1,383
Views
4
CrossRef citations to date
0
Altmetric
Review

Hybrid LIBS-Raman-LIF systems for multi-modal spectroscopic applications: a topical review

, , , & ORCID Icon

References

  • Blacksberg, J.; Maruyama, Y.; Choukroun, M.; Charbon, E.; Rossman, G. New Microscopic Laser-Coupled Spectroscopy Instrument Combining Raman, LIBS, and Fluorescence for Planetary Surface Mineralogy. In Lunar and Planetary Science Conference, 2012.
  • Syvilay, D. Evaluation of LIBS LIF Raman Spectroscopies to Analyze Materials from Cultural Heritage. Doctoral dissertation, Cergy-Pontoise, 2016.
  • Kearton, B.; Mattley, Y. Sparking New Applications. Nature Photon. 2008, 2, 537–540. doi:10.1038/nphoton.2008.173
  • Cremers, D. A.; Radziemski, L. J., Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons. Ltd:, United Kingdom, 2006.
  • Radziemski, L. J. From LASER to LIBS, the Path of Technology Development. Spectrochim. Acta, Part B 2002, 57, 1109–1113. doi:10.1016/S0584-8547(02)00052-6
  • Unnikrishnan, V.; Alti, K.; Nayak, R.; Bernard, R.; Khetarpal, N.; Kartha, V.; Santhosh, C.; Gupta, G.; Suri, B. Optimized LIBS Setup with Echelle spectrograph-ICCD System for Multi-Elemental Analysis. J. Inst. 2010, 5, P04005–P04005. doi:10.1088/1748-0221/5/04/P04005
  • Tamboli, M.; Unnikrishnan, V.; Nayak, R.; Devangad, P.; Shameem, K. M.; Kartha, V.; Santhosh, C. Development of a Stand-off Laser Induced Breakdown Spectroscopy (ST-LIBS) System for the Analysis of Complex Matrices. J. Inst. 2016, 11, P08021–P08021. doi:10.1088/1748-0221/11/08/P08021
  • K. M, M. S.; Tamboli, M. M.; Devangad, P.; V. K, U.; George, S. D.; Kartha, V. B.; C, S. Conventional and Standoff Pulsed Laser–Raman–Echelle–Time-Gated (PRET) System. J. Raman Spectrosc. 2017, 48, 785–788. doi:10.1002/jrs.5125
  • Fornarini, L.; Colao, F.; Fantoni, R.; Lazic, V.; Spizzicchino, V. Calibration Analysis of Bronze Samples by Nanosecond Laser Induced Breakdown Spectroscopy: A Theoretical and Experimental Approach. Spectrochim. Acta, Part B 2005, 60, 1186–1201. doi:10.1016/j.sab.2005.06.008
  • Kasem, M. A.; Russo, R. E.; Harith, M. A. Influence of Biological Degradation and Environmental Effects on the Interpretation of Archeological Bone Samples with Laser-Induced Breakdown Spectroscopy. J. Anal. At. Spectrom. 2011, 26, 1733–1739. doi:10.1039/c1ja10057b
  • Melessanaki, K.; Mateo, M.; Ferrence, S. C.; Betancourt, P. P.; Anglos, D. The Application of LIBS for the Analysis of Archaeological Ceramic and Metal Artifacts. Appl. Surf. Sci. 2002, 197–198, 156–163. doi:10.1016/S0169-4332(02)00459-2
  • Torrisi, L.; Caridi, F.; Giuffrida, L.; Torrisi, A.; Mondio, G.; Serafino, T.; Caltabiano, M.; Castrizio, E.; Paniz, E.; Salici, A. LAMQS Analysis Applied to Ancient Egyptian Bronze Coins. Nucl. Instrum. Methods Phys. Res, Sect. B 2010, 268, 1657–1664. doi:10.1016/j.nimb.2010.03.015
  • Lazic, V.; Colao, F.; Fantoni, R.; Spizzicchino, V. Recognition of Archeological Materials Underwater by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2005, 60, 1014–1024. doi:10.1016/j.sab.2005.06.014
  • Caneve, L.; Diamanti, A.; Grimaldi, F.; Palleschi, G.; Spizzichino, V.; Valentini, F. Analysis of Fresco by Laser Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2010, 65, 702–706. doi:10.1016/j.sab.2010.05.003
  • Pagnin, L.; Brunnbauer, L.; Wiesinger, R.; Limbeck, A.; Schreiner, M. Multivariate Analysis and Laser-Induced Breakdown Spectroscopy (LIBS): A New Approach for the Spatially Resolved Classification of Modern Art Materials. Anal. Bioanal. Chem. 2020, 412, 3187–3112. doi:10.1007/s00216-020-02574-z
  • Multari, R. A.; Cremers, D. A.; Bostian, M. L. Use of Laser-Induced Breakdown Spectroscopy for the Differentiation of Pathogens and Viruses on Substrates. Appl. Opt. 2012, 51, B57–B64. doi:10.1364/AO.51.000B57
  • Liu, X.-Y.; Zhang, W.-J. Recent Developments in Biomedicine Fields for Laser Induced Breakdown Spectroscopy. J. Biomed. Sci. Eng. 2008, 1, 147–151. doi:10.4236/jbise.2008.13024
  • Tameze, C.; Vincelette, R.; Melikechi, N.; Zeljkovic, V.; Izquierdo, E. Empirical Analysis of LIBS Images for Ovarian Cancer Detection. In Image Analysis for Multimedia Interactive Services. WIAMIS'07. Eighth International Workshop on, IEEE, 2007; pp 76–76.
  • Trevizan, L. C.; Santos, D.; Samad, R. E.; Vieira, N. D.; Nunes, L. C.; Rufini, I. A.; Krug, F. J. Evaluation of Laser Induced Breakdown Spectroscopy for the Determination of Micronutrients in Plant Materials. Spectrochim. Acta, Part B 2009, 64, 369–377. doi:10.1016/j.sab.2009.04.003
  • Xin, Y. Experimental Study on High Alloy Steel Sample by Laser-Induced Breakdown Spectroscopy. Spectrosc. Spectral Anal. 2010, 30, 783–787.
