P. M.; Vial, A.; Royer, P. Role of Localized Surface Plasmons in Surface-Enhanced Raman Scattering of Shape-Controlled Metallic Particles in Regular Arrays. Phys Rev B - Condens Matter Mater Phys 2005, 72, 033407
  • Guillot, N.; Shen, H.; Amor, S. B.; David, C.; Peron, O.; Rinnert, E.; Toury, T.; Lamy De La Chapelle, M. SERS Optimization of Gold Nanocylinders Arrays: Influence of the Surrounding Medium and Application for Polycyclic Aromatic Hydrocarbons Detection. AIP Conf Proc 2010, 1267, 1061–1062.
  • Félidj, N.; Aubard, J.; Lévi, G.; Krenn, J. R.; Hohenau, A.; Schider, G.; Leitner, A.; Aussenegg, F. R. Optimized Surface-Enhanced Raman Scattering on Gold Nanoparticle Arrays. Appl. Phys. Lett. 2003, 82, 3095–3097. doi:10.1063/1.1571979
  • Haynes, C. L. C.; Van Duyne, R. P. R. Plasmon-Sampled Surface-Enhanced Raman Excitation Spectroscopy. J. Phys. Chem. B 2003, 107, 7426–7433. doi:10.1021/jp027749b
  • Moskovits, M. Surface-Enhanced Raman Spectroscopy: A Brief Retrospective. J. Raman Spectrosc. 2005, 36, 485–496. doi:10.1002/jrs.1362
  • Wokaun, A.; Gordon, J. P.; Liao, P. F. Radiation Damping in Surface-Enhanced Raman Scattering. Phys. Rev. Lett. 1982, 48, 957–960. doi:10.1103/PhysRevLett.48.957
  • Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment. J. Phys. Chem. B 2003, 107, 668–677. doi:10.1021/jp026731y
  • Fabris, L. Gold-Based SERS Tags for Biomedical Imaging. J Opt 2015, 17, 1–14.
  • Hao, F.; Nehl, C. L.; Hafner, J. H.; Nordlander, P. Plasmon Resonances of a Gold Nanostar. Nano Lett. 2007, 7, 729–732. doi:10.1021/nl062969c
  • Wang, Y.; Yan, B.; Chen, L. SERS Tags: Novel Optical Nanoprobes for Bioanalysis. Chem. Rev. 2013, 113, 1391–1428. doi:10.1021/cr300120g
  • Brolo, A. G.; Irish, D. E.; Smith, B. D. Applications of Surface Enhanced Raman Scattering to the Study of Metal-Adsorbate Interactions. J Mol Struct. 1997, 405, 29–44. doi:10.1016/S0022-2860(96)09426-4
  • LeRu, E. C.; Meyer, M.; Etchegoin, P. G.; Le Ru, E. C.; Blackie, E. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. doi:10.1021/jp0687908
  • Brown, R. J. C.; Milton, M. J. T. Nanostructures and Nanostructured Substrates for Surface-Enhanced Raman Scattering (SERS). J. Raman Spectrosc. 2008, 39, 1313–1326. doi:10.1002/jrs.2030
  • Akanny, E.; Bonhommé, A.; Bois, L.; Minot, S.; Bourgeois, S.; Bordes, C.; Bessueille, F. Development and Comparison of Surface ‑ Enhanced Raman Scattering Gold Substrates for in Situ Characterization of ‘Model ’ Analytes in Organic and Aqueous Media. Chem. Africa 2019, 2, 309–320. doi:10.1007/s42250-019-00053-2
  • Lee, P. C.; Meisel, D. Adsorption and Surface-Enhanced Raman of Dyes on Silver and Gold Sols. J. Phys. Chem. 1982, 86, 3391–3395. doi:10.1021/j100214a025
  • Creighton, J. A.; Blatchford, C. G.; Albrecht, M. G. Plasma Resonance Enhancement of Raman Scattering by Pyridine Adsorbed on Silver or Gold Sol Particles of Size Comparable to the Excitation Wavelength. J. Chem. Soc, Faraday Trans. 2 1979, 75, 790. doi:10.1039/f29797500790
  • Leopold, N.; Lendl, B. A New Method for Fast Preparation of Highly Surface-Enhanced Raman Scattering (SERS) Active Silver Colloids at Room Temperature by Reduction of Silver Nitrate with Hydroxylamine Hydrochloride. J. Phys. Chem. B 2003, 107, 5723–5727. doi:10.1021/jp027460u
  • Turkevich, J.; Stevenson, P. C.; Hillier, J. A Study of the Nucleation and Growth Process in the Synthesis of Colloidal Gold. Discuss. Faraday Soc. 1951, 11, 55–75. doi:10.1039/df9511100055
  • Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nat Phys Sci 1973, 241, 20–22. doi:10.1038/physci241020a0
