1,018
Views
13
CrossRef citations to date
0
Altmetric
Review

Electronic circular dichroism and Raman optical activity: Principle and applications

&

References

  • Lorenzo, M. O.; Baddeley, C.; Muryn, C.; Raval, R. Extended Surface Chirality from Supramolecular Assemblies of Adsorbed Chiral Molecules. Nature 2000, 404, 376–379. doi:10.1038/35006031
  • Bentley, R. Role of Sulfur Chirality in the Chemical Processes of Biology. Chem. Soc. Rev. 2005, 34, 609–624. doi:10.1039/b418284g
  • Srinivasarao, M. Chirality and Polymers. Curr. Opin. Colloid Interface Sci. 1999, 4, 147–152. doi:10.1016/S1359-0294(99)00024-2
  • Meierhenrich, U. J.; Nahon, L.; Alcaraz, C.; Bredehöft, J. H.; Hoffmann, S. V.; Barbier, B.; Brack, A. Asymmetrische Vakuum-UV-Photolyse der Aminosäure Leucin in Fester Phase. Angew. Chem. 2005, 117, 5774–5779. doi:10.1002/ange.200501311
  • Leitereg, T. J.; Guadagni, D. G.; Harris, J.; Mon, T. R.; Teranishi, R. Chemical and Sensory Data Supporting the Difference between the Odors of the Enantiomeric Carvones. J. Agric. Food Chem. 1971, 19, 785–787. doi:10.1021/jf60176a035
  • Perret-Aebi, L. E.; von Zelewsky, A.; Dietrich-Buchecker, C.; Sauvage, J.-P. Stereoselective Synthesis of a Topologically Chiral Molecule: The Trefoil Knot. Angew. Chem. Int. Ed. 2004, 43, 4482–4485. doi:10.1002/anie.200460250
  • Flack, H. D.; Bernardinelli, G. The Use of X-Ray Crystallography to Determine Absolute Configuration. Chirality 2008, 20, 681–690. doi:10.1002/chir.20473
  • Marchbank, D. H.; Ptycia-Lamky, V. C.; Decken, A.; Haltli, B. A.; Kerr, R. G. Guanahanolide A, a Meroterpenoid with a Sesterterpene Skeleton from Coral-Derived Streptomyces sp. Org. Lett. 2020, 22, 6399–6403. doi:10.1021/acs.orglett.0c02208
  • Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R. Determination of Relative Configuration in Organic Compounds by NMR Spectroscopy and Computational Methods. Chem. Rev. 2007, 107, 3744–3779. doi:10.1021/cr030733c
  • Matsumori, N.; Kaneno, D.; Murata, M.; Nakamura, H.; Tachibana, K. Stereochemical Determination of Acyclic Structures Based on Carbon-Proton Spin-Coupling Constants. A Method of Configuration Analysis for Natural Products. J. Org. Chem. 1999, 64, 866–876. doi:10.1021/jo981810k
  • Rothman, D. L.; Magnusson, I.; Katz, L. D.; Shulman, R. G.; Shulman, G. I. Quantitation of Hepatic Glycogenolysis and Gluconeogenesis in Fasting Humans with 13C NMR. Science 1991, 254, 573–576. doi:10.1126/science.1948033
  • Moulthrop, J. S.; Swatloski, R. P.; Moyna, G.; Rogers, R. D. High-Resolution 13C NMR Studies of Cellulose and Cellulose Oligomers in Ionic Liquid Solutions. Chem. Commun. 2005, 12, 1557–1559.
  • Petrovic, A. G.; Navarrovazquez, A.; Alonsogomez, J. L. From Relative to Absolute Configuration of Complex Natural Products: Interplay between NMR, ECD, VCD, and ORD Assisted by ab Initio Calculations. Curr. Org. Chem. 2010, 14, 1612–1628.