  • Rai, A. K.; Yueh, F.-Y.; Singh, J. P. Laser-Induced Breakdown Spectroscopy of Molten Aluminum Alloy. Appl. Opt. 2003, 42, 2078–2084. doi:10.1364/ao.42.002078
  • Aragon, C.; Aguilera, J.; Campos, J. Determination of Carbon Content in Molten Steel Using Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. 1993, 47, 606–608. doi:10.1366/0003702934067324
  • Rai, N. K.; Rai, A. LIBS-an efficient approach for the determination of Cr in industrial wastewater. J. Hazard. Mater. 2008, 150, 835–838. doi:10.1016/j.jhazmat.2007.10.044
  • González, R.; Lucena, P.; Tobaria, L.; Laserna, J. Standoff LIBS Detection of Explosive Residues behind a Barrier. J. Anal. At. Spectrom. 2009, 24, 1123–1126. doi:10.1039/b821566a
  • Lazic, V.; Palucci, A.; Jovicevic, S.; Carapanese, M.; Poggi, C.; Buono, E. 2010 Detection of Explosives at Trace Levels by Laser-Induced Breakdown Spectroscopy (LIBS). In Proceedings of the International Society of Optics and Photonics; Vol. 7665, p 76650V. doi:10.1117/12.850717
  • Pellegrino, P. M.; Holthoff, E. L.; Farrell, M. E. Laser-Based Optical Detection of Explosives. CRC Press: Boca Raton, 2015.
  • Laserna, J.; Vadillo, J. M.; Purohit, P. Laser-Induced Breakdown Spectroscopy (LIBS): Fast, Effective, and Agile Leading Edge Analytical Technology. Appl. Spectrosc. 2018, 72, 35–50.
  • Li, W.; Li, X.; Li, X.; Hao, Z.; Lu, Y.; Zeng, X. A Review of Remote Laser-Induced Breakdown Spectroscopy. Appl. Spectrosc. Rev. 2020, 55, 1–25. doi:10.1080/05704928.2018.1472102
  • Noll, R.; Fricke-Begemann, C.; Connemann, S.; Meinhardt, C.; Sturm, V. LIBS Analyses for Industrial Applications–an Overview of Developments from 2014 to 2018. J. Anal. At. Spectrom. 2018, 33, 945–956. doi:10.1039/C8JA00076J
  • Shameem, K. M.; Choudhari, K. S.; Bankapur, A.; Kulkarni, S. D.; Unnikrishnan, V.; George, S. D.; Kartha, V.; Santhosh, C. A Hybrid LIBS-Raman System Combined with Chemometrics: An Efficient Tool for Plastic Identification and Sorting. Anal. Bioanal. Chem. 2017, 409, 3299–3308. doi:10.1007/s00216-017-0268-z
  • Raman, C. V.; Krishnan, K. S. A New Type of Secondary Radiation. Nature 1928, 121, 501–502. doi:10.1038/121501c0
  • Kartha, V. B.; Santhosh, C. Biomedical Spectroscopy. Manipal University Press: Manipal, 2014.
  • Herzberg, G.; Crawford, B. L. Jr, Infrared and Raman Spectra of Polyatomic Molecules. J. Phys. Chem. 1946, 50, 288–288. doi:10.1021/j150447a021
  • Derek A. Long. The Raman effect: A unified treatment of the theory of Raman scattering by molecules, John Wiley & Sons Ltd: United Kingdom, 2002.
  • Grishkanich, A.; Buznikov, A.; Elizarov, V.; Kascheev, S.; Zhevlakov, A. Monitoring of Methane Emissions in the Arctic by Laser Sensing to Assess Climate Change. In 2014 International Conference Laser Optics, IEEE, 2014; pp 1–2. doi:10.1109/LO.2014.6886389
  • Arakawa, M.; Yamamoto, J.; Kagi, H. Developing micro-Raman Mass Spectrometry for Measuring Carbon Isotopic Composition of Carbon Dioxide. Appl. Spectrosc. 2007, 61, 701–705. doi:10.1366/000370207781393244
  • Zhu, X.; Xu, T.; Lin, Q.; Duan, Y. Technical Development of Raman Spectroscopy: From Instrumental to Advanced Combined Technologies. Appl. Spectrosc. Rev. 2014, 49, 64–82. doi:10.1080/05704928.2013.798801
  • Sharma, S.; Porter, J.; Misra, A.; Acosta‐Maeda, T.; Angel, S.; McKay, C. Standoff Raman Spectroscopy for Future Europa Lander Missions. J. Raman Spectrosc. 2020, 1-12. doi:10.1002/jrs.5814
  • Cull, E.; Gehm, M.; Guenther, B.; Brady, D. Standoff Raman Spectroscopy System for Remote Chemical Detection. In Chemical and Biological Sensors for Industrial and Environmental Security, Proc. SPIE 5994, 2005; p 59940H. doi:10.1117/12.626170
  • Sabtu, S. N.; Abdul Sani, S.; Bradley, D.; Looi, L.; Osman, Z. A Review of the Applications of Raman Spectroscopy for Breast Cancer Tissue Diagnostic and Their Histopathological Classification of Epithelial to Mesenchymal Transition. J. Raman Spectrosc. 2020, 51, 380–389. doi:10.1002/jrs.5774
  • Song, S. W.; Cho, Y.; Bae, C. H. B.; Park, C. R.; Kim, H. M. In Situ Real-Time Identification of Packaged Chemicals Using a Dual-Offset Optical Probe. Anal. Methods 2020, 12, 3032–3037. doi:10.1039/D0AY00612B
  • Buyse, F.; Dewaele, S.; Decrée, S.; Mees, F. Mineralogical and Geochemical Study of the Rare Earth Element Mineralization at Gakara (Burundi). Ore Geol. Rev. 2020, 124, 103659. doi:10.1016/j.oregeorev.2020.103659
  • Huang, K.; Zhu, M.; Zhang, L.; Bai, Y.; Cai, Y. Geological and Mineralogical Constraints on the Genesis of the Bilihe Gold Deposit in Inner Mongolia, China. Ore Geol. Rev. 2020, 124, 103607. doi:10.1016/j.oregeorev.2020.103607
  • Mulvihill, M.; Tao, A.; Benjauthrit, K.; Arnold, J.; Yang, P. Surface-enhanced Raman spectroscopy for trace arsenic detection in contaminated water . Angew. Chem. Int. Ed. Engl. 2008, 47, 6456–6460. doi:10.1002/anie.200800776
  • Vogler, N.; Heuke, S.; Bocklitz, T. W.; Schmitt, M.; Popp, J. Multimodal Imaging Spectroscopy of Tissue. Annu. Rev. Anal. Chem. (Palo Alto Calif) 2015, 8, 359–387. doi:10.1146/annurev-anchem-071114-040352
  • Staples, G.; Wu, H. O.; Qian, J. Raman Spectroscopy: Multi-Wavelength Excitation in Raman Spectroscopy. BioOptics World. 2015
  • Wu, H.; Qian, J.; Bergles, E.; Chandler, L. A Portable Multiexcitation Dispersive Raman Spectrometer for Environmental Analysis. Am. Lab. 2013, 45, 26–30.
  • Choi, S. K.; Jeong, Y. S.; Koh, Y. J.; Lee, J. H.; Nam, H. W.; Lee, J. Analysis of Raman Spectral Characteristics of Chemical Warfare Agents by Using 248‐nm UV Raman Spectroscopy. Bull. Korean Chem. Soc. 2019, 40, 279–284. doi:10.1002/bkcs.11679
  • Ralbovsky NM, Egorov V, Moskovets E, Dey P, Dey BK, Lednev IK., Deep-Ultraviolet Raman Spectroscopy for Cancer Diagnostics: A Feasibility Study with Cell Lines and Tissues. Cancer Stud Mol Med Open J. 2019, 5(1), 1–10.