  • Brown, K. R.; Walter, D. G.; Natan, M. J. Seeding of Colloidal Au Nanoparticle Solutions. 2. Improved Control of Particle Size and Shape. Chem. Mater. 2000, 12, 306–313. doi:10.1021/cm980065p
  • Minati, L.; Benetti, F.; Chiappini, A.; Speranza, G. One-Step Synthesis of Star-Shaped Gold Nanoparticles. Colloids Surfaces A Physicochem Eng Asp 2014, 441, 623–628. doi:10.1016/j.colsurfa.2013.10.025
  • Morasso, C.; Mehn, D.; Vanna, R.; Bedoni, M.; Forvi, E.; Colombo, M.; Prosperi, D.; Gramatica, F. One-Step Synthesis of Star-like Gold Nanoparticles for Surface Enhanced Raman Spectroscopy. Mater. Chem. Phys. 2014, 143, 1215–1221. doi:10.1016/j.matchemphys.2013.11.024
  • Garcia-Leis, A.; Garcia-Ramos, J. V.; Sanchez-Cortes, S. Silver Nanostars with High SERS Performance. J. Phys. Chem. C 2013, 117, 7791–7795. doi:10.1021/jp401737y
  • Wang, J.; Wu, X.; Wang, C.; Rong, Z.; Ding, H.; Li, H.; Li, S.; Shao, N.; Dong, P.; Xiao, R.; Wang, S. Facile Synthesis of Au-Coated Magnetic Nanoparticles and Their Application in Bacteria Detection via a SERS Method. ACS Appl. Mater. Interfaces 2016, 8, 19958–19967. doi:10.1021/acsami.6b07528
  • Khlebtsov, B.; Khanadeev, V.; Khlebtsov, N. Surface-Enhanced Raman Scattering inside Au@Ag Core/Shell Nanorods. Nano Res. 2016, 9, 2303–2318. doi:10.1007/s12274-016-1117-7
  • Hildebrandt, P.; Keller, S.; Hoffmann, A.; Vanhecke, F.; Schrader, B. Enhancement Factor of Surface‐Enhanced Raman Scattering on Silver and Gold Surfaces upon near‐Infrared Excitation. Indication of an Unusual Strong Contribution of the Chemical Effect. J. Raman Spectrosc. 1993, 24, 791–796. doi:10.1002/jrs.1250241112
  • Doering, W. E.; Nie, S. Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B 2002, 106, 311–317. doi:10.1021/jp011730b
  • Bell, S. E. J.; Sirimuthu, N. M. S. Surface-Enhanced Raman Spectroscopy as a Probe of Competitive Binding by Anions to Citrate-Reduced Silver Colloids. J Phys Chem A 2005, 109, 7405–7410. doi:10.1021/jp052184f
  • Glaspell, G. P.; Zuo, C.; Jagodzinski, P. W. Surface Enhanced Raman Spectroscopy Using Silver Nanoparticles: The Effects of Particle Size and Halide Ions on Aggregation. J. Clust. Sci. 2005, 16, 39–51. doi:10.1007/s10876-005-2714-x
  • Futamata, M.; Maruyama, Y. LSP Spectral Changes Correlating with SERS Activation and Quenching for R6G on Immobilized Ag Nanoparticles. Appl. Phys. B 2008, 93, 117–130. doi:10.1007/s00340-008-3179-z
  • Dong, X.; Gu, H.; Liu, F. Study of the Surface-Enhanced Raman Spectroscopy of Residual Impurities in Hydroxylamine-Reduced Silver Colloid and the Effects of Anions on the Colloid Activity. Spectrochim Acta A Mol Biomol Spectrosc 2012, 88, 97–101. doi:10.1016/j.saa.2011.12.007
  • Grochala, W.; Kudelski, A.; Bukowska, J. Anion-Induced Charge-Transfer Enhancement in SERS and SERRS Spectra of Rhodamine 6G on a Silver Electrode: How Important is It?. J. Raman Spectrosc. 1998, 29, 681–685. doi:10.1002/(SICI)1097-4555(199808)29:8<681::AID-JRS287>3.0.CO;2-J
  • Jiang, J.; Oberdörster, G.; Biswas, P. Characterization of Size, Surface Charge, and Agglomeration State of Nanoparticle Dispersions for Toxicological Studies. J. Nanopart. Res. 2009, 11, 77–89. doi:10.1007/s11051-008-9446-4
  • El Badawy, A. M.; Luxton, T. P.; Silva, R. G.; Scheckel, K. G.; Suidan, M. T.; Tolaymat, T. M. Impact of Environmental Conditions (pH, Ionic Strength, and Electrolyte Type) on the Surface Charge and Aggregation of Silver Nanoparticles Suspensions. Environ. Sci. Technol. 2010, 44, 1260–1266. doi:10.1021/es902240k
  • Israelachvili, N. Intermolecular and Surface Forces. 3rd ed. USA: Academic Press; 2011.