  • Alvarez Rodrigo, A.; Lorenz, H.; Seidel-Morgenstern, A. Online Monitoring of Preferential Crystallization of Enantiomers. Chirality 2004, 16, 499–508. doi:10.1002/chir.20067
  • Zajac, G.; Kaczor, A.; Buda, S.; Młynarski, J.; Frelek, J.; Dobrowolski, J. C.; Baranska, M.; et al. Prediction of ROA and ECD Related to Conformational Changes of Astaxanthin Enantiomers. J. Phys. Chem. B 2015, 119, 12193–12201. doi:10.1021/acs.jpcb.5b07193
  • Bjerkeng, B.; Berge, G. M. Apparent Digestibility Coefficients and Accumulation of Astaxanthin E/Z Isomers in Atlantic Salmon (Salmo salar L.) and Atlantic Halibut (Hippoglossus hippoglossus L.). Comp. Biochem. Physiol., Part B: Biochem. Mol. Biol 2000, 127, 423–−432. doi:10.1016/S0305-0491(00)00278-9
  • Huang, Z.; Mcwilliams, A.; Lui, H.; Mclean, D. I.; Lam, S.; Zeng, H. Near-Infrared Raman Spectroscopy for Optical Diagnosis of Lung Cancer. Int. J. Cancer 2003, 107, 1047–1052. [Database] doi:10.1002/ijc.11500
  • Lin, K.; Wang, J.; Zheng, W.; Ho, K. Y.; Teh, M.; Yeoh, K. G.; Huang, Z. Rapid Fiber-Optic Raman Spectroscopy for Real-Time in Vivo Detection of Gastric Intestinal Metaplasia during Clinical Gastroscopy. Cancer Prev. Res. 2016, 9, 476–483. doi:10.1158/1940-6207.CAPR-15-0213
  • Warnke, I.; Furche, F. Circular Dichroism: Electronic. WIREs Comput. Mol. Sci. 2012, 2, 150–166.
  • Lindon, J. C.; Tranter, G. E.; Koppenaal, D. W. Encyclopedia of Spectroscopy and Spectrometry. Academic Press, 2017.
  • Mu, X. J.; Chen, X. T.; Wang, J. G.; Sun, M. T. Visualizations of Electric and Magnetic Interactions in Electronic Circular Dichroism and Raman Optical Activity. J. Phys. Chem. A 2019, 123, 8071–8081. doi:10.1021/acs.jpca.9b06674
  • Pescitelli, G.; Bruhn, T. Good Computational Practice in the Assignment of Absolute Configurations by TDDFT Calculations of ECD Spectra. Chirality 2016, 28, 466–474. doi:10.1002/chir.22600
  • Whitmore, L.; Wallace, B. A. Protein Secondary Structure Analyses from Circular Dichroism Spectroscopy: Methods and Reference Databases †. Biopolymers 2008, 89, 392–400. doi:10.1002/bip.20853
  • Berova, N.; Bari, L. D.; Pescitelli, G. Application of Electronic Circular Dichroism in Configurational and Conformational Analysis of Organic Compounds. Chem. Soc. Rev. 2007, 36, 914–931. doi:10.1039/b515476f
  • Bruhn, T.; Schaumloffel, A.; Hemberger, Y.; Bringmann, G. SpecDis: Quantifying the Comparison of Calculated and Experimental Electronic Circular Dichroism Spectra. Chirality 2013, 25, 243–249. doi:10.1002/chir.22138
  • Zsila, F.; Bikádi, Z.; Simonyi, M. Probing the Binding of the Flavonoid, Quercetin to Human Serum Albumin by Circular Dichroism, Electronic Absorption Spectroscopy and Molecular Modelling Methods. Biochem. Pharmacol. 2003, 65, 447–456. doi:10.1016/S0006-2952(02)01521-6
  • Mason, S. F. Molecular Optical Activity and the Chiral Discriminations. Cambridge University Press, Cambridge, 1982.