  • Kneipp, K.; Kneipp, H.; Kartha, V. B.; Manoharan, R.; Deinum, G.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Detection and Identification of a Single DNA Base Molecule Using Surface-Enhanced Raman Scattering (SERS). Phys. Rev. E 1998, 57, R6281–R6284. doi:10.1103/PhysRevE.57.R6281
  • Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. doi:10.3390/bios9020057
  • Asiala, S. M.; Shand, N. C.; Faulds, K.; Graham, D. Surface-Enhanced, Spatially Offset Raman Spectroscopy (SESORS) in Tissue Analogues. ACS Appl. Mater. Interfaces 2017, 9, 25488–25494. doi:10.1021/acsami.7b09197
  • Ji, M.; Lewis, S.; Camelo-Piragua, S.; Ramkissoon, S. H.; Snuderl, M.; Venneti, S.; Fisher-Hubbard, A.; Garrard, M.; Fu, D.; Wang, A. C.; et al. Detection of Human Brain Tumor Infiltration with Quantitative Stimulated Raman Scattering Microscopy. Sci. Transl. Med. 2015, 7, 309ra163doi:10.1126/scitranslmed.aab0195
  • Ghita, A.; Matousek, P.; Stone, N. High Sensitivity Non‐Invasive Detection of Calcifications Deep inside Biological Tissue Using Transmission Raman Spectroscopy. J. Biophotonics 2018, 11, e201600260. doi:10.1002/jbio.201600260
  • Pence, I.; Mahadevan-Jansen, A. Clinical Instrumentation and Applications of Raman spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. doi:10.1039/c5cs00581g
  • Hashimoto, K.; Badarla, V. R.; Kawai, A.; Ideguchi, T. Complementary Vibrational Spectroscopy. Nat. Commun. 2019, 10, 1–6. doi:10.1038/s41467-019-12442-9
  • Leonard, H.; Colodner, R.; Halachmi, S.; Segal, E. Recent Advances in the Race to Design a Rapid Diagnostic Test for Antimicrobial Resistance. ACS Sens. 2018, 3, 2202–2217. doi:10.1021/acssensors.8b00900
  • Blacksberg, J.; Alerstam, E.; Maruyama, Y.; Cochrane, C. J.; Rossman, G. R. Miniaturized Time-Resolved Raman Spectrometer for Planetary Science Based on a Fast Single Photon Avalanche Diode Detector Array. Appl. Opt. 2016, 55, 739–748. doi:10.1364/AO.55.000739
  • Matousek, P.; Stone, N. Development of Deep Subsurface Raman Spectroscopy for Medical Diagnosis and Disease Monitoring. Chem. Soc. Rev. 2016, 45, 1794–1802. doi:10.1039/c5cs00466g
  • Lambert, P. J.; Whitman, A. G.; Dyson, O. F.; Akula, S. M. Raman Spectroscopy: The Gateway into Tomorrow's Virology. Virol. J. 2006, 3, 51. doi:10.1186/1743-422X-3-51
  • Cordero, E.; Latka, I.; Matthäus, C.; Schie, I. W.; Popp, J. In-vivo Raman spectroscopy: From basics to applications . J. Biomed. Opt. 2018, 23, 1–23. doi:10.1117/1.JBO.23.7.071210
  • Kong, K.; Kendall, C.; Stone, N.; Notingher, I. Raman Spectroscopy for Medical diagnostics-From in-vitro biofluid assays to in-vivo cancer detection . Adv. Drug Deliv. Rev. 2015, 89, 121–134. doi:10.1016/j.addr.2015.03.009
  • Jermyn, M.; Desroches, J.; Aubertin, K.; St-Arnaud, K.; Madore, W.-J.; De Montigny, E.; Guiot, M.-C.; Trudel, D.; Wilson, B. C.; Petrecca, K.; Leblond, F. A Review of Raman Spectroscopy Advances with an Emphasis on Clinical Translation Challenges in Oncology. Phys. Med. Biol. 2016, 61, R370–R400. doi:10.1088/0031-9155/61/23/R370
  • Li, R.; Dhankhar, D.; Chen, J.; Krishnamoorthi, A.; Cesario, T. C.; Rentzepis, P. M. Identification of Live and Dead Bacteria: A Raman Spectroscopic Study. IEEE Access 2019, 7, 23549–23559. doi:10.1109/ACCESS.2019.2899006
  • Scheres, J.; Kuszewski, K. The Ten Threats to Global Health in 2018 and 2019. A Welcome and Informative Communication of WHO to Everybody. Zdrowie Publiczne i Zarządzanie. 2019, 17, 2–8. doi:10.4467/20842627OZ.19.001.11297
  • Marfunin, A. S. Spectroscopy, Luminescence and Radiation Centers in Minerals. Springer Science & Business Media: Berlin, Heidelberg, New York, 2012.
  • Lakowicz, J. R. Principles of Fluorescence Spectroscopy; Springer Science & Business Media: New York, USA, 2013.
  • Waychunas, G. A. Luminescence, X-Ray Emission and New Spectroscopies. Rev. Mineral. Geochem. 1988, 18, 639–698.