  • Oncsik, T.; Trefalt, G.; Borkovec, M.; Szilagyi, I. Specific Ion Effects on Particle Aggregation Induced by Monovalent Salts within the Hofmeister Series. Langmuir 2015, 31, 3799–3807. doi:10.1021/acs.langmuir.5b00225
  • El Badawy, A. M.; Scheckel, K. G.; Suidan, M.; Tolaymat, T. M. The Impact of Stabilization Mechanism on the Aggregation Kinetics of Silver Nanoparticles. Sci. Total Environ. 2012, 429, 325–331. doi:10.1016/j.scitotenv.2012.03.041
  • Pamies, R.; Cifre, J. G. H.; Espín, V. F.; Collado-González, M.; Baños, F. G. D.; de la Torre, J. G. García de la Torre, J. Aggregation Behaviour of Gold Nanoparticles in Saline Aqueous Media. J. Nanopart. Res. 2014, 16, 2376. doi:10.1007/s11051-014-2376-4
  • Braun, G. B.; Lee, S. J.; Laurence, T.; Fera, N.; Fabris, L.; Bazan, G. C.; Moskovits, M.; Reich, N. O. Generalized Approach to SERS-Active Nanomaterials via Controlled Nanoparticle Linking, Polymer Encapsulation, and Small-Molecule Infusion. J. Phys. Chem. C 2009, 113, 13622–13629. doi:10.1021/jp903399p
  • Qian, X.; Li, J.; Nie, S. Stimuli-Responsive SERS Nanoparticles: Conformational Control of Plasmonic Coupling and Surface Raman Enhancement. J. Am. Chem. Soc. 2009, 131, 7540–7541. doi:10.1021/ja902226z
  • Taladriz-Blanco, P.; Buurma, N. J.; Rodríguez-Lorenzo, L.; Pérez-Juste, J.; Liz-Marzán, L. M.; Hervés, P. Reversible Assembly of Metal Nanoparticles Induced by Penicillamine. Dynamic Formation of SERS Hot Spots. J. Mater. Chem. 2011, 21, 16880–16887. doi:10.1039/c1jm12175h
  • Fromm, D. P.; Sundaramurthy, A.; Kinkhabwala, A.; Schuck, P. J.; Kino, G. S.; Moerne, W. E. Exploring the Chemical Enhancement for Surface-Enhanced Raman Scattering with Au Bowtie Nanoantennas. J. Chem. Phys. 2006, 124, 61101doi:10.1063/1.2167649
  • Zhao, L. L.; Jensen, L.; Schatz, G. C. Surface-Enhanced Raman Scattering of Pyrazine at the Junction between Two Ag20 Nanoclusters. Nano Lett. 2006, 6, 1229–1234. doi:10.1021/nl0607378
  • Ko, H.; Singamaneni, S.; Tsukruk, V. V. Nanostructured Surfaces and Assemblies as SERS Media. Small 2008, 4, 1576–1599. doi:10.1002/smll.200800337
  • Bae, D. R.; Chang, S. J.; Huh, Y. S.; Han, Y. K.; Lee, Y. J.; Yi, G. R.; Kim, S.; Lee, G. Surfactant Size Effect on Surface-Enhanced Raman Scattering Intensity from Silver Nanoparticles. J. Nanosci. Nanotechnol. 2013, 13, 5840–5843. doi:10.1166/jnn.2013.7488
  • Fan, M.; Andrade, G. F. S.; Brolo, A. G. A Review on the Fabrication of Substrates for Surface Enhanced Raman Spectroscopy and Their Applications in Analytical chemistry. Anal. Chim. Acta. 2011, 693, 7–25. doi:10.1016/j.aca.2011.03.002
  • Shiohara, A.; Wang, Y.; Liz-Marzán, L. M. Recent Approaches toward Creation of Hot Spots for SERS Detection. J Photochem Photobiol C Photochem Rev 2014, 21, 2–25. doi:10.1016/j.jphotochemrev.2014.09.001