  • Saito, Y.; Nakatsu, K.; Shiro, M.; Kuroya, H. Determination of the Absolute Configuration of optically active complex Ion, [Coen3]3+, by Means of X‐Rays. Acta Cryst. 1955, 8, 729–730. doi:10.1107/S0365110X55002211
  • Rawlings, J.; Stephens, P. J.; Nafie, L. A.; Kamen, M. D. Near-Infrared Magnetic Circular Dichroism of Cytochrome C'. Biochemistry 1977, 16, 1725–1729. doi:10.1021/bi00627a032
  • Feng, Y.; Melacini, G.; Taulane, J. P.; Goodman, M. Acetyl-Terminated and Template-Assembled Collagen-Based Polypeptides Composed of Gly-Pro-Hyp Sequences. 2. Synthesis and Conformational Analysis by Circular Dichroism, Ultraviolet Absorbance, and Optical Rotation. J. Am. Chem. Soc. 1996, 118, 10351–10358. doi:10.1021/ja961260c
  • Page, Y. L.; Saxe, P. Symmetry-General Least-Squares Extraction of Elastic Data for Strained Materials from ab Initio Calculations of Stress. Phys. Rev. B. 2002, 65, 104104. doi:10.1103/PhysRevB.65.104104
  • Rahmstorf, S. A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science 2007, 315, 368–370. doi:10.1126/science.1135456
  • Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–1142. doi:10.1103/PhysRev.140.A1133
  • Ren, Y.-M.; Ke, C.-Q.; Mándi, A.; Kurtán, T.; Tang, C.; Yao, S.; Ye, Y. Two New Lignan-Iridoid Glucoside Diesters from the Leaves of Vaccinium Bracteatum and Their Relative and Absolute Configuration Determination by DFT NMR and TDDFT-ECD Calculation. Tetrahedron 2017, 73, 3213–3219. doi:10.1016/j.tet.2017.04.040
  • Tedesco, D.; Zanasi, R.; Wainer, I. W.; Bertucci, C. Stereochemical and Conformational Study on Fenoterol by ECD Spectroscopy and TD-DFT Calculations. J. Pharm. Biomed. Anal. 2014, 91, 92–96. doi:10.1016/j.jpba.2013.12.018
  • Sekino, H.; Bartlett, R. J. A Linear Response, Coupled‐Cluster Theory for Excitation Energy. Int. J. Quantum Chem. 1984, 26, 255–265. doi:10.1002/qua.560260826
  • Stephens, P. J.; Harada, N. ECD Cotton Effect Approximated by the Gaussian Curve and Other Methods. Chirality 2010, 22, 229–233. doi:10.1002/chir.20733
  • Pedersen, T. B.; Koch, H.; Ruud, K. Coupled Cluster Response Calculation of Natural Chiroptical Spectra. J. Chem. Phys. 1999, 110, 2883–2892. doi:10.1063/1.477931
  • Petrovic, A. G.; Polavarapu, P. L. Chiroptical Spectroscopic Determination of Molecular Structures of Chiral Sulfinamides: T-Butanesulfinamide. J. Phys. Chem. A 2007, 111, 10938–10943. doi:10.1021/jp075077p
  • Petrovic, A. G.; Polavarapu, P. L.; Drabowicz, J.; Lyzwa, P.; Mikołajczyk, M.; Wieczorek, W.; Balińska, A. Diastereomers of N-Alpha-Phenylethyl-t-butylsulfinamide: Absolute Configurations and Predominant Conformations. J. Org. Chem. 2008, 73, 3120–3129. doi:10.1021/jo702544g
  • Petrovic, A. G.; Vick, S. E.; Polavarapu, P. L. Determination of the Absolute Stereochemistry of Chiral Biphenanthryls in Solution Phase Using Chiroptical Spectroscopic Methods: 2,2'-Diphenyl-[3,3'-biphenanthrene]-4,4'-diol. Chirality 2008, 20, 501–510. doi:10.1002/chir.20490
  • Mu, X. J.; Wang, J. G.; Sun, M. T. Visualization of Photoinduced Charge Transfer and Electron–Hole Coherence in Two-Photon Absorption. J. Phys. Chem. C. 2019, 123, 14132–14143. doi:10.1021/acs.jpcc.9b00700
  • Atkins, P. W.; Barron, L. D. Rayleigh Scattering of Polarized Photons by Molecules. Mol. Phys. 1969, 16, 453–466. doi:10.1080/00268976900100501
  • Barron, L. D.; Buckingham, A. D. Rayleigh and Raman Scattering from Optically Active Molecules. Mol. Phys. 1971, 20, 1111–1119. doi:10.1080/00268977100101091
  • Barron, L. D. Molecular Light Scattering and Optical Activity. Cambridge University Press, Cambridge, 2004.