  • Gaft, M.; Panczer, G.; Reisfeld, R.; Uspensky, E. Laser-Induced Time-Resolved Luminescence as a Tool for Rare-Earth Element Identification in Minerals. Phys. Chem. Miner. 2001, 28, 347–363. doi:10.1007/s002690100163
  • Comelli, D.; D'Andrea, C.; Valentini, G.; Cubeddu, R.; Colombo, C.; Toniolo, L. Fluorescence Lifetime Imaging and Spectroscopy as Tools for Nondestructive Analysis of Works of Art. Appl. Opt. 2004, 43, 2175–2183. doi:10.1364/ao.43.002175
  • Borgia, I.; Fantoni, R.; Flamini, C.; Di Palma, T. M.; Guidoni, A. G.; Mele, A. Luminescence from Pigments and Resins for Oil Paintings Induced by Laser Excitation. Appl. Surf. Sci. 1998, 127-129, 95–100. doi:10.1016/S0169-4332(97)00616-8
  • Miyoshi, T. Fluorescence from Varnishes for Oil Paintings under N2 Laser Excitation. Jpn. J. Appl. Phys. 1987, 26, 780–781. doi:10.1143/JJAP.26.780
  • Miyoshi, T.; Ikeya, M.; Kinoshita, S.; Kushida, T. Laser-Induced Fluorescence of Oil Colours and Its Application to the Identification of Pigments in Oil Paintings. Jpn. J. Appl. Phys. 1982, 21, 1032–1036. doi:10.1143/JJAP.21.1032
  • Zângaro, R. A.; Silveira, L.; Manoharan, R.; Zonios, G.; Itzkan, I.; Dasari, R. R.; Van Dam, J.; Feld, M. S. Rapid Multiexcitation Fluorescence Spectroscopy System for in Vivo Tissue Diagnosis. Appl. Opt. 1996, 35, 5211–5219. doi:10.1364/AO.35.005211
  • Callis, P. R. Two-photon-induced fluorescence. Annu. Rev. Phys. Chem. 1997, 48, 271–297. doi:10.1146/annurev.physchem.48.1.271
  • Jungmann, R.; Avendaño, M. S.; Woehrstein, J. B.; Dai, M.; Shih, W. M.; Yin, P. Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT. Nat. Methods 2014, 11, 313–318. doi:10.1038/nmeth.2835
  • Zhu, C.; Burnside, E. S.; Sisney, G. A.; Salkowski, L. R.; Harter, J. M.; Yu, B.; Ramanujam, N. Fluorescence Spectroscopy: An Adjunct Diagnostic Tool to Image-Guided Core Needle Biopsy of the Breast. IEEE Trans Biomed. Eng. 2009, 56, 2518–2528. doi:10.1109/TBME.2009.2015936
  • Crocombe, R. A. Portable Spectroscopy. Appl. Spectrosc. 2018, 72, 1701–1751. doi:10.1177/0003702818809719
  • Croce, A. C.; Bottiroli, G. Autofluorescence Spectroscopy and Imaging: A Tool for Biomedical Research and Diagnosis. Eur. J. Histochem. 2014, 58, 2461–2464. doi:10.4081/ejh.2014.2461
  • Boppart, S. A.; Brown, J. Q.; Farah, C. S.; Kho, E.; Marcu, L.; Saunders, C. M.; Sterenborg, H. J. Label-Free Optical Imaging Technologies for Rapid Translation and Use during Intraoperative Surgical and Tumor Margin Assessment. J. Biomed. Opt. 2017, 23, 1–10. doi:10.1117/1.JBO.23.2.021104
  • Bogomolov, A.; Belikova, V.; Zabarylo, U. J.; Bibikova, O.; Usenov, I.; Sakharova, T.; Krause, H.; Minet, O.; Feliksberger, E.; Artyushenko, V. Synergy Effect of Combining Fluorescence and Mid Infrared Fiber Spectroscopy for Kidney Tumor Diagnostics. Sensors 2017, 17, 2548. doi:10.3390/s17112548
  • Unnikrishnan, V.; Nayak, R.; Bernard, R.; Priya, K. J.; Patil, A.; Ebenezer, J.; Pai, K. M.; George, S. D.; Kartha, V.; Santhosh, C. J. J. Parameter optimization of a laser-induced fluorescence system for in vivo screening of oral cancer. J. Laser Appl. 2011, 23, 032004. doi:10.2351/1.3591342
  • Carstea, E. M.; Popa, C. L.; Baker, A.; Bridgeman, J. In Situ Fluorescence Measurements of Dissolved Organic Matter: A Review. Sci. Total Environ. 2020, 699, 134361. doi:10.1016/j.scitotenv.2019.134361
  • Kumar, S.; Parmar, A.; Sharma, R. C. Remote Sensing of Biochemicals in Aerosol Form Using Fluorescence Sensor for Defence and Security. IEEE Sensors J. 2019, 19, 11129–11133. doi:10.1109/JSEN.2019.2933847
  • Fellner, L.; Kraus, M.; Gebert, F.; Walter, A.; Duschek, F. Multispectral LIF-Based Standoff Detection System for the Classification of CBE Hazards by Spectral and Temporal Features. Sensors 2020, 20, 2524. doi:10.3390/s20092524
  • Spizzichino, V.; Bertani, L.; Caneve, L.; Caso, M. Rapid Analysis of Marble Treatments by Laser Induced Fluorescence. Opt. Quant. Electron. 2020, 52, 117. doi:10.1007/s11082-020-2235-8
  • Analytical Methods Committee AMCTB No. 91. Laser-Induced Breakdown Spectroscopy (LIBS) in Cultural Heritage. Anal. Methods 2019, 11, 5833–5836.
  • Mari, M.; Filippidis, G. Non-Linear Microscopy: A Well-Established Technique for Biological Applications towards Serving as a Diagnostic Tool for in Situ Cultural Heritage Studies. Sustainability 2020, 12, 1409. doi:10.3390/su12041409
  • Killiny, N.; Etxeberria, E.; Flores, A. P.; Blanco, P. G.; Reyes, T. F.; Cabrera, L. P. Laser-Induced Breakdown Spectroscopy (LIBS) as a Novel Technique for Detecting Bacterial Infection in Insects. Sci. Rep. 2019, 9, 1–7. doi:10.1038/s41598-019-39164-8
  • Castro, J. P.; Pereira-Filho, E. R.; Bro, R. Laser-Induced Breakdown Spectroscopy (LIBS) Spectra Interpretation and Characterization Using Parallel Factor Analysis (PARAFAC): A New Procedure for Data and Spectral Interference Processing Fostering the Waste Electrical and Electronic Equipment (WEEE) Recycling Process. J. Anal. At. Spectrom. 2020, 35, 1115–1124. doi:10.1039/D0JA00026D
  • Moros, J.; Laserna, J. Laser-Induced Breakdown Spectroscopy (LIBS) of Organic Compounds: A Review. Appl. Spectrosc. 2019, 73, 963–1011. doi:10.1177/0003702819853252
  • Gondhalekar, C. Laser-Induced Breakdown Spectroscopy Applications for Metal-Labeled Biomolecule Detection in Paper Assays. PhD Thesis, Purdue University Graduate School, Purdue, 2020.
  • Fu, X.; Li, G.; Dong, D. Improving the Detection Sensitivity for Laser-Induced Breakdown Spectroscopy: A Review. Front. Phys. 2020, 8, 68. doi:10.3389/fphy
  • Muhammed Shameem, K.; Chawla, A.; Mallya, M.; Barik, B. K.; Unnikrishnan, V.; Kartha, V.; Santhosh, C. Laser-induced breakdown spectroscopy-Raman: An effective complementary approach to analyze renal-calculi . J. Biophotonics. 2018, 11, e201700271. doi:10.1002/jbio.201700271
  • Lukose, J.; N, M.; Mohan, G.; Shastry, S.; Chidangil, S. Optical Tweezers Combined with Micro‐Raman Investigation of Alcohol‐Induced Changes on Single, Live Red Blood Cells in Blood Plasma. J. Raman Spectrosc. 2019, 50, 1367–1374. doi:10.1002/jrs.5638
  • Movasaghi, Z.; Rehman, S.; Rehman, I. U. Raman Spectroscopy of Biological Tissues. Appl. Spectrosc. Rev. 2007, 42, 493–541. doi:10.1080/05704920701551530
  • Lukose, J.; Mohan, G.; Mithun, N.; Shastry, S.; Santhosh, C. Optical Trap Combined with Raman Spectroscopy to Probe Red Blood Cell Behaviour in Certain Intravenous Fluids. J. Biomed. Photon. Eng. 2019, 5, 040302.