  • Freeman, R. G.; Grabar, K. C.; Allison, K. J.; Bright, R. M.; Davis, J. A.; Guthrie, A. P.; Hommer, M. B.; Jackson, M. A.; Smith, P. C.; Walter, D. G.; Natan, M. J. Self-Assembled Metal Colloid Monolayers: An Approach to SERS Substrates. Science 1995, 267, 1629–1632. doi:10.1126/science.267.5204.1629
  • Fan, M.; Brolo, A. G. Silver Nanoparticles Self Assembly as SERS Substrates with near Single Molecule Detection Limit. Phys. Chem. Chem. Phys. 2009, 11, 7381–7389. doi:10.1039/b904744a
  • Bao, L.; Mahurin, S. M.; Haire, R. G.; Dai, S. Silver-Doped Sol-Gel Film as a Surface-Enhanced Raman Scattering Substrate for Detection of Uranyl and Neptunyl Ions. Anal. Chem. 2003, 75, 6614–6620. doi:10.1021/ac034791+
  • Hrapovic, S.; Liu, Y.; Enright, G.; Bensebaa, F.; Luong, J. New Strategy for Preparing Thin Gold Films on Modified Glass Surfaces by Electroless Deposition. Langmuir 2003, 19, 3958–3965. doi:10.1021/la0269199
  • Park, H. K.; Yoon, J. K.; Kim, K. Novel Fabrication of Ag Thin Film on Glass for Efficient Surface-Enhanced Raman Scattering. Langmuir 2006, 22, 1626–1629. doi:10.1021/la052559o
  • Murphy, T.; Schmidt, H.; Kronfeldt, H. D. Use of Sol-Gel Techniques in the Development of Surface-Enhanced Raman Scattering (SERS) Substrates Suitable for in Situ Detection of Chemicals in Sea-Water. Appl Phys B Lasers Opt 1999, 69, 147–150. doi:10.1007/s003400050787
  • Volkan, M.; Stokes, D. L.; Vo-Dinh, T. A Sol-Gel Derived AgCl Photochromic Coating on Glass for SERS Chemical Sensor Application. Sensors Actuators, B Chem 2005, 106, 660–667.
  • Tognalli, N. G.; Fainstein, A.; Vericat, C.; Vela, M. E.; Salvarezza, R. C. Exploring Three-Dimensional Nanosystems with Raman Spectroscopy: Methylene Blue Adsorbed on Thiol and Sulfur Monolayers on Gold. J Phys Chem B 2006, 110, 354–360. doi:10.1021/jp054541s
  • Kahl, M.; Voges, E.; Kostrewa, S.; Viets, C.; Hill, W. Periodically Structured Metallic Substrates for SERS. Sensors Actuators B Chem 1998, 51, 285–291. doi:10.1016/S0925-4005(98)00219-6
  • Zhang, Q.; Lee, Y. H.; Phang, I. Y.; Lee, C. K.; Ling, X. Y. Hierarchical 3D SERS substrates fabricated by integrating photolithographic microstructures and self-assembly of silver nanoparticles . Small 2014, 10, 2703–2711. doi:10.1002/smll.201303773
  • Liu, G. L.; Lee, L. P. Nanowell Surface Enhanced Raman Scattering Arrays Fabricated by Soft-Lithography for Label-Free Biomolecular Detections in Integrated Microfluidics. Appl Phys Lett 2005, 87, 1–3.
  • Chu, H. V.; Liu, Y.; Huang, Y.; Zhao, Y. A High Sensitive Fiber SERS Probe Based on Silver Nanorod Arrays. Opt. Express. 2007, 15, 12230–12239. doi:10.1364/oe.15.012230
  • Merlen, A.; Chevallier, V.; Valmalette, J. C.; Lagugné-Labarthet, F.; Harté, E. Surface Enhanced Spectroscopy of Organic Molecules Deposited on Nanostructured Gold Surfaces. AIP Conf Proc 2010, 1267, 920–921.