  • Hecht, L.; Barron, L. D. An Analysis of Modulation Experiments for Raman Optical Activity. Appl. Spectrosc. 1990, 44, 483–491. doi:10.1366/0003702904086335
  • Nafie, L. A.; Che, D. Theory and Measurement of Raman Optical Activity. Adv. Chem. Phys. 1994, 85, 105–149.
  • Polavarapu, P. L.; Deng, Z. Structural Determinations Using Vibrational Raman Optical Activity: From a Single Peptide Group to β-Turns. Faraday Discuss. 1994, 99, 151–163. doi:10.1039/FD9949900151
  • Barron, L. D.; Hecht, L.; Gargaro, A. R.; Hug, W. Vibrational Raman Optical Activity in Forward Scattering: Trans‐Pinane and β‐Pinene. J. Raman Spectrosc. 1990, 21, 375–379. doi:10.1002/jrs.1250210609
  • Barron, L. D.; Buckingham, A. D. A Simple Two-Group Model for Rayleigh and Raman Optical Activity. J. Am. Chem. Soc. 1974, 5, 4769–4773.
  • Sutherland, J. C. Measurement of Circular Dichroism and Related Spectroscopies with Conventional and Synchrotron Light Sources: Theory and Instrumentation. In Modern Techniques for Circular Dichroism and Synchrotron Radiation Circular Dichroism Spectroscopy, Advances in Biomedical Spectroscopy, Wallace, B. A., Janes, R. W., Eds.; 2009; pp 19–72.
  • Sutherland, J. C.; Desmond, E. J.; Takacs, P. Z. Versatile Spectrometer for Experiments Using Synchrotron Radiation at Wave-Lengths Greater than 100 nm. Nucl. Instrum. Methods B 1980, 172, 195–199. doi:10.1016/0029-554X(80)90634-5
  • Noguez, C.; Sánchez-Castillo, A.; Hidalgo, F. Role of Morphology in the Enhanced Optical Activity of Ligand-Protected Metal Nanoparticles. J. Phys. Chem. Lett. 2011, 2, 1038–1044. doi:10.1021/jz1016735
  • Lee, S.; Yoo, S.; Park, Q. Microscopic Origin of Surface-Enhanced Circular Dichroism. ACS Photonics 2017, 4, 2047–2052. doi:10.1021/acsphotonics.7b00479
  • Abdali, S.; Blanch, E. W. Surface Enhanced Raman Optical Activity (SEROA). Chem. Soc. Rev. 2008, 37, 980–992. doi:10.1039/b707862p
  • Hecht, L.; Barron, L. D.; Blanch, E. W.; Bell, A. F.; Day, L. A. Raman Optical Activity Instrument for Studies of Biopolymer Structure and Dynamics. J. Raman Spectrosc. 1999, 30, 815–825. doi:10.1002/(SICI)1097-4555(199909)30:9<815::AID-JRS453>3.0.CO;2-1
  • Hug, W.; Hangartner, G. A Novel High-Throughput Raman Spectrometer for Polarization Difference Measurements. J. Raman Spectrosc. 1999, 30, 841–852. doi:10.1002/(SICI)1097-4555(199909)30:9<841::AID-JRS456>3.0.CO;2-1
  • Barron, L. D. The Development of Biomolecular Raman Optical Activity Spectroscopy. BSI 2015, 4, 223–253. doi:10.3233/BSI-150113
  • Kneipp, H.; Kneipp, J.; Kneipp, K. Surface-Enhanced Raman Optical Activity on Adenine in Silver Colloidal Solution. Anal. Chem. 2006, 78, 1363–1366. doi:10.1021/ac0516382
  • Sun, M.; Zhang, Z.; Wang, P.; Li, Q.; Ma, F.; Xu, H. Remotely Excited Raman Optical Activity Using Chiral Plasmon Propagation in Ag Nanowires. Light Sci. Appl. 2013, 2, 1–5.