  • Artesani, A.; Ghirardello, M.; Mosca, S.; Nevin, A.; Valentini, G.; Comelli, D. Combined Photoluminescence and Raman Microscopy for the Identification of Modern Pigments: Explanatory Examples on Cross-Sections from Russian Avant-Garde Paintings. Herit. Sci. 2019, 7, 17. doi:10.1186/s40494-019-0258-x
  • Ho, C.-S.; Jean, N.; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.; Holodniy, M.; Banaei, N.; Saleh, A. A.; Ermon, S.; Dionne, J. Rapid Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning. Nat. Commun. 2019, 10, 1–8. doi:10.1038/s41467-019-12898-9
  • Barroso, E.; Smits, R.; Bakker Schut, T.; Ten Hove, I.; Hardillo, J.; Wolvius, E.; Baatenburg de Jong, R. J.; Koljenovic, S.; Puppels, G. Discrimination between Oral Cancer and Healthy Tissue Based on Water Content Determined by Raman Spectroscopy. Anal. Chem. 2015, 87, 2419–2426. doi:10.1021/ac504362y
  • Malini, R.; Venkatakrishna, K.; Kurien, J. M.; Pai, K.; Rao, L.; Kartha, V.; Krishna, C. M. Discrimination of Normal, Inflammatory, Premalignant, and Malignant Oral Tissue: A Raman Spectroscopy Study. Biopolymers: Original Res. Biomol. 2006, 81, 179–193. doi:10.1002/bip.20398
  • Guze, K.; Pawluk, H. C.; Short, M.; Zeng, H.; Lorch, J.; Norris, C.; Sonis, S. Pilot Study: Raman Spectroscopy in Differentiating Premalignant and Malignant Oral Lesions from Normal Mucosa and Benign Lesions in Humans. Head Neck. 2015, 37, 511–517. doi:10.1002/hed.23629
  • Lu, W.; Chen, X.; Wang, L.; Li, H.; Fu, Y. V. Combination of an Artificial Intelligence Approach and Laser Tweezers Raman Spectroscopy for Microbial Identification. Anal. Chem. 2020, 92, 6288–6296. doi:10.1021/acs.analchem.9b04946
  • Lukose, J.; Mithun, N.; Mohan, G.; Shastry, S.; Chidangil, S. Normal Saline-Induced Deoxygenation of Red Blood Cells Probed by Optical Tweezers Combined with the micro-Raman Technique. RSC Adv. 2019, 9, 7878–7884. doi:10.1039/C8RA10061F
  • Barkur, S.; Lukose, J.; Chidangil, S. Probing Nanoparticle-Cell Interaction Using Micro-Raman Spectroscopy: Silver and Gold Nanoparticle-Induced Stress Effects on Optically Trapped Live Red Blood Cells . ACS Omega. 2020, 5, 1439–1447. doi:10.1021/acsomega.9b02988
  • Lukose, J.; Shastry, S.; Mithun, N.; Mohan, G.; Ahmed, A.; Chidangil, S. Red Blood Cells under Varying Extracellular Tonicity Conditions: An Optical Tweezers Combined with Micro-Raman Study. Biomed. Phys. Eng. Express 2020, 6, 015036. doi:10.1088/2057-1976/ab6e1a
  • Bishop, J. L.; Bell, J. F.; III, Moersch, J. E. Remote Compositional Analysis: Techniques for Understanding Spectroscopy, Mineralogy, and Geochemistry of Planetary Surfaces. Cambridge University Press, 24, England, 2019.
  • Kraus, M.; Fellner, L.; Gebert, F.; Pargmann, C.; Walter, A. Classification of Substances Combining Standoff Laser Induced Fluorescence and Machine Learning. J. Light Laser Curr. Trends 2018, 1, 003.
  • Chen, H.; Geng, D.; Chen, T.; Lu, D.; Chen, B. Second-Derivative Laser-Induced Fluorescence Spectroscopy Combined with Chemometrics for Authentication of the Adulteration of Camellia Oil. CyTA-J. Food 2018, 16, 747–754. doi:10.1080/19476337.2018.1466834
  • Gabbarini, V.; Rossi, R.; Ciparisse, J.-F.; Malizia, A.; Divizia, A.; De Filippis, P.; Anselmi, M.; Carestia, M.; Palombi, L.; Divizia, M.; Gaudio, P. Laser-Induced Fluorescence (LIF) as a Smart Method for Fast Environmental Virological Analyses: Validation on Picornaviruses. Sci. Rep. 2019, 9, 1–7. doi:10.1038/s41598-019-49005-3
  • Jahdi, S. A.; Parvin, P.; Seyedi, S.; Jelvani, S. ArF Laser Induced Fluorescence Spectroscopy of the Capecitabine Chemodrug. OSA Continuum 2020, 3, 1477–1489. doi:10.1364/OSAC.384267
  • Toffolo, M. B.; Ricci, G.; Chapoulie, R.; Caneve, L.; Kaplan-Ashiri, I. Cathodoluminescence and Laser-Induced Fluorescence of Calcium Carbonate: A Review of Screening Methods for Radiocarbon Dating of Ancient Lime Mortars. Radiocarbon 2020 00, 1–20.
  • Blacksberg, J.; Maruyama, Y.; Choukroun, M.; Charbon, E.; Rossman, G. Combined Raman and LIBS for Planetary Surface Exploration: Enhanced Science Return Enabled by Time-Resolved Laser Spectroscopy. In International Workshop on Instrumentation for Planetary Missions, Meeting and Publication Services Lunar and Planetary Institute USRA, Houston, p 1044, 2012.
  • Osticioli, I.; Mendes, N.; Nevin, A.; Zoppi, A.; Lofrumento, C.; Becucci, M.; Castellucci, E. A New Compact Instrument for Raman, Laser-Induced Breakdown, and Laser-Induced Fluorescence Spectroscopy of Works of Art and Their Constituent Materials. Rev. Sci. Instrum. 2009, 80, 076109doi:10.1063/1.3184102
  • Noll, R. Combination of LIBS and LIF. In Laser-Induced Breakdown Spectroscopy, Springer: Berlin Heidelberg, pp 221–228, 2012.
