881
Views
2
CrossRef citations to date
0
Altmetric
Review

Rapidly growing trends in laser-induced breakdown spectroscopy for food analysis

, , &

References

  • Lastra-Mejías, M.; Aroca-Santos, R.; Izquierdo, M.; Cancilla, J. C.; Mena, M. L.; Torrecilla, J. S. Chaotic Parameters from Fluorescence Spectra to Resolve Fraudulent Mixtures of Fresh and Expired Protected Designation of Origin Extra Virgin Olive Oils. Talanta 2019, 195, 1–7. doi:10.1016/j.talanta.2018.10.102
  • Dankowska, A.; Kowalewski, W. Comparison of Different Classification Methods for Analyzing Fluorescence Spectra to Characterize Type and Freshness of Olive Oils. Eur. Food Res. Technol. 2019, 245, 745–752. doi:10.1007/s00217-018-3196-z
  • Duan, C.; Zhang, J.-F.; Hu, Y.; Zeng, L.; Su, D.; Bao, G.-M. A Distinctive near-Infrared Fluorescence Turn-on Probe for Rapid, Sensitive and Chromogenic Detection of Sulfite in Food. Dyes Pigm. 2019, 162, 459–465. doi:10.1016/j.dyepig.2018.10.057
  • Shirani, M.; Habibollahi, S.; Akbari, A. Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food samples and non-alcoholic beverages . Food Chem. 2019, 281, 304–311. doi:10.1016/j.foodchem.2018.12.110
  • Acikkapi, A. N.; Tuzen, M.; Hazer, B. A Newly Synthesized Graft Copolymer for Magnetic Solid Phase Microextraction of Total Selenium and Its Electrothermal Atomic Absorption Spectrometric Determination in Food and Water Samples. Food Chem. 2019, 284, 1–7. doi:10.1016/j.foodchem.2019.01.091
  • Juvé, V.; Portelli, R.; Boueri, M.; Baudelet, M.; Yu, J. Space-Resolved Analysis of Trace Elements in Fresh Vegetables Using Ultraviolet Nanosecond Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2008, 63, 1047–1053. doi:10.1016/j.sab.2008.08.009
  • Khumaeni, A.; Ramli, M.; Deguchi, Y.; Lee, Y. I.; Idris, N.; Kurniawan, K. H.; Lie, T. J.; Kagawa, K. New Technique for the Direct Analysis of Food Powders Confined in a Small Hole Using Transversely Excited Atmospheric CO(2) laser-induced gas plasma . Appl. Spectrosc. 2008, 62, 1344–1348. doi:10.1366/000370208786822151
  • Machado, R. C.; Andrade, D. F.; Babos, D. V.; Castro, J. P.; Costa, V. C.; Sperança, M. A.; Garcia, J. A.; Gamela, R. R.; Pereira-Filho, E. R. Solid Sampling: Advantages and Challenges for Chemical Element Determination - A Critical Review. J. Anal. At. Spectrom. 2020, 35, 54–77. doi:10.1039/C9JA00306A
  • Martelli, M. R.; Brygo, F.; Sadoudi, A.; Delaporte, P.; Barron, C. Laser-Induced Breakdown Spectroscopy and Chemometrics: A Novel Potential Method to Analyze Wheat Grains. J. Agric. Food Chem. 2010, 58, 7126–7134. doi:10.1021/jf100665u
  • Martelli, M. R.; Brygo, F.; Delaporte, P.; Rouau, X.; Barron, C. Estimation of Wheat Grain Tissue Cohesion via Laser Induced Breakdown Spectroscopy. Food Biophys. 2011, 6, 433–439. doi:10.1007/s11483-011-9222-3
  • Lei, W.; Motto-Ros, V.; Boueri, M.; Ma, Q.; Zhang, D.; Zheng, L.; Zeng, H.; Yu, J. Time-Resolved Characterization of Laser-Induced Plasma from Fresh Potatoes. Spectrochim. Acta, Part B 2009, 64, 891–898. doi:10.1016/j.sab.2009.07.015
  • Kim, G.; Kwak, J.; Choi, J.; Park, K. Detection of Nutrient Elements and Contamination by Pesticides in Spinach and Rice Samples Using Laser-Induced Breakdown Spectroscopy (LIBS). J. Agric. Food Chem. 2012, 60, 718–724. doi:10.1021/jf203518f
  • Mehta, S.; Rai, P. K.; Rai, D. K.; Rai, N. K.; Rai, A. K.; Bicanic, D.; Sharma, B.; Watal, G. LIBS-Based Detection of Antioxidant Elements in Seeds of Emblica Officinalis. Food Biophys. 2010, 5, 186–192. doi:10.1007/s11483-010-9158-z
  • Rai, N. K.; Rai, P. K.; Pandhija, S.; Watal, G.; Rai, A. K.; Bicanic, D. Application of LIBS in Detection of Antihyperglycemic Trace Elements in Momordica Charantia. Food Biophys. 2009, 4, 167–171. doi:10.1007/s11483-009-9114-y
  • Shukla, S.; Rai, P. K.; Chatterji, S.; Rai, N. K.; Rai, A. K.; Watal, G. LIBS Based Screening of Glycemic Elements of Ficus Religiosa. Food Biophys. 2012, 7, 43–49. doi:10.1007/s11483-011-9241-0