  • Wessel, J. E. Surface-Enhanced Optical Microscopy. J. Opt. Soc. Am. B. 1985, 2, 1538–1541. doi:10.1364/JOSAB.2.001538
  • Domke, K. F.; Pettinger, B. Studying Surface Chemistry beyond the Diffraction Limit: 10 Years of TERS. Chemphyschem 2010, 11, 1365–1373. doi:10.1002/cphc.200900975
  • Bailo, E.; Deckert, V. Tip-Enhanced Raman Scattering. Chem. Soc. Rev. 2008, 37, 921–930. doi:10.1039/b705967c
  • Langeluddecke, L.; Singh, P.; Deckert, V. Exploring the Nanoscale: Fifteen Years of Tip-Enhanced Raman Spectroscopy. Appl. Spectrosc. 2015, 69, 1357–1371.
  • Zhang, Z.; Sheng, S.; Wang, R.; Sun, M. T. Tip-Enhanced Raman Spectroscopy. Anal. Chem. 2016, 88, 9328–9346. doi:10.1021/acs.analchem.6b02093
  • Hiramatsu, K.; Okuno, M.; Kano, H.; Leproux, P.; Couderc, V.; Hamaguchi, H. Observation of Raman Optical Activity by Heterodyne-Detected Polarization-Resolved Coherent anti-Stokes Raman Scattering. Phys. Rev. Lett. 2012, 109, 083901. doi:10.1103/PhysRevLett.109.083901
  • Hiramatsu, K.; Kano, H.; Nagata, T. Raman Optical Activity by Coherent Anti-Stokes Raman Scattering Spectral Interferometry. Opt. Express 2013, 21, 13515–13521. doi:10.1364/OE.21.013515
  • Hiramatsu, K.; Leproux, P.; Couderc, V.; Nagata, T.; Kano, H. Raman Optical Activity Spectroscopy by Visible-Excited Coherent Anti-Stokes Raman Scattering. Opt. Lett. 2015, 40, 4170–4173. doi:10.1364/OL.40.004170
  • Rouxel, J. R.; Zhang, Y.; Mukamel, S. X-Ray Raman Optical Activity of Chiral Molecules. Chem. Sci. 2019, 10, 898–908. doi:10.1039/c8sc04120b
  • Fleischmann, M.; Hendra, P. J.; Mcquillan, A. J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. doi:10.1016/0009-2614(74)85388-1
  • Jeanmaire, D. L.; Van Duyne, R. P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. 1977, 84, 1–20. doi:10.1016/S0022-0728(77)80224-6
  • Albrecht, M. G.; Creighton, J. A. Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode. J. Am. Chem. Soc. 1977, 99, 5215–5217. doi:10.1021/ja00457a071
  • Janesko, B. G.; Scuseria, G. E. Surface Enhanced Raman Optical Activity of Molecules on Orientationally Averaged Substrates: Theory of Electromagnetic Effects. J. Chem. Phys. 2006, 125, 1–13.
  • Efrima, S. The Effect of Large Electric Field Gradients on the Raman Optical Activity of Molecules Adsorbed on Metal Surfaces. Chem. Phys. Lett. 1983, 102, 79–82. doi:10.1016/0009-2614(83)80662-9
  • Sun, M.; Zhang, Z.; Wang, P.; Li, Q.; Ma, F.; Xu, H. Remotely Excited Raman Optical Activity Using Chiral Plasmon Propagation in Ag Nanowires. Light. Sci. Appl. 2013, 2, e112. doi:10.1038/lsa.2013.68
  • Ding, Y.; Huang, Z.; Ratner, D.; Bucksbaum, P.; Merdji, H. Generation of Attosecond X-Ray Pulses with a Multicycle Two-Color Enhanced Self-Amplified Spontaneous Emission Scheme. Phys. Rev. Spec. Top. Accel. Beams 2009, 12, 060703.