  • Measures, R. M.; Kwong, H. S. TABLASER: Trace (element) analyzer based on laser ablation and selectively excited radiation. Appl. Opt. 1979, 18, 281–286. doi:10.1364/AO.18.000281
  • Hilbk-Kortenbruck, F.; Noll, R.; Wintjens, P.; Falk, H.; Becker, C. Analysis of Heavy Metals in Soils Using Laser-Induced Breakdown Spectrometry Combined with Laser-Induced Fluorescence. Spectrochim. Acta, Part B 2001, 56, 933–945. doi:10.1016/S0584-8547(01)00213-0
  • Telle, H.; Beddows, D.; Morris, G.; Samek, O. Sensitive and Selective Spectrochemical Analysis of Metallic Samples: The Combination of Laser-Induced Breakdown Spectroscopy and Laser-Induced Fluorescence Spectroscopy. Spectrochim. Acta, Part B 2001, 56, 947–960. doi:10.1016/S0584-8547(01)00190-2
  • Shen, X.; Lu, Y. Detection of Uranium in Solids by Using Laser-Induced Breakdown Spectroscopy Combined with Laser-Induced Fluorescence. Appl. Opt. 2008, 47, 1810–1815. doi:10.1364/ao.47.001810
  • Li, J.; Zhu, Z.; Zhou, R.; Zhao, N.; Yi, R.; Yang, X.; Li, X.; Guo, L.; Zeng, X.; Lu, Y. Determination of Carbon Content in Steels Using Laser-Induced Breakdown Spectroscopy Assisted with Laser-Induced Radical Fluorescence. Anal. Chem. 2017, 89, 8134–8139. doi:10.1021/acs.analchem.7b01932
  • Kang, J.; Li, R.; Wang, Y.; Chen, Y.; Yang, Y. Ultrasensitive Detection of Trace Amounts of Lead in Water by LIBS-LIF Using a Wood-Slice Substrate as a Water Absorber. J. Anal. At. Spectrom. 2017, 32, 2292–2299. doi:10.1039/C7JA00244K
  • Nagli, L.; Gaft, M. Combining Laser-Induced Breakdown Spectroscopy with Molecular Laser-Induced Fluorescence. Appl. Spectrosc. 2016, 70, 585–592. doi:10.1177/0003702816631292
  • Loudyi, H.; Rifaï, K.; Laville, S.; Vidal, F.; Chaker, M.; Sabsabi, M. Improving Laser-Induced Breakdown Spectroscopy (LIBS) Performance for Iron and Lead Determination in Aqueous Solutions with Laser-Induced Fluorescence (LIF). J. Anal. At. Spectrom. 2009, 24, 1421–1428. doi:10.1039/b909485g
  • Yi, R.; Li, J.; Yang, X.; Zhou, R.; Yu, H.; Hao, Z.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Spectral Interference Elimination in Soil Analysis Using Laser-Induced Breakdown Spectroscopy Assisted by Laser-Induced Fluorescence. Anal. Chem. 2017, 89, 2334–2337. doi:10.1021/acs.analchem.6b03969
  • Li, J.; Hao, Z.; Zhao, N.; Zhou, R.; Yi, R.; Tang, S.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Spatially Selective Excitation in Laser-Induced Breakdown Spectroscopy Combined with Laser-Induced Fluorescence. Opt. Express. 2017, 25, 4945–4951. doi:10.1364/OE.25.004945
  • Gao, P.; Yang, P.; Zhou, R.; Ma, S.; Zhang, W.; Hao, Z.; Tang, S.; Li, X.; Zeng, X. Determination of Antimony in Soil Using Laser-Induced Breakdown Spectroscopy Assisted with Laser-Induced Fluorescence. Appl. Opt. 2018, 57, 8942–8946. doi:10.1364/AO.57.008942
  • Li, C.; Hao, Z.; Zou, Z.; Zhou, R.; Li, J.; Guo, L.; Li, X.; Lu, Y.; Zeng, X. Determinations of Trace Boron in Superalloys and Steels Using Laser-Induced Breakdown Spectroscopy Assisted with Laser-Induced Fluorescence. Opt. Express. 2016, 24, 7850–7857. doi:10.1364/OE.24.007850
  • Neuhauser, R.; Panne, U.; Niessner, R.; Petrucci, G.; Cavalli, P.; Omenetto, N. On-Line and in Situ Detection of Lead in Ultrafine Aerosols by Laser-Excited Atomic Fluorescence Spectroscopy. Sens. Actuators, B 1997, 39, 344–348. doi:10.1016/S0925-4005(97)80231-6
  • Lin, Q.; Niu, G.; Wang, Q.; Yu, Q.; Duan, Y. Combined Laser-Induced Breakdown with Raman Spectroscopy: Historical Technology Development and Recent Applications. Appl. Spectrosc. Rev. 2013, 48, 487–508. doi:10.1080/05704928.2012.751028
  • Burgio, L.; Melessanaki, K.; Doulgeridis, M.; Clark, R.; Anglos, D. Pigment Identification in Paintings Employing Laser Induced Breakdown Spectroscopy and Raman Microscopy. Spectrochim. Acta, Part B 2001, 56, 905–913. doi:10.1016/S0584-8547(01)00215-4
  • Castillejo, M.; Martı́n, M.; Silva, D.; Stratoudaki, T.; Anglos, D.; Burgio, L.;.; Clark, R. J. H. Analysis of Pigments in Polychromes by Use of Laser Induced Breakdown Spectroscopy and Raman Microscopy. J. Mol. Struct. 2000, 550–551, 191–198. doi:10.1016/S0022-2860(00)00386-0
  • Muhammed Shameem, K.; Dhanada, V.; Unnikrishnan, V.; George, S. D.; Kartha, V.; Santhosh, C. A Hyphenated Echelle LIBS-Raman System for Multi-Purpose Applications. Rev. Sci. Instrum. 2018, 89, 073108. doi:10.1063/1.5024966
  • Bicchieri, M.; Nardone, M.; Russo, P.; Sodo, A.; Corsi, M.; Cristoforetti, G.; Palleschi, V.; Salvetti, A.; Tognoni, E. Characterization of Azurite and Lazurite Based Pigments by Laser Induced Breakdown Spectroscopy and micro-Raman Spectroscopy. Spectrochim. Acta, Part B 2001, 56, 915–922. doi:10.1016/S0584-8547(01)00228-2
  • Westlake, P.; Siozos, P.; Philippidis, A.; Apostolaki, C.; Derham, B.; Terlixi, A.; Perdikatsis, V.; Jones, R.; Anglos, D. Studying Pigments on Painted Plaster in Minoan, Roman and Early Byzantine Crete. A multi-analytical technique approach . Anal. Bioanal. Chem. 2012, 402, 1413–1432. doi:10.1007/s00216-011-5281-z
  • Burgio, L.; Clark, R. J.; Stratoudaki, T.; Doulgeridis, M.; Anglos, D. Pigment Identification in Painted Artworks: A Dual Analytical Approach Employing Laser-Induced Breakdown Spectroscopy and Raman Microscopy. Appl. Spectrosc. 2000, 54, 463–469. doi:10.1366/0003702001949861
  • Castillejo, M.; Martin, M.; Oujja, M.; Silva, D.; Torres, R.; Domingo, C.; García-Ramos, J.; Sánchez-Cortés, S. Spectroscopic Analysis of Pigments and Binding Media of Polychromes by the Combination of Optical Laser-Based and Vibrational Techniques. Appl. Spectrosc. 2001, 55, 992–998. doi:10.1366/0003702011953135
  • Han, D.; Kim, D.; Choi, S.; Yoh, J. J. A Novel Classification of Polymorphs Using Combined LIBS and Raman Spectroscopy. Curr. Opt. Photon. 2017, 1, 402–411.