  • Degioanni, S.; Jurdyc, A. M.; Cheap, A.; Champagnon, B.; Bessueille, F.; Coulm, J.; Bois, L.; Vouagner, D. Surface-Enhanced Raman Scattering of Amorphous Silica Gel Adsorbed on Gold Substrates for Optical Fiber Sensors. J. Appl. Phys. 2015, 118, 153103. doi:10.1063/1.4933280
  • Haynes, C. L.; Van Duyne, R. P. Nanosphere Lithography: A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, 5599–5611. doi:10.1021/jp010657m
  • Yang, L.; Yan, B.; Premasiri, W. R.; Ziegler, L. D.; Negro, L. D.; Reinhard, B. M. Engineering Nanoparticle Cluster Arrays for Bacterial Biosensing: The Role of the Building Block in Multiscale SERS Substrates. Adv. Funct. Mater. 2010, 20, 2619–2628. doi:10.1002/adfm.201000630
  • Natan, M. J. Concluding Remarks Surface Enhanced Raman Scattering. Faraday Discuss. 2006, 132, 321–328. doi:10.1039/b601494c
  • Kahraman, M.; Yazici, M. M.; Sahin, F.; Culha, M. Experimental Parameters Influencing Surface-Enhanced Raman Scattering of Bacteria. J. Biomed. Opt. 2007, 12, 054015doi:10.1117/1.2798640
  • Kahraman, M.; Yazici, M. M.; Şahİn, F.; Bayrak, Ö. F.; TopÇu, E.; Çulha, M. Towards Single-Microorganism Detection Using Surface-Enhanced Raman Spectroscopy. Int. J. Environ. Anal. Chem. 2007, 87, 763–770. doi:10.1080/03067310701336379
  • Kahraman, M.; Yazici, M. M.; Sahin, F.; Culha, M. Convective Assembly of Bacteria for surface-enhanced Raman scattering . Langmuir 2008, 24, 894–901. doi:10.1021/la702240q
  • Jarvis, R. M.; Brooker, A.; Goodacre, R. Surface-Enhanced Raman Scattering for the Rapid Discrimination of Bacteria. Faraday Discuss. 2006, 132, 281–292. doi:10.1039/b506413a
  • Chu, H.; Huang, Y.; Zhao, Y. Silver Nanorod Arrays as a Surface-Enhanced Raman Scattering Substrate for Foodborne Pathogenic Bacteria Detection. Appl. Spectrosc. 2008, 62, 922–931. doi:10.1366/000370208785284330
  • Sengupta, A.; Mujacic, M.; Davis, E. J. Detection of Bacteria by Surface-Enhanced Raman Spectroscopy. Anal. Bioanal. Chem. 2006, 386, 1379–1386. doi:10.1007/s00216-006-0711-z
  • Kahraman, M.; Zamaleeva, A. I.; Fakhrullin, R. F.; Culha, M. Layer-by-Layer Coating of Bacteria with Noble Metal Nanoparticles for Surface-Enhanced Raman Scattering. Anal. Bioanal. Chem. 2009, 395, 2559–2567. doi:10.1007/s00216-009-3159-0
  • Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ram, J. T.; Yacaman, M. J. The Bactericidal Effect of Silver Nanoparticles. Nanotechnology 2005, 16, 2346–2353. doi:10.1088/0957-4484/16/10/059
  • Pal, S.; Tak, Y. K.; Song, J. M. Does the Antibacterial Activity of Silver Nanoparticles Depend on the Shape of the Nanoparticle? a Study of the Gram-Negative Bacterium Escherichia coli. Aem. AEM 2007, 73, 1712–1720. doi:10.1128/AEM.02218-06
  • Martinez-Castanon, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F. Synthesis and Antibacterial Activity of Silver Nanoparticles with Different Sizes. J. Nanopart. Res. 2008, 10, 1343–1348. doi:10.1007/s11051-008-9428-6
  • Schuster, K. C.; Reese, I.; Urlaub, E.; Gapes, J. R.; Lendl, B. Multidimensional Information on the Chemical Composition of Single Bacterial Cells by Confocal Raman Microspectroscopy. Anal. Chem. 2000, 72, 5529–5534. doi:10.1021/ac000718x
  • Zeiri, L.; Bronk, B. V.; Shabtai, Y.; Eichler, J.; Efrim, S. A. Surface-Enhanced Raman Spectroscopy as a Tool for Probing Specific Biochemical Components in Bacteria. Appl. Spectrosc. 2004, 58, 33–40. doi:10.1366/000370204322729441
  • De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference Database of Raman Spectra of Biological Molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. doi:10.1002/jrs.1734
  • Rothschild, K. J.; Andrew, J. R.; De Grip, W. J.; Stanley, H. E. Opsin Structure Probed by Raman Spectroscopy of Photoreceptor Membranes. Science 1976, 191, 1176–1178. doi:10.1126/science.1257742
  • Susi, H.; Sampugna, J.; Hampson, J. W.; Ard, J. S. Laser-Raman Investigation of Phospholipid-Polypeptide Interactions in Model Membranes. Biochemistry 1979, 18, 297–301. doi:10.1021/bi00569a010
  • Delcour, J.; Ferain, T.; Deghorain, M.; Palumbo, E.; Hols, P. The Biosynthesis and Functionality of the Cell-Wall of Lactic Acid Bacteria. Antonie Van Leeuwenhoek. Int J Gen Mol Microbiol 1999, 76, 159–184.