  • Tiwari, M.; Agrawal, R.; Pathak, A. K.; Rai, A. K.; Rai, G. K. Laser-Induced Breakdown Spectroscopy: An Approach to Detect Adulteration in Turmeric. Spectrosc. Lett. 2013, 46, 155–159. doi:10.1080/00387010.2012.702707
  • Tripathi, D. K.; Kumar, R.; Chauhan, D. K.; Rai, A. K.; Bicanic, D. Laser-Induced Breakdown Spectroscopy for the Study of the Pattern of Silicon Deposition in Leaves of Saccharum Species. Instrum. Sci. Technol. 2011, 39, 510–521. doi:10.1080/10739149.2011.623206
  • Abdel-Salam, Z.; Al Sharnoubi, J.; Harith, M. A. Qualitative Evaluation of Maternal Milk and Commercial Infant Formulas via LIBS. Talanta 2013, 115, 422–426. doi:10.1016/j.talanta.2013.06.003
  • Ferreira, E. C.; Menezes, E. A.; Matos, W. O.; Milori, D. M. B. P.; Nogueira, A. R. A.; Martin-Neto, L. Determination of Ca in Breakfast Cereals by Laser Induced Breakdown Spectroscopy. Food Control 2010, 21, 1327–1330. doi:10.1016/j.foodcont.2010.04.004
  • Rai, P. K.; Jaiswal, D.; Rai, N. K.; Pandhija, S.; Rai, A. K.; Watal, G. New Strategies of LIBS-Based Validation of Glycemic Elements for Diabetes Management. Food Biophys. 2009, 4, 260–265. doi:10.1007/s11483-009-9123-x
  • Barnett, C.; Bell, C.; Vig, K.; Akpovo, A. C.; Johnson, L.; Pillai, S.; Singh, S. Development of a LIBS Assay for the Detection of Salmonella enterica Serovar Typhimurium from Food. Anal. Bioanal. Chem. 2011, 400, 3323–3330. doi:10.1007/s00216-011-4844-3
  • Multari, R. A.; Cremers, D. A.; Dupre, J. A. M.; Gustafson, J. E. Detection of Biological Contaminants on Foods and Food Surfaces Using Laser-Induced Breakdown Spectroscopy (LIBS). J. Agric. Food Chem. 2013, 61, 8687–8694. doi:10.1021/jf4029317
  • Pořízka, P.; Prochazka, D.; Pilát, Z.; Krajcarová, L.; Kaiser, J.; Malina, R.; Novotný, J.; Zemánek, P.; Ježek, J.; Šerý, M.; et al. Application of Laser-Induced Breakdown Spectroscopy to the Analysis of Algal Biomass for Industrial Biotechnology. Spectrochim. Acta, Part B 2012, 74-75, 169–176. doi:10.1016/j.sab.2012.06.014
  • Anabitarte, F.; Cobo, A.; Lopez-Higuera, J. M. Laser-Induced Breakdown Spectroscopy: Fundamentals, Applications, and Challenges. ISRN Spectrosc. 2012, 2012, 1–12. doi:10.5402/2012/285240
  • Costa, V. C.; Augusto, A. S.; Castro, J. P.; Machado, R. C.; Andrade, D. F.; Babos, D. V.; Sperança, M. A.; Gamela, R. R.; Pereira-Filho, E. R. Laser Induced-Breakdown Spectroscopy (LIBS): Histórico, Fundamentos, Aplicações e Potencialidades. Quim. Nova 2019, 42, 527–545. doi:10.21577/0100-4042.20170325
  • Cremers, D. A.; Radziemski, L. J. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons, Ltd: Chichester, 2006.
  • Siano, S.; Agresti, J. Laser-Induced Breakdown Spectroscopy (LIBS). In The Encyclopedia of Archaeological Sciences; Wiley, 2018.doi:10.1002/9781119188230.saseas0343
  • Cremers, D. A.; Chinni, R. C. Laser-Induced Breakdown Spectroscopy -Capabilities and Limitations. Appl. Spectrosc. Rev. 2009, 44, 457–506. doi:10.1080/05704920903058755
  • Radziemski, L.; Cremers, D. A Brief History of Laser-Induced Breakdown Spectroscopy: From the Concept of Atoms to LIBS 2012. Spectrochim. Acta, Part B 2013, 87, 3–10. doi:10.1016/j.sab.2013.05.013
  • Gamela, R. R.; Sperança, M. A.; Andrade, D. F.; Pereira-Filho, E. R. Hyperspectral Images: A Qualitative Approach to Evaluate the Chemical Profile Distribution of Ca, K, Mg, Na and P in Edible Seeds Employing Laser-Induced Breakdown Spectroscopy. Anal. Methods 2019, 11, 5543–5552. doi:10.1039/C9AY01916B
  • Markiewicz-Keszycka, M.; Cama-Moncunill, R.; Pietat Casado-Gavalda, M.; Sullivan, C.; Cullen, P. J. Laser-Induced Breakdown Spectroscopy for Food Authentication. Curr. Opin. Food Sci. 2019, 28, 96–103. doi:10.1016/j.cofs.2019.10.002
  • Web of Science. Search Performed Using ‘LIBS’ as a Keyword. https://wcs.webofknowledge.com/RA/analyze.do?product=WOS&SID=D5K3klcpS5TttFWF2yz&field=PY_PublicationYear_PublicationYear_en&yearSort=true. (accessed Feb 3, 2020).