  • Courreges-Lacoste, G. B.; Ahlers, B.; Perez, F. R. Combined Raman Spectrometer/Laser-Induced Breakdown Spectrometer for the Next ESA Mission to Mars. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 68, 1023–1028. doi:10.1016/j.saa.2007.03.026
  • Popp, J.; Tarcea, N.; Baciu, L.; Thomas, N.; Cockell, C.; Edwards, H.; Gomez-Elvira, J.; Hilchenbach, M.; Hochleitner, R.; Hofer, S. EXTENDED-MIRAS: The Instrumental Approach for the Search of Traces of Extinct and Extant Life on Mars, Instrument Setup. In Tools and Technologies for Future Planetary Exploration, 2004, pp 147–150.
  • Hoehse, M.; Paul, A.; Gornushkin, I.; Panne, U. Multivariate Classification of Pigments and Inks Using Combined Raman Spectroscopy and LIBS. Anal. Bioanal. Chem. 2012, 402, 1443–1450. doi:10.1007/s00216-011-5287-6
  • Moros, J.; Lorenzo, J. A.; Lucena, P.; Miguel Tobaria, L.; Laserna, J. J. Simultaneous Raman spectroscopy-laser-induced breakdown spectroscopy for instant standoff analysis of explosives using a mobile integrated sensor platform . Anal. Chem. 2010, 82, 1389–1400. doi:10.1021/ac902470v
  • Patil, A.; Unnikrishnan, V.; Ongole, R.; Pai, K.; Kartha, V.; Chidangil, S. Non-Invasive in Vivo Screening of Oral Malignancy Using Laser-Induced Fluorescence Based System. Современные технологии в медицине 2018, 10, (1. eng)).
  • Richards-Kortum, R.; Rava, R. P.; Fitzmaurice, M.; Tong, L. L.; Ratliff, N. B.; Kramer, J. R.; Feld, M. S. A One-Layer Model of Laser-Induced Fluorescence for Diagnosis of Disease in Human Tissue: Applications to Atherosclerosis. IEEE Trans Biomed Eng 1989, 36, 1222–1232. doi:10.1109/10.42117
  • Pradhan, A.; Pandey, P. K.; Singh, P. Overview of Fluorescence Spectroscopy and Imaging for Early Cancer Detection. In Neurophotonics and Biomedical Spectroscopy, Elsevier: Amsterdam, pp 253–328, 2019.
  • Drakaki, E. A.; Dessinioti, C.; Stratigos, A. J.; Salavastru, C.; Antoniou, C. Laser-Induced Fluorescence Made Simple: Implications for the Diagnosis and Follow-up Monitoring of Basal Cell Carcinoma. J. Biomed. Opt. 2014, 19, 30901. doi:10.1117/1.JBO.19.3.030901
  • Venkatakrishna, K.; Kartha, V.; Pai, K. M.; Krishna, C. M.; Ravikiran, O.; Kurian, J.; Alexander, M.; Ullas, G. HPLC-LIF for Early Detection of Oralcancer. Curr. Sci. 2003, 84, 551–557.
  • Alfano, R.; Tata, D.; Cordero, J.; Tomashefsky, P.; Longo, F.; Alfano, M. Laser Induced Fluorescence Spectroscopy from Native Cancerous and Normal Tissue. IEEE J. Quantum Electron. 1984, 20, 1507–1511. doi:10.1109/JQE.1984.1072322
  • Chiu, L-d.; Ichimura, T.; Sekiya, T.; Machiyama, H.; Watanabe, T.; Fujita, H.; Ozawa, T.; Fujita, K. Protein Expression Guided Chemical Profiling of Living Cells by the Simultaneous Observation of Raman Scattering and anti-Stokes Fluorescence emission. Sci. Rep. 2017, 7, 43569. doi:10.1038/srep43569
  • Greszik, D.; Yang, H.; Dreier, T.; Schulz, C. Measurement of Water Film Thickness by Laser-Induced Fluorescence and Raman Imaging. Appl. Phys. B 2011, 102, 123–132. doi:10.1007/s00340-010-4200-x
  • Sharma, S. K.; Ismail, S.; Angel, S.; Lucey, P. G.; McKay, C. P.; Misra, A. K.; Mouginis-Mark, P. J.; Newsom, H.; Scott, E. R.; Singh, U. N. Remote Raman and Laser-Induced Fluorescence (RLIF) Emission Instrument for Detection of Mineral, Organic, and Biogenic Materials on Mars to 100 Meters Radial Distance. In Instruments, Science, and Methods for Geospace and Planetary Remote Sensing, International Society for Optics and Photonics, 2004; pp 128–138. doi:10.1117/12.581417
  • Bozlee, B. J.; Misra, A. K.; Sharma, S. K.; Ingram, M. Remote Raman and Fluorescence Studies of Mineral samples. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2005, 61, 2342–2348. doi:10.1016/j.saa.2005.02.033
  • Sharma, S. K.; Lucey, P. G.; Ghosh, M.; Hubble, H. W.; Horton, K. A. Stand-off Raman Spectroscopic Detection of Minerals on Planetary Surfaces. Spectrochim. Acta, Part A 2003, 59, 2391–2407. doi:10.1016/S1386-1425(03)00080-5
  • Bai, X.; Oujja, M.; Sanz, M.; Lopez, M.; Dandolo, C. K.; Castillejo, M.; Detalle, V. Integrating LIBS LIF Raman into a Single Multi-Spectroscopic Mobile Device for in Situ Cultural Heritage Analysis. In Optics for Arts, Architecture, and Archaeology VII, International Society for Optics and Photonics, 2019; p 1105818. doi:10.1117/12.2527272
  • Lazic, V.; Palucci, A.; De Dominicis, L.; Nuvoli, M.; Pistilli, M.; Menicucci, I.; Colao, F.; Almaviva, S. Integrated Laser Sensor (ILS) for Remote Surface Analysis: Application for Detecting Explosives in Fingerprints. Sensors 2019, 19, 4269. doi:10.3390/s19194269
  • Martínez-Hernández, A.; Oujja, M.; Sanz, M.; Carrasco, E.; Detalle, V.; Castillejo, M. Analysis of Heritage Stones and Model Wall Paintings by Pulsed Laser Excitation of Raman, Laser-Induced Fluorescence and Laser-Induced Breakdown Spectroscopy Signals with a Hybrid System. J. Cult. Heritage 2018, 32, 1–8. doi:10.1016/j.culher.2018.02.004
  • Detalle, V.; Bai, X.; Bourguignon, E.; Menu, M.; Pallot-Frossard, I. LIBS-LIF-Raman: A New Tool for the Future E-RIHS. In Optics for Arts, Architecture, and Archaeology VI, International Society for Optics and Photonics, 2017; p 103310N. doi:10.1117/12.2272027
  • Gasda, P.; Acosta-Maeda, T.; Lucey, P.; Misra, A.; Sharma, S.; Taylor, G. A Compact Laser Induced Breakdown, Raman, and Fluorescence Spectroscopy Instrument for Mars Exploration. In Lunar and Planetary Science Conference, Texas, 2014; p 1546.