  • Navarre, W. W.; Schneewind, O. Surface Proteins of Gram-Positive Bacteria and Mechanisms of Their Targeting to the Cell Wall Envelope. Microbiol. Mol. Biol. Rev. 1999, 63, 174–229. doi:10.1128/MMBR.63.1.174-229.1999
  • Tripathi, P.; Beaussart, A.; Andre, G.; Rolain, T.; Lebeer, S.; Vanderleyden, J.; Hols, P.; Dufrêne, Y. F. Towards a Nanoscale View of Lactic Acid Bacteria. Micron 2012, 43, 1323–1330. doi:10.1016/j.micron.2012.01.001
  • Chauvet, R.; Lagarde, F.; Charrier, T.; Assaf, A.; Thouand, G.; Daniel, P. Microbiological Identification by Surface-Enhanced Raman Spectroscopy. Appl Spectrosc Rev 2017, 52, 123–144. doi:10.1080/05704928.2016.1209760
  • Premasiri, W. R.; Lee, J. C.; Sauer-Budge, A.; Theberge, R.; Costello, E.; Ziegler, L. D.; Hospital, W. The Biochemical Origins of the surface-enhanced Raman spectra of bacteria: a metabolomics profiling by SERS. Anal. Bioanal. Chem. 2016, 408, 4631–4647. doi:10.1007/s00216-016-9540-x
  • Kubryk, P.; Niessner, R.; Ivleva, N. P. The Origin of the Band at around 730 cm(-1) in the SERS spectra of bacteria: a stable isotope approach. Analyst 2016, 141, 2874–2878. doi:10.1039/c6an00306k
  • Weiss, R.; Palatinszky, M.; Wagner, M.; Niessner, R.; Elsner, M.; Seidel, M.; Ivleva, N. P. Surface-Enhanced Raman Spectroscopy of Microorganisms: limitations and Applicability on the Single-Cell Level. Analyst 2019, 144, 943–953. doi:10.1039/c8an02177e
  • Temur, E.; Boyaci, I. H.; Tamer, U.; Unsal, H.; Aydogan, N. A Highly Sensitive Detection Platform Based on Surface-Enhanced Raman Scattering for Escherichia coli Enumeration. Anal. Bioanal. Chem. 2010, 397, 1595–1604. doi:10.1007/s00216-010-3676-x
  • Drake, P.; Jiang, P. S.; Chang, H. W.; Su, S. C.; Tanha, J.; Tay, L. L.; Chen, P.; Lin, Y. J. Raman Based Detection of Staphylococcus aureus Utilizing Single Domain Antibody Coated Nanoparticle Labels and Magnetic Trapping. Anal. Methods 2013, 5, 4152–4158. doi:10.1039/c3ay40652k
  • Ma, Q.; Li, Y.; Gong, N.; Jiang, X.; Huan, S. Surface Enhanced Raman Spectroscopy Sensor Based on Magnetic Beads-Induced Nanoparticles Aggregation for Detection of Bacterial Deoxyribonucleic Acid. Chin. J. Anal. Chem. 2015, 43, 1676–1681. doi:10.1016/S1872-2040(15)60876-3
  • Wang, J.; Wu, X.; Wang, C.; Shao, N.; Dong, P.; Xiao, R.; Wang, S. Magnetically Assisted Surface-Enhanced Raman Spectroscopy for the Detection of Staphylococcus aureus Based on Aptamer Recognition. ACS Appl. Mater. Interfaces 2015, 7, 20919–20929. doi:10.1021/acsami.5b06446
  • Duan, N.; Chang, B.; Zhang, H.; Wang, Z.; Wu, S. Salmonella Typhimurium Detection Using a Surface-Enhanced Raman Scattering-Based Aptasensor. Int. J. Food Microbiol. 2016, 218, 38–43. doi:10.1016/j.ijfoodmicro.2015.11.006