  • Abdel-Salam, Z. A.; Abdel-Salam, S. A. M.; Abdel-Mageed, I. I.; Harith, M. A. Evaluation of Proteins in Sheep Colostrum via Laser-Induced Breakdown Spectroscopy and Multivariate Analysis. J. Adv. Res. 2019, 15, 19–25. doi:10.1016/j.jare.2018.07.001
  • Abdel-Salam, Z.; Abdelghany, S.; Harith, M. A. Characterization of Milk from Mastitis-Infected Cows Using Laser-Induced Breakdown Spectrometry as a Molecular Analytical Technique. Food Anal. Methods 2017, 10, 2422–2428. doi:10.1007/s12161-017-0801-x
  • Rezk, R. A.; Galmed, A. H.; Abdelkreem, M.; Abdel Ghany, N. A.; Harith, M. A. Detachment of Cu (II) and Co (II) ions from synthetic wastewater via adsorption on Lates niloticus fish bones using LIBS and XRF. J. Adv. Res. 2018, 14, 1–9. doi:10.1016/j.jare.2018.05.002
  • Alfarraj, B. A.; Sanghapi, H. K.; Bhatt, C. R.; Yueh, F. Y.; Singh, J. P. Qualitative Analysis of Dairy and Powder Milk Using Laser-Induced Breakdown Spectroscopy (LIBS). Appl. Spectrosc. 2018, 72, 89–101. doi:10.1177/0003702817733264
  • Bilge, G.; Sezer, B.; Eseller, K. E.; Berberoglu, H.; Topcu, A.; Boyaci, I. H. Determination of Whey Adulteration in Milk Powder by Using Laser Induced Breakdown Spectroscopy. Food Chem. 2016, 212, 183–188. doi:10.1016/j.foodchem.2016.05.169
  • Moncayo, S.; Manzoor, S.; Rosales, J. D.; Anzano, J.; Caceres, J. O. Qualitative and Quantitative Analysis of Milk for the Detection of Adulteration by Laser Induced Breakdown Spectroscopy (LIBS). Food Chem. 2017, 232, 322–328. doi:10.1016/j.foodchem.2017.04.017
  • Sezer, B.; Durna, S.; Bilge, G.; Berkkan, A.; Yetisemiyen, A.; Boyaci, I. H. Identification of Milk Fraud Using Laser-Induced Breakdown Spectroscopy (LIBS). Int. Dairy J. 2018, 81, 1–7. doi:10.1016/j.idairyj.2017.12.005
  • Bilge, G.; Sezer, B.; Boyaci, I. H.; Eseller, K. E.; Berberoglu, H. Performance Evaluation of Laser Induced Breakdown Spectroscopy in the Measurement of Liquid and Solid Samples. Spectrochim. Acta, Part B 2018, 145, 115–121. doi:10.1016/j.sab.2018.04.016
  • Cama-Moncunill, R.; Casado-Gavalda, M. P.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Dixit, Y.; Cullen, P. J.; Sullivan, C. Quantification of Trace Metals in Infant Formula Premixes Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2017, 135, 6–14. doi:10.1016/j.sab.2017.06.014
  • Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cama-Moncunill, R.; Dixit, Y.; Casado-Gavalda, M. P.; Cullen, P. J.; Sullivan, C. Sampling Effects on the Quantification of Sodium Content in Infant Formula Using Laser-Induced Breakdown Spectroscopy (LIBS). Int. Dairy J. 2018, 85, 49–55. doi:10.1016/j.idairyj.2018.04.014
  • dos Santos Augusto, A.; Barsanelli, P. L.; Pereira, F. M. V.; Pereira-Filho, E. R. Calibration Strategies for the Direct Determination of Ca, K, and Mg in Commercial Samples of Powdered Milk and Solid Dietary Supplements Using Laser-Induced Breakdown Spectroscopy (LIBS). Food Res. Int. 2017, 94, 72–78. doi:10.1016/j.foodres.2017.01.027
  • Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Dixit, Y.; Cama-Moncunill, R.; Casado-Gavalda, M. P.; Cullen, P. J.; Sullivan, C. Feasibility of Laser-Induced Breakdown Spectroscopy (LIBS) as an at-Line Validation Tool for Calcium Determination in Infant Formula. Food Control 2017, 78, 304–310. doi:10.1016/j.foodcont.2017.03.005
  • Augusto, A.; Castro, J.; Sperança, M.; Pereira, E. Combination of Multi-Energy Calibration (MEC) and Laser-Induced Breakdown Spectroscopy (LIBS) for Dietary Supplements Analysis and Determination of Ca, Mg and K. J. Braz. Chem. Soc. 2018, 30, 804–812. doi:10.21577/0103-5053.20180211
  • Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P. J.; Sullivan, C.; Casado-Gavalda, M. P. Direct Analysis of Calcium in Liquid Infant Formula via Laser-Induced Breakdown Spectroscopy (LIBS). Food Chem. 2020, 309, 125754doi:10.1016/j.foodchem.2019.125754
  • Temiz, H. T.; Sezer, B.; Berkkan, A.; Tamer, U.; Boyaci, I. H. Assessment of Laser Induced Breakdown Spectroscopy as a Tool for Analysis of Butter Adulteration. J. Food Compos. Anal. 2018, 67, 48–54. doi:10.1016/j.jfca.2017.12.032
  • Ayvaz, H.; Sezer, B.; Dogan, M. A.; Bilge, G.; Atan, M.; Boyaci, I. H. Multiparametric Analysis of Cheese Using Single Spectrum of Laser-Induced Breakdown Spectroscopy. Int. Dairy J. 2019, 90, 72–78. doi:10.1016/j.idairyj.2018.11.008
  • Casado-Gavalda, M. P.; Dixit, Y.; Geulen, D.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P. J.; Sullivan, C. Quantification of Copper Content with Laser Induced Breakdown Spectroscopy as a Potential Indicator of Offal Adulteration in Beef. Talanta 2017, 169, 123–129. doi:10.1016/j.talanta.2017.03.071
  • Dixit, Y.; Casado-Gavalda, M. P.; Cama-Moncunill, R.; Markiewicz-Keszycka, M.; Cama-Moncunill, X.; Cullen, P. J.; Sullivan, C. Quantification of Rubidium as a Trace Element in Beef Using Laser Induced Breakdown Spectroscopy. Meat Sci. 2017, 130, 47–49. doi:10.1016/j.meatsci.2017.03.013
  • Dixit, Y.; Casado-Gavalda, M. P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Cullen, P. J.; Sullivan, C. Laser Induced Breakdown Spectroscopy for Quantification of Sodium and Potassium in Minced Beef: A Potential Technique for Detecting Beef Kidney Adulteration. Anal. Methods 2017, 9, 3314–3322. doi:10.1039/C7AY00757D
  • Leme, F. O.; Silvestre, D. M.; Nascimento, A. N.; Nomura, C. S. Feasibility of Using Laser Induced Breakdown Spectroscopy for Quantitative Measurement of Calcium, Magnesium, Potassium and Sodium in Meat. J. Anal. At. Spectrom. 2018, 33, 1322–1329. doi:10.1039/C8JA00115D
  • Bilge, G.; Velioglu, H. M.; Sezer, B.; Eseller, K. E.; Boyaci, I. H. Identification of Meat Species by Using Laser-Induced Breakdown Spectroscopy. Meat Sci. 2016, 119, 118–122. doi:10.1016/j.meatsci.2016.04.035
  • Velioglu, H. M.; Sezer, B.; Bilge, G.; Baytur, S. E.; Boyaci, I. H. Identification of Offal Adulteration in Beef by Laser Induced Breakdown Spectroscopy (LIBS). Meat Sci. 2018, 138, 28–33. doi:10.1016/j.meatsci.2017.12.003
  • Abdel-Salam, Z.; Abdel-Salam, S. A. M.; Harith, M. A. Application of Laser Spectrochemical Analytical Techniques to Follow up Spoilage of White Meat in Chicken. Food Anal. Methods 2017, 10, 2365–2372. doi:10.1007/s12161-017-0806-5
  • Andersen, M.-B. S.; Frydenvang, J.; Henckel, P.; Rinnan, Å. The Potential of Laser-Induced Breakdown Spectroscopy for Industrial at-Line Monitoring of Calcium Content in Comminuted Poultry Meat. Food Control 2016, 64, 226–233. doi:10.1016/j.foodcont.2016.01.001
  • Sezer, B.; Apaydin, H.; Bilge, G.; Boyaci, I. H. Detection of Pistacia Vera Adulteration by Using Laser Induced Breakdown spectroscopy. J. Sci. Food Agric. 2019, 99, 2236–2242. doi:10.1002/jsfa.9418
  • Varliklioz Er, S.; Eksi-Kocak, H.; Yetim, H.; Boyaci, I. H. Novel Spectroscopic Method for Determination and Quantification of Saffron Adulteration. Food Anal. Methods 2017, 10, 1547–1555. doi:10.1007/s12161-016-0710-4
  • Liu, X.; Feng, X.; Liu, F.; Peng, J.; He, Y. Rapid Identification of Genetically Modified Maize Using Laser-Induced Breakdown Spectroscopy. Food Bioprocess Technol. 2019, 12, 347–357. doi:10.1007/s11947-018-2216-0
  • Singh, J.; Kumar, R.; Awasthi, S.; Singh, V.; Rai, A. K. Laser Induced Breakdown Spectroscopy: A Rapid Tool for the Identification and Quantification of Minerals in Cucurbit Seeds. Food Chem. 2017, 221, 1778–1783. doi:10.1016/j.foodchem.2016.10.104