  • Chini, M.; Zhao, K.; Chang, Z. The Generation, Characterization and Applications of Broadband Isolated Attosecond Pulses. Nat. Photon. 2014, 8, 178–186. doi:10.1038/nphoton.2013.362
  • Stephens, P. J.; Pan, J.; Devlin, F. J.; Urbanová, M.; Julínek, O.; Hájícek, J. Determination of the Absolute Configurations of Natural Products via Density Functional Theory Calculations of Vibrational Circular Dichroism, Electronic Circular Dichroism, and Optical Rotation: The Iso-Schizozygane Alkaloids Isoschizogaline and Isoschizogamine. J. Org. Chem. 2008, 20, 454–470. doi:10.1002/chir.20466
  • Grkovic, T.; Ding, Y.; Li, X.; Webb, V. L.; Ferreira, D.; Copp, B. R. Enantiomeric Discorhabdin Alkaloids and Establishment of Their Absolute Configurations Using Theoretical Calculations of Electronic Circular Dichroism Spectra. J. Org. Chem. 2008, 73, 9133–9136. doi:10.1021/jo801622n
  • Kobayashi, J.; Cheng, J-f.; Ishibashi, M.; Nakamura, H.; Ohizumi, Y.; Hirata, Y.; Sasaki, T.; Lu, H.; Clardy, J. Prianosin A, a Novel Antileukemic Alkaloid from the Okinawan Marine Sponge Prianos Melanos. Tetrahedron Lett. 1987, 28, 4939–4942. doi:10.1016/S0040-4039(00)96664-4
  • Perry, N. B.; Blunt, J. W.; Munro, M. H. Cytotoxic Pigments from New Zealand Sponges of the Genus Latrunculia: Discorhabdins A, B and C. Tetrahedron 1988, 44, 1727–1734. doi:10.1016/S0040-4020(01)86737-5
  • Jia, R.; Guo, Y.; Chen, P.; Yang, Y.; Mollo, E.; Gavagnin, M.; Cimino, G. Biscembranoids and Their Probable Biogenetic Precursor from the Hainan Soft Coral Sarcophyton Tortuosum. J. Nat. Prod. 2007, 70, 1158–1166. doi:10.1021/np060220b
  • Leone, P. D.; Bowden, B. F.; Carroll, A. R.; Coll, J. C.; Meehan, G. V. Studies of Australian Soft Corals, XLIX: A New Biscembranoid and Its Probable Biosynthetic Precursors from the Soft Coral Sarcophyton Tortuosum. J. Nat. Prod. 1993, 56, 521–526. doi:10.1021/np50094a011
  • Kurtan, T.; Jia, R.; Li, Y.; Pescitelli, G.; Guo, Y. Absolute Configuration of Highly Flexible Natural Products by the Solid‐State ECD/TDDFT Method: Ximaolides and Sinulaparvalides. Eur. J. Org. Chem. 2012, 34, 6722–6728.
  • Whitmore, L.; Miles, A. J.; Mavridis, L.; Janes, R. W.; Wallace, B. A. PCDDB: New Developments at the Protein Circular Dichroism Data Bank. Nucleic Acids. Res. 2017, 45, D303–D307. doi:10.1093/nar/gkw796
  • Kaminsky, J.; Kubelka, J.; Bour, P. Theoretical Modeling of Peptide α-Helical Circular Dichroism in Aqueous Solution. J. Phys. Chem. A 2011, 115, 1734–1742.