  • Pearson, B.; Wang, P.; Pang, S.; Mills, A. J.; McLandsborough, L.; He, L. Innovative Sandwich Assay with Dual Optical and SERS Sensing Mechanisms for Bacterial Detection. Anal. Methods 2017, 9, 4732–4739. doi:10.1039/C7AY01596H
  • Zhang, C.; Wang, C.; Xiao, R.; Tang, L.; Huang, J.; Wu, D.; Liu, S.; Wang, Y.; Zhang, D.; Wang, S.; Chen, X. Sensitive and Specific Detection of Clinical bacteria via vancomycin-modified Fe3O4@Au nanoparticles and aptamer-functionalized SERS tags . J Mater Chem B 2018, 6, 3751–3761. doi:10.1039/c8tb00504d
  • Yuan, K.; Mei, Q.; Guo, X.; Xu, Y.; Yang, D.; Sánchez, B. J.; Sheng, B.; Liu, C.; Hu, Z.; Yu, G.; et al. Antimicrobial Peptide Based Magnetic Recognition Elements and Au@Ag-GO SERS Tags with Stable Internal Standards: A Three in One Biosensor for Isolation.; Discrimination and Killing of Multiple Bacteria in Whole Blood. Chem. Sci. 2018, 9, 8781–8795. doi:10.1039/C8SC04637A
  • Xie, J.; Zhang, Q.; Lee, J. Y.; Wang, D. The Synthesis of SERS-Active Gold Nanoflower Tags for in Vivo Applications. ACS Nano. 2008, 2, 2473–2480. doi:10.1021/nn800442q
  • Khullar, P.; Singh, V.; Mahal, A.; Dave, P. N.; Thakur, S.; Kaur, G.; Singh, J.; Singh Kamboj, S.; Singh Bakshi, M. Bovine Serum Albumin Bioconjugated Gold Nanoparticles: Synthesis, Hemolysis, and Cytotoxicity toward Cancer Cell Lines. J. Phys. Chem. C 2012, 116, 8834–8843. doi:10.1021/jp300585d
  • Indrasekara, A.; Paladini, B. J.; Naczynski, D. J.; Starovoytov, V.; Moghe, P. V.; Fabris, L. Dimeric Gold Nanoparticle Assemblies as Tags for SERS-Based Cancer Detection. Adv. Healthc. Mater. 2013, 2, 1370–1376. doi:10.1002/adhm.201200370
  • Zhang, Y.; Li, X.; Xue, B.; Kong, X.; Liu, X.; Tu, L.; Chang, Y. A Facile and General Route to Synthesize Silica-Coated SERS Tags with the Enhanced Signal Intensity. Sci. Rep. 2015, 5, 14934. doi:10.1038/srep14934
  • Doering, W. E.; Nie, S. Spectroscopic Tags Using Dye-Embedded Nanoparticles and Surface-Enhanced Raman Scattering. Anal. Chem. 2003, 75, 6171–6176. doi:10.1021/ac034672u
  • Whyte, G. F.; Vilar, R.; Woscholski, R. Molecular Recognition with Boronic Acids-Applications in Chemical Biology. J. Chem. Biol. 2013, 6, 161–174. doi:10.1007/s12154-013-0099-0
  • Saito, S.; Massie, T. L.; Maeda, T.; Nakazumi, H.; Colyer, C. L. On-Column Labeling of Gram-Positive Bacteria with a Boronic Acid Functionalized Squarylium Cyanine Dye for Analysis by Polymer-Enhanced Capillary Transient Isotachophoresis. Anal. Chem. 2012, 84, 2452–2458. doi:10.1021/ac2031145
  • Wang, J.; Gao, J.; Liu, D.; Han, D.; Wang, Z. Phenylboronic Acid Functionalized Gold Nanoparticles for Highly Sensitive Detection of Staphylococcus aureus. Nanoscale 2012, 4, 451–454. doi:10.1039/c2nr11657j

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.