  • Rehan, I.; Rehan, K.; Sultana, S.; Khan, M. Z.; Muhammad, R. LIBS Coupled with ICP/OES for the Spectral Analysis of Betel Leaves. Appl. Phys. B 2018, 124, 76. doi:10.1007/s00340-018-6947-4
  • Yao, M.; Yang, H.; Huang, L.; Chen, T.; Rao, G.; Liu, M. Detection of Heavy Metal Cd in Polluted Fresh Leafy Vegetables by Laser-Induced Breakdown Spectroscopy. Appl. Opt. 2017, 56, 4070–4075. doi:10.1364/ao.56.004070
  • Shen, T.; Kong, W.; Liu, F.; Chen, Z.; Yao, J.; Wang, W.; Peng, J.; Chen, H.; He, Y. Rapid Determination of Cadmium Contamination in Lettuce Using Laser-Induced Breakdown Spectroscopy. Molecules 2018, 23, 2930. doi:10.3390/molecules23112930
  • Chen, Z.; Shen, T.; Yao, J.; Wang, W.; Liu, F.; Li, X.; He, Y. Signal Enhancement of Cadmium in Lettuce Using Laser‐Induced Breakdown Spectroscopy Combined with Pyrolysis Process. Molecules 2019, 24, 2517. doi:10.3390/molecules24132517
  • Sezer, B.; Bilge, G.; Berkkan, A.; Tamer, U.; Boyaci, I. H. A Rapid Tool for Determination of Titanium Dioxide Content in White Chickpea Samples. Food Chem. 2018, 240, 84–89. doi:10.1016/j.foodchem.2017.07.093
  • Zhang, H.; Wang, H.; Cao, X.; Wang, J. Preparation and Modification of High Dietary Fiber Flour: A Review. Food Res. Int. 2018, 113, 24–35. doi:10.1016/j.foodres.2018.06.068
  • Bilge, G.; Sezer, B.; Eseller, K. E.; Berberoglu, H.; Koksel, H.; Boyaci, I. H. Ash Analysis of Flour Sample by Using Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2016, 124, 74–78. doi:10.1016/j.sab.2016.08.023
  • Markiewicz-Keszycka, M.; Casado-Gavalda, M. P.; Cama-Moncunill, X.; Cama-Moncunill, R.; Dixit, Y.; Cullen, P. J.; Sullivan, C. Laser-Induced Breakdown Spectroscopy (LIBS) for Rapid Analysis of Ash, Potassium and Magnesium in Gluten Free Flours. Food Chem. 2018, 244, 324–330. doi:10.1016/j.foodchem.2017.10.063
  • Sezer, B.; Bilge, G.; Sanal, T.; Koksel, H.; Boyaci, I. H. A Novel Method for Ash Analysis in Wheat Milling Fractions by Using Laser-Induced Breakdown Spectroscopy. J. Cereal Sci. 2017, 78, 33–38. doi:10.1016/j.jcs.2017.04.002
  • Yang, P.; Zhu, Y.; Tang, S.; Hao, Z.; Guo, L.; Li, X.; Lu, Y.; Zeng, X. Analytical-Performance Improvement of Laser-Induced Breakdown Spectroscopy for the Processing Degree of Wheat Flour Using a Continuous Wavelet Transform. Appl. Opt. 2018, 57, 3730–3737. doi:10.1364/ao.57.003730
  • Atta, B. M.; Saleem, M.; Haq, S. U.; Ali, H.; Ali, Z.; Qamar, M. Determination of Zinc and Iron in Wheat Using Laser-Induced Breakdown Spectroscopy. Laser Phys. Lett. 2018, 15, 125603. doi:10.1088/1612-202X/aaea6e
  • Bilge, G.; Sezer, B.; Eseller, K. E.; Berberoğlu, H.; Köksel, H.; Boyacı, İH. Determination of Ca Addition to the Wheat Flour by Using Laser-Induced Breakdown Spectroscopy (LIBS). Eur. Food Res. Technol. 2016, 242, 1685–1692. doi:10.1007/s00217-016-2668-2
  • Costa, V. C.; de Babos, D. V.; de Aquino, F. W. B.; Virgílio, A.; Amorim, F. A. C.; Pereira-Filho, E. R. Direct Determination of Ca, K and Mg in Cassava Flour Samples by Laser-Induced Breakdown Spectroscopy (LIBS). Food Anal. Methods 2018, 11, 1886–1896. doi:10.1007/s12161-017-1086-9
  • Wang, J.; Zheng, P.; Liu, H.; Fang, L. Classification of Chinese Tea Leaves Using Laser-Induced Breakdown Spectroscopy Combined with the Discriminant Analysis Method. Anal. Methods 2016, 8, 3204–3209. doi:10.1039/C5AY03260A
  • Zhang, H. Y.; Zhu, Q. B.; Huang, M.; Guo, Y. Automatic Determination of Optimal Spectral Peaks for Classification of Chinese Tea Varieties Using Laser-Induced Breakdown Spectroscopy. Int. J. Agric. Biol. Eng. 2018, 11, 154–158. doi:10.25165/j.ijabe.20181103.3482