  • Chalfie, M.; Tu, Y.; Euskirchen, G.; Ward, W. W.; Prasher, D. Green Fluorescent Protein as a Marker for Gene Expression. Science 1994, 263, 802–805. doi:10.1126/science.8303295
  • Cubitt, A. B.; Heim, R.; Adams, S. R.; Boyd, A. E.; Gross, L. A.; Tsien, R. Y. Understanding, Improving and Using Green Fluorescent Proteins. Trends Biochem. Sci. 1995, 20, 448–455. doi:10.1016/S0968-0004(00)89099-4
  • Miyawaki, A.; Llopis, J.; Heim, R.; Mccaffery, J. M.; Adams, J. A.; Ikura, M.; Tsien, R. Y. Fluorescent Indicators for Ca2+ Based on Green Fluorescent Proteins and Calmodulin. Nature 1997, 388, 882–887. doi:10.1038/42264
  • Pikulska, A.; Steindal, A. H.; Beerepoot, M. T.; Pecul, M. Electronic Circular Dichroism of Fluorescent Proteins: A Computational Study. J. Phys. Chem. B 2015, 119, 3377–3386. doi:10.1021/jp511199g
  • Visser, N. V.; Hink, M. A.; Borst, J. W.; Der Krogt, G. N.; Visser, A. J. Circular Dichroism Spectroscopy of Fluorescent Proteins. FEBS Lett. 2002, 521, 31–35. doi:10.1016/S0014-5793(02)02808-9
  • Matz, M. V.; Fradkov, A. F.; Labas, Y. A.; Savitsky, A. P.; Zaraisky, A. G.; Markelov, M. L.; Lukyanov, S. A. Fluorescent Proteins from Nonbioluminescent Anthozoa Species. Nat. Biotechnol. 1999, 17, 969–973. doi:10.1038/13657
  • Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional Superconductivity in Magic-Angle Graphene Superlattices. Nature 2018, 556, 43–50. doi:10.1038/nature26160
  • Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated Insulator Behaviour at Half-Filling in Magic-Angle Graphene Superlattices. Nature 2018, 556, 80–84. doi:10.1038/nature26154
  • Mu, X. J.; Sun, M. T. The Linear and Nonlinear Optical Absorption and Asymmetrical Electromagnetic Interaction in Chiral Twisted Bilayer Graphene with Hybrid Edges. Mater. Today Phys. 2020, 14, 100222–100222(18. doi:10.1016/j.mtphys.2020.100222
  • Mandi, A.; Kurtan, T. Applications of or/ECD/VCD to the Structure Elucidation of Natural Products. Nat. Prod. Rep. 2019, 36, 889–918.
  • Seco, J. M.; Quinoa, E.; Riguera, R. Assignment of the Absolute Configuration of Polyfunctional Compounds by NMR Using Chiral Derivatizing Agents. Chem. Rev. 2012, 112, 4603–4641. doi:10.1021/cr2003344
  • Sun, P.; Xu, D. X.; Mandi, A.; Kurtan, T.; Li, T.; Schulz, B.; Zhang, W. Structure, Absolute Configuration, and Conformational Study of 12-Membered Macrolides from the Fungus Dendrodochium sp. Associated with the Sea Cucumber Holothuria Nobilis Selenka. J. Org. Chem. 2013, 78, 7030–7047. doi:10.1021/jo400861j
  • McColl, I. H.; Blanch, E. W.; Gill, A. C.; Rhie, A. G. O.; Ritchie, M. A.; Hecht, L.; Nielsen, K.; Barron, L. D. A New Perspective on Beta-Sheet Structures Using Vibrational Raman Optical Activity: From Poly(L-lysine) to the Prion Protein. J. Am. Chem. Soc. 2003, 125, 10019–10026. doi:10.1021/ja021464v
  • Furuta, M.; Fujisawa, T.; Urago, H.; Eguchi, T.; Shingae, T.; Takahashi, S.; Blanch, E. W.; Unno, M. Raman Optical Activity of Tetra-Alanine in the Poly(L-Proline) II Type Peptide Conformation. Phys. Chem. Chem. Phys. 2017, 19, 2078–2086. doi:10.1039/C6CP07828A
  • Angel, S. M.; Kulp, T. J.; Vess, T. M. Remote-Raman Spectroscopy at Intermediate Ranges Using Low-Power cw Lasers. Appl. Spectrosc. 1992, 46, 1085–1091. doi:10.1366/0003702924124132
  • Hobro, A. J.; Rouhi, M.; Blanch, E. W.; Conn, G. L. Raman and Raman Optical Activity (ROA) Analysis of RNA Structural Motifs in Domain I of the EMCV IRES. Nucleic Acids Res. 2007, 35, 1169–1177. doi:10.1093/nar/gkm012
  • Kolupaeva, V. G.; Pestova, T. V.; Hellen, C. U.; Shatsky, I. N. Translation Eukaryotic Initiation Factor 4G Recognizes a Specific Structural Element within the Internal Ribosome Entry Site of Encephalomyocarditis Virus RNA. J. Biol. Chem. 1998, 273, 18599–18604. doi:10.1074/jbc.273.29.18599
  • Wilson, A. L.; Outeiral, C.; Dowd, S. E.; Doig, A. J.; Almond, A. Deconvolution of Conformational Exchange from Raman Spectra of Aqueous Rna Nucleosides. Commun. Chem. 2020, 3, 1–9.