  • Gasda, P. J.; Acosta-Maeda, T. E.; Lucey, P. G.; Misra, A. K.; Sharma, S. K.; Taylor, G. J. Next Generation Laser-Based Standoff Spectroscopy Techniques for Mars Exploration. Appl. Spectrosc. 2015, 69, 173–192. doi:10.1366/14-07483
  • Abedin, M. N.; Bradley, A. T.; Sharma, S. K.; Misra, A. K.; Lucey, P. G.; McKay, C. P.; Ismail, S.; Sandford, S. P. 2015 Mineralogy and Astrobiology Detection Using Laser Remote Sensing Instrument. Appl. Opt. 54 (25), 7598–7611.
  • Cote, K.; Lalla, E.; Daly, M.; Tait, K. Characterization of a Combined Raman, LIF, and LIBS System with Time Resolved Fluorescence Capabilities for Planetary Exploration Applications, Women in Planetary Science and Exploration (WPSE), 2018.
  • Rehse, S.; Salimnia, H.; Miziolek, A. Laser-Induced Breakdown Spectroscopy (LIBS): An Overview of Recent Progress and Future Potential for Biomedical Applications. J. Med. Eng. Technol. 2012, 36, 77–89. doi:10.3109/03091902.2011.645946
  • Witt, B.; Schaumlöffel, D.; Schwerdtle, T. Subcellular Localization of Copper—Cellular Bioimaging with Focus on Neurological Disorders. Int. J. Mol. Sci. 2020, 21, 2341. doi:10.3390/ijms21072341
  • Bird, A. J. Metals Disease; Oxford University Press: England, 2016.
  • Mamtani, R.; Stern, P.; Dawood, I.; Cheema, S. Metals and Disease: A Global Primary Health Care Perspective. J. Toxicol. 2011, 2011, 319136. doi:10.1155/2011/319136
  • Ide-Ektessabi, A.; Rabionet, M. The Role of Trace Metallic Elements in Neurodegenerative Disorders: Quantitative Analysis Using XRF and XANES Spectroscopy. Anal. Sci. 2005, 21, 885–892. doi:10.2116/analsci.21.885
  • Prashanth, L.; Kattapagari, K. K.; Chitturi, R. T.; Baddam, V. R. R.; Prasad, L. K. A Review on Role of Essential Trace Elements in Health and Disease. J. Ntr Univ. Health Sci. 2015, 4, 75. doi:10.4103/2277-8632.158577
  • Engwa, G. A.; Ferdinand, P. U.; Nwalo, F. N.; Unachukwu, M. N. Mechanism and Health Effects of Heavy Metal Toxicity in Humans. In Poisoning in the Modern World-New Tricks for an Old Dog?, IntechOpen: England, 2019, 1–23.
  • Weiss, G.; Carver, P. Role of Divalent Metals in Infectious Disease Susceptibility and Outcome. Clin. Microbiol. Infect. 2018, 24, 16–23. doi:10.1016/j.cmi.2017.01.018
  • Huat, T. J.; Camats-Perna, J.; Newcombe, E. A.; Valmas, N.; Kitazawa, M.; Medeiros, R. Metal Toxicity Links to Alzheimer's Disease and Neuroinflammation. J. Mol. Biol. 2019, 431, 1843–1868. doi:10.1016/j.jmb.2019.01.018
  • Chowdhury, R.; Ramond, A.; O'Keeffe, L. M.; Shahzad, S.; Kunutsor, S. K.; Muka, T.; Gregson, J.; Willeit, P.; Warnakula, S.; Khan, H.; et al. Environmental Toxic Metal Contaminants and Risk of Cardiovascular Disease: Systematic Review and Meta-Analysis. BMJ 2018, 362, k3310. doi:10.1136/bmj.k3310
  • Onakpa, M. M.; Njan, A. A.; Kalu, O. C. A Review of Heavy Metal Contamination of Food Crops in Nigeria. Ann. Glob. Health. 2018, 84, 488–494. doi:10.29024/aogh.2314
  • Figueroa‐Romero, C.; Mikhail, K. A.; Gennings, C.; Curtin, P.; Bello, G. A.; Botero, T. M.; Goutman, S. A.; Feldman, E. L.; Arora, M.; Austin, C. Early Life Metal Dysregulation in Amyotrophic Lateral Sclerosis. Ann. Clin. Transl. Neurol. 2020, 7, 872–882. doi:10.1002/acn3.51006
  • Bharatraj, D. K.; Yathapu, S. R. Nutrition-Pollution Interaction: An Emerging Research Area. Indian J. Med. Res. 2018, 148, 697–704. doi:10.4103/ijmr.IJMR_1733_18
  • Hsu, C.-W.; Weng, C.-H.; Lee, C.-C.; Yen, T.-H.; Huang, W.-H. Association of Serum Chromium Levels with Malnutrition in Hemodialysis Patients. BMC Nephrol. 2019, 20, 302. doi:10.1186/s12882-019-1476-x
  • Awua, A. K.; Boatin, R.; Adom, T.; Brown-Appiah, E. C.; Diaba, A. M.; Datohe, D.; Bansa, D. K. Double Burden of Malnutrition: Toxic Metals in Breast Milk May Limit the Amounts of Micronutrients Available to Infants through Breast Milk. Food Nutr. Sci. 2019, 10, 298–314. doi:10.4236/fns.2019.103023
  • Nordberg, G. F.; Fowler, B. A. Risk Assessment for Human Metal Exposures: Mode of Action and Kinetic Approaches. Academic Press: United Kingdom, 2018.
  • Bjorklund, G.; Stejskal, V.; Urbina, M. A.; Dadar, M.; Chirumbolo, S.; Mutter, J. Metals and Parkinson's Disease: Mechanisms and Biochemical Processes. Curr. Med. Chem. 2018, 25, 2198–2214. doi:10.2174/0929867325666171129124616

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.