  • Zheng, P.; Shi, M.; Wang, J.; Liu, H. The Spectral Emission Characteristics of Laser Induced Plasma on Tea Samples. Plasma Sci. Technol. 2015, 17, 664–670. doi:10.1088/1009-0630/17/8/09
  • Zivkovic, S.; Savovic, J.; Kuzmanovic, M.; Petrovic, J.; Momcilovic, M. Alternative Analytical Method for Direct Determination of Mn and Ba in Peppermint Tea Based on Laser Induced Breakdown Spectroscopy. Microchem. J 2018, 137, 410–417. doi:10.1016/j.microc.2017.11.020
  • Gondal, M. A.; Habibullah, Y. B.; Baig, U.; Oloore, L. E. Direct Spectral Analysis of Tea Samples Using 266 nm UV Pulsed Laser-Induced Breakdown Spectroscopy and Cross Validation of LIBS Results with ICP-MS. Talanta 2016, 152, 341–352. doi:10.1016/j.talanta.2016.02.030
  • Wang, J.; Shi, M.; Zheng, P.; Xue, S. Quantitative Analysis of Lead in Tea Samples by Laser-Induced Breakdown Spectroscopy. J. Appl. Spectrosc. 2017, 84, 188–193. doi:10.1007/s10812-017-0448-9
  • Andrade, D. F.; Pereira-Filho, E. R.; Konieczynski, P. Comparison of ICP OES and LIBS Analysis of Medicinal Herbs Rich in Flavonoids from Eastern Europe. J. Braz. Chem. Soc. 2017, 28, 838–847. doi:10.21577/0103-5053.20160236
  • Weiskerger, C. J.; Brandão, J.; Ahmed, W.; Aslan, A.; Avolio, L.; Badgley, B. D.; Boehm, A. B.; Edge, T. A.; Fleisher, J. M.; Heaney, C. D.; et al. Impacts of a Changing Earth on Microbial Dynamics and Human Health Risks in the Continuum between Beach Water and Sand. Water Res. 2019, 162, 456–470. doi:10.1016/j.watres.2019.07.006
  • Alvira, F. C.; Flores Reyes, T.; Ponce Cabrera, L.; Moreira Osorio, L.; Perez Baez, Z.; Vazquez Bautista, G. Qualitative Evaluation of Pb and Cu in Fish Using Laser-Induced Breakdown Spectroscopy with Multipulse Excitation by Ultracompact Laser Source. Appl. Opt. 2015, 54, 4453–4457. doi:10.1364/ao.54.004453
  • Abdel-Salam, Z.; Alexeree, S. M. I.; Harith, M. A. Utilizing Biosynthesized Nano-Enhanced Laser-Induced Breakdown Spectroscopy for Proteins Estimation in Canned Tuna. Spectrochim. Acta, Part B 2018, 149, 112–117. doi:10.1016/j.sab.2018.07.029
  • Chen, C.-T.; Banaru, D.; Sarnet, T.; Hermann, J. Two-Step Procedure for Trace Element Analysis in Food via Calibration-Free Laser-Induced Breakdown Spectroscopy. Spectrochim. Acta, Part B 2018, 150, 77–85. doi:10.1016/j.sab.2018.10.011
  • Ji, G.; Ye, P.; Shi, Y.; Yuan, L.; Chen, X.; Yuan, M.; Zhu, D.; Chen, X.; Hu, X.; Jiang, J. Laser-Induced Breakdown Spectroscopy for Rapid Discrimination of Heavy-Metal-Contaminated Seafood Tegillarca Granosa. Sensors 2017, 17, 2655. doi:10.3390/s17112655
  • Costa, V. C.; Amorim, F. A. C.; de Babos, D. V.; Pereira-Filho, E. R. Direct Determination of Ca, K, Mg, Na, P, S, Fe and Zn in Bivalve Mollusks by Wavelength Dispersive X-Ray Fluorescence (WDXRF) and Laser-Induced Breakdown Spectroscopy (LIBS). Food Chem. 2019, 273, 91–98. doi:10.1016/j.foodchem.2018.02.016
  • Yang, P.; Zhou, R.; Zhang, W.; Tang, S.; Hao, Z.; Li, X.; Lu, Y.; Zeng, X. Laser-Induced Breakdown Spectroscopy Assisted Chemometric Methods for Rice Geographic Origin Classification. Appl. Opt. 2018, 57, 8297–8302. doi:10.1364/ao.57.008297
  • Yang, P.; Zhu, Y.; Yang, X.; Li, J.; Tang, S.; Hao, Z.; Guo, L.; Li, X.; Zeng, X.; Lu, Y. Evaluation of Sample Preparation Methods for Rice Geographic Origin Classification Using Laser-Induced Breakdown Spectroscopy. J. Cereal Sci. 2018, 80, 111–118. doi:10.1016/j.jcs.2018.01.007
  • Pérez-Rodríguez, M.; Dirchwolf, P. M.; Silva, T. V.; Villafañe, R. N.; Neto, J. A. G.; Pellerano, R. G.; Ferreira, E. C. Brown Rice Authenticity Evaluation by Spark Discharge-Laser-Induced Breakdown Spectroscopy. Food Chem. 2019, 297, 124960. doi:10.1016/j.foodchem.2019.124960