  • Dudek, M.; Zajac, G.; Szafraniec, E.; Wiercigroch, E.; Tott, S.; Malek, K.; Kaczor, A.; Baranska, M. Raman Optical Activity and Raman Spectroscopy of Carbohydrates in Solution. Spectrochim. Acta A 2019, 206, 597–612. doi:10.1016/j.saa.2018.08.017
  • Barron, L. D.; Gargaro, A. R.; Wen, Z. Q. Vibrational Raman Optical Activity of Carbohydrates. Carbohyd. Res. 1991, 210, 39–49. doi:10.1016/0008-6215(91)80111-Y
  • Mu, X. J.; Wang, J. G.; Duan, G. Q.; Li, Z. J.; Wen, J. X.; Sun, M. T. The Nature of Chirality Induced by Molecular Aggregation and Self-Assembly. Spectrochim. Acta Part A 2019, 212, 188–198. doi:10.1016/j.saa.2019.01.012
  • Tian, C. H.; Zhang, Y. T.; Mu, X. J.; Quan, J.; Sun, M. T. Optical Physics on Chiral Brominated Azapirones: Bromophilone A and B. Spectrochim. Acta Part A 2020, 242, 118780. doi:10.1016/j.saa.2020.118780
  • Ma, J. L.; Sun, M. T. Photo-Physical Properties of Vinigrol Revealed by Two-Photon Absorption, Electronic Circular Dichroism, Raman Spectroscopy and Raman Optical Activity. Chem. Phys. Lett. 2020, 755, 137798. doi:10.1016/j.cplett.2020.137798
  • Fan, J. N.; Sun, M. T. Optical Properties of Kalihinol Derivatives in TPA, ECD and ROA. Chem. Phys. Lett. 2020, 755, 137796. doi:10.1016/j.cplett.2020.137796
  • Zajac, G.; Kaczor, A.; Pallares, Z. A.; Mlynarski, J.; Dudek, M.; Baranska, M. Aggregation-Induced Resonance Raman Optical Activity (AIRROA): A New Mechanism for Chirality Enhancement. J. Phys. Chem. B 2016, 120, 4028–4033. doi:10.1021/acs.jpcb.6b02273
  • Dudek, M.; Zajac, G.; Kaczor, A.; Baranska, M. Aggregation-Induced Resonance Raman Optical Activity (AIRROA) and Time-Dependent Helicity Switching of Astaxanthin Supramolecular Assemblies. J. Phys. Chem. B 2016, 120, 7807–7814. doi:10.1021/acs.jpcb.6b05514
  • Nagy, P.; Koltai, J.; Surjan, P. R.; Kurti, J.; Szabados, A. Resonance Raman Optical Activity of Single Walled Chiral Carbon Nanotubes. J. Phys. Chem. A 2016, 120, 5527–5538. doi:10.1021/acs.jpca.6b04594

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.