  • Peng, J.; He, Y.; Ye, L.; Shen, T.; Liu, F.; Kong, W.; Liu, X.; Zhao, Y. Moisture Influence Reducing Method for Heavy Metals Detection in Plant Materials Using Laser-Induced Breakdown Spectroscopy: A Case Study for Chromium Content Detection in Rice Leaves. Anal. Chem. 2017, 89, 7593–7600. doi:10.1021/acs.analchem.7b01441
  • Liu, F.; Ye, L.; Peng, J.; Song, K.; Shen, T.; Zhang, C.; He, Y. Fast Detection of Copper Content in Rice by Laser-Induced Breakdown Spectroscopy with Uni- and Multivariate Analysis. Sensors 2018, 18, 705. doi:10.3390/s18030705
  • Yang, P.; Zhou, R.; Zhang, W.; Yi, R.; Tang, S.; Guo, L.; Hao, Z.; Li, X.; Lu, Y.; Zeng, X. High-Sensitivity Determination of Cadmium and Lead in Rice Using Laser-Induced Breakdown Spectroscopy. Food Chem. 2019, 272, 323–328. doi:10.1016/j.foodchem.2018.07.214
  • Peng, J.; Liu, F.; Shen, T.; Ye, L.; Kong, W.; Wang, W.; Liu, X.; He, Y. Comparative Study of the Detection of Chromium Content in Rice Leaves by 532 nm and 1064 nm Laser-Induced Breakdown Spectroscopy. Sensors 2018, 18, 621. doi:10.3390/s18020621
  • Silva, T. V.; Milori, D. M. B. P.; Neto, J. A. G.; Ferreira, E. J.; Ferreira, E. C. Prediction of Black, Immature and Sour Defective Beans in Coffee Blends by Using Laser-Induced Breakdown Spectroscopy. Food Chem. 2019, 278, 223–227. doi:10.1016/j.foodchem.2018.11.062
  • Ganash, E.; Alrabghi, R.; Mangl, S.; Altuwirqi, R.; Alsufiani, H.; Omar, U. Semi-Quantitative Analysis of Mineral Composition in Harari Coffee with Herbal Additives by Using Laser-Induced Breakdown Spectroscopy. Laser Phys. 2019, 29, 025701. doi:10.1088/1555-6611/aaf922
  • Khalil, A. A. I.; Labib, O. A. Detection of Micro-Toxic Elements in Commercial Coffee Brands Using Optimized Dual-Pulsed Laser-Induced Spectral Analysis Spectrometry. Appl. Opt. 2018, 57, 6729–6741. doi:10.1364/ao.57.006729
  • Silva, T. V.; Hubinger, S. Z.; Gomes Neto, J. A.; Milori, D. M. B. P.; Ferreira, E. J.; Ferreira, E. C. Potential of Laser Induced Breakdown Spectroscopy for Analyzing the Quality of Unroasted and Ground Coffee. Spectrochim. Acta, Part B 2017, 135, 29–33. doi:10.1016/j.sab.2017.06.015
  • Sezer, B.; Apaydin, H.; Bilge, G.; Boyaci, I. H. Coffee Arabica Adulteration: Detection of Wheat, Corn and chickpea. Food Chem. 2018, 264, 142–148. doi:10.1016/j.foodchem.2018.05.037
  • Lee, Y.; Nam, S.-H.; Ham, K.-S.; Gonzalez, J.; Oropeza, D.; Quarles, D.; Yoo, J.; Russo, R. E. Multivariate Classification of Edible Salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochim. Acta, Part B 2016, 118, 102–111. doi:10.1016/j.sab.2016.02.019
  • Lee, Y.; Chirinos, J.; Gonzalez, J.; Oropeza, D.; Zorba, V.; Mao, X.; Yoo, J.; Russo, R. E. Laser-Ablation Sampling for Accurate Analysis of Sulfur in Edible Salts. Appl. Spectrosc. 2017, 71, 651–658. doi:10.1177/0003702817691288
  • Sezer, B.; Velioglu, H. M.; Bilge, G.; Berkkan, A.; Ozdinc, N.; Tamer, U.; Boyaci, I. H. Detection and Quantification of a Toxic Salt Substitute (LiCl) by Using Laser Induced Breakdown Spectroscopy (LIBS). Meat Sci. 2018, 135, 123–128. doi:10.1016/j.meatsci.2017.09.010
  • Dixit, Y.; Casado-Gavalda, M. P.; Cama-Moncunill, R.; Cama-Moncunill, X.; Markiewicz-Keszycka, M.; Jacoby, F.; Cullen, P. J.; Sullivan, C. Introduction to Laser Induced Breakdown Spectroscopy Imaging in Food: Salt Diffusion in Meat. J. Food Eng. 2018, 216, 120–124. doi:10.1016/j.jfoodeng.2017.08.010
  • Andrade, D. F.; Guedes, W. N.; Pereira, F. M. V. Detection of Chemical Elements Related to Impurities Leached from Raw Sugarcane: Use of Laser-Induced Breakdown Spectroscopy (LIBS) and Chemometrics. Microchem. J. 2018, 137, 443–448. doi:10.1016/j.microc.2017.12.005
  • Guedes, W. N.; Pereira, F. M. V. Classifying Impurity Ranges in Raw Sugarcane Using Laser-Induced Breakdown Spectroscopy (LIBS) and Sum Fusion across a Tuning Parameter Window. Microchem. J. 2018, 143, 331–336. doi:10.1016/j.microc.2018.08.030
  • Guedes, W. N.; dos Santos, L. J.; Filletti, É. R.; Pereira, F. M. V. Sugarcane Stalk Content Prediction in the Presence of a Solid Impurity Using an Artificial Intelligence Method Focused on Sugar Manufacturing. Food Anal. Methods 2020, 13, 140–144. doi:10.1007/s12161-019-01551-2
  • Popov, A. M.; Drozdova, A. N.; Zaytsev, S. M.; Biryukova, D. I.; Zorov, N. B.; Labutin, T. A. Rapid, Direct Determination of Strontium in Natural Waters by Laser-Induced Breakdown Spectroscopy. J. Anal. At. Spectrom. 2016, 31, 1123–1130. doi:10.1039/C5JA00468C
  • Carvalho, A. A. C.; Silvestre, D. M.; Leme, F. O.; Naozuka, J.; Intima, D. P.; Nomura, C. S. Feasibility of Measuring Cr(III) and Cr(VI) in Water by Laser-Induced Breakdown Spectroscopy Using Ceramics as the Solid Support. Microchem. J. 2019, 144, 33–38. doi:10.1016/j.microc.2018.08.031
  • Mbesse Kongbonga, Y. G.; Ghalila, H.; Onana, M. B.; Ben Lakhdar, Z. Classification of Vegetable Oils Based on Their Concentration of Saturated Fatty Acids Using Laser Induced Breakdown Spectroscopy (LIBS). Food Chem. 2014, 147, 327–331. doi:10.1016/j.foodchem.2013.09.145
  • Bilge, G.; Boyaci, I. H.; Eseller, K. E.; Tamer, U.; Çakir, S. Analysis of Bakery Products by Laser-Induced Breakdown Spectroscopy. Food Chem. 2015, 181, 186–190. doi:10.1016/j.foodchem.2015.02.090
  • Mehder, A. O.; Gondal, M. A.; Dastageer, M. A.; Habibullah, Y. B.; Iqbal, M. A.; Oloore, L. E.; Gondal, B. Direct Spectral Analysis and Determination of High Content of Carcinogenic Bromine in Bread Using UV Pulsed Laser Induced Breakdown Spectroscopy. J Environ Sci Health B 2016, 51, 358–365. doi:10.1080/03601234.2016.1142317
  • Rehan, I.; Khan, M. Z.; Rehan, K.; Abrar, S. U.; Farooq, Z.; Sultana, S.; Us Saqib, N.; Anwar, H. Optimized Laser-Induced Breakdown Spectroscopy for the Determination of High Toxic Lead in Edible Colors. Appl. Opt. 2018, 57, 6033–6039. doi:10.1364/ao.57.006033
  • Moncayo, S.; Rosales, J. D.; Izquierdo-Hornillos, R.; Anzano, J.; Caceres, J. O. Classification of Red Wine Based on Its Protected Designation of Origin (PDO) Using Laser-Induced Breakdown Spectroscopy (LIBS). Talanta 2016, 158, 185–191. doi:10.1016/j.talanta.2016.05.059
  • Pasquini, C.; Farias Filho, B. B. Mechanization of Measurement of Laser Induced Breakdown Spectroscopy/Ring-Oven Pre-Concentration: Determination of Copper in Cachaça. Anal. Methods 2016, 8, 7354–7360. doi:10.1039/C6AY01555G
  • Silvestre, D. M.; de Oliveira Leme, F.; Nomura, C. S.; do Nascimento, A. N. Direct Analysis of Barium, Calcium, Potassium, and Manganese Concentrations in Tobacco by Laser-Induced Breakdown Spectroscopy. Microchem. J. 2016, 126, 545–550. doi:10.1016/j.microc.2016.01.015
  • Ahmed, N.; Umar, Z. A.; Ahmed, R.; Aslam Baig, M. On the Elemental Analysis of Different Cigarette Brands Using Laser Induced Breakdown Spectroscopy and Laser-Ablation Time of Flight Mass Spectrometry. Spectrochim. Acta, Part B 2017, 136, 39–44. doi:10.1016/j.sab.2017.08.006
  • Peng, J.; Ye, L.; Shen, T.; Liu, F.; Song, K.; He, Y. Fast Determination of Copper Content in Tobacco (Nicotina Tabacum L.) Leaves Using Laser-Induced Breakdown Spectroscopy with Univariate and Multivariate Analysis. Trans. ASABE 2018, 61, 821–829. doi:10.13031/trans.12393

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.