1,066
Views
0
CrossRef citations to date
0
Altmetric
Review

Solvatochromism: a tool for solvent discretion for UV-Vis spectroscopic studies

, , &

References

  • Biver, T. Use of UV-Vis Spectrometry to Gain Information on the Mode of Binding of Small Molecules to DNAs and RNAs. Appl. Spectrosc. Rev. 2012, 47, 272–325. https://doi.org/10.1080/05704928.2011.641044.
  • Nair, M. S. Spectroscopic Studies on the Interaction of Serum Albumins with Plant Derived Natural Molecules. Appl. Spectrosc. Rev. 2018, 53, 636–666. https://doi.org/10.1080/05704928.2017.1402184.
  • Gorbunova, M. V.; Gutorova, S. V.; Berseneva, D. A.; Apyari, V. V.; Zaitsev, V. D.; Dmitrienko, S. G.; Zolotov, Y. A. Spectroscopic Methods for Determination of Catecholamines: A Mini-Review. Appl. Spectrosc. Rev. 2019, 54, 631–652. https://doi.org/10.1080/05704928.2018.1470980.
  • Stock, R. I.; Nandi, L. G.; Nicoleti, C. R.; Schramm, A. D. S.; Meller, S. L.; Heying, R. S.; Coimbra, D. F.; Andriani, K. F.; Caramori, G. F.; Bortoluzzi, A. J.; et al. Synthesis and Solvatochromism of Substituted 4-(Nitrostyryl)Phenolate Dyes. J. Org. Chem. 2015, 80, 7971–7983. https://doi.org/10.1021/acs.joc.5b00983.
  • Yu, A.; Tolbert, C. A.; Farrow, D. A.; Jonas, D. M. Solvatochromism and Solvation Dynamics of Structurally Related Cyanine Dyes. J. Phys. Chem. A 2002, 106, 9407–9419. https://doi.org/10.1021/jp0205867.
  • Nigam, S.; Rutan, S. Principles and Applications of Solvatochromism. Appl. Spectrosc. 2001, 55, 362A–370A. https://doi.org/10.1366/0003702011953702.
  • Renger, T.; Grundkötter, B.; Madjet, M. E. A.; Müh, F. Theory of Solvatochromic Shifts in Nonpolar Solvents Reveals a New Spectroscopic Rule. Proc. Natl. Acad. Sci. USA 2008, 105, 13235–13240. https://doi.org/10.1073/pnas.0801025105.
  • Cerõn-Carrasco, J. P.; Jacquemin, D.; Laurence, C.; Planchat, A.; Reichardt, C.; Sraïdi, K. Solvent Polarity Scales: Determination of New ET(30) Values for 84 Organic Solvents. J. Phys. Org. Chem. 2014, 27, 512–518. https://doi.org/10.1002/poc.3293.
  • Morzan, U. N.; Alonso De Armiño, D. J.; Foglia, N. O.; Ramírez, F.; González Lebrero, M. C.; Scherlis, D. A.; Estrin, D. A. Spectroscopy in Complex Environments from QM-MM Simulations. Chem. Rev. 2018, 118, 4071–4113. https://doi.org/10.1021/acs.chemrev.8b00026.
  • Marini, A.; Muñoz-Losa, A.; Biancardi, A.; Mennucci, B. What is Solvatochromism? J. Phys. Chem. B 2010, 114, 17128–17135. https://doi.org/10.1021/jp1097487.
  • Shao, Y.; Gan, Z.; Epifanovsky, E.; Gilbert, A. T. B.; Wormit, M.; Kussmann, J.; Lange, A. W.; Behn, A.; Deng, J.; Feng, X. D.; et al. Advances in Molecular Quantum Chemistry Contained in the Q-Chem 4 Program Package. Mol. Phys. 2015, 113, 184–215.
  • Friesner, R. A. Ab Initio Quantum Chemistry: Methodology and Applications. Proc. Natl. Acad. Sci. USA 2005, 102, 6648–6653. https://doi.org/10.1073/pnas.0408036102.
  • Lee, S. J. R.; Welborn, M.; Manby, F. R.; Miller, T. F. Projection-Based Wavefunction-in-DFT Embedding. Acc. Chem. Res. 2019, 52, 1359–1368. https://doi.org/10.1021/acs.accounts.8b00672.
  • Krylov, A. I.; Gill, P. M. W. Q-Chem: An Engine for Innovation. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2013, 3, 317–326. https://doi.org/10.1002/wcms.1122.
  • Gilbert, A. T. B.; Besley, N. A.; Gill, P. M. W. Self-Consistent Field Calculations of Excited States Using the Maximum Overlap Method (MOM). J. Phys. Chem. A 2008, 112, 13164–13171. https://doi.org/10.1021/jp801738f.
  • Cossi, M.; Rega, N.; Scalmani, G.; Barone, V. Energies, Structures, and Electronic Properties of Molecules in Solution with the C-PCM Solvation Model. J. Comput. Chem. 2003, 24, 669–681. https://doi.org/10.1002/jcc.10189.
  • Sham, Y. Y.; Chu, Z. T.; Warshel, A. Consistent Calculations of PKa’s of Ionizable Residues in Proteins: Semi-Microscopic and Microscopic Approaches. J. Phys. Chem. B 1997, 101, 4458–4472. https://doi.org/10.1021/jp963412w.
  • Gordon, M. S.; Fedorov, D. G.; Pruitt, S. R.; Slipchenko, L. V. Fragmentation Methods: A Route to Accurate Calculations on Large Systems. Chem. Rev. 2012, 112, 632–672. https://doi.org/10.1021/cr200093j.
  • Warshel, A.; Levitt, M. Theoretical Studies of Enzymic Reactions: Dielectric, Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme. J. Mol. Biol. 1976, 103, 227–249. https://doi.org/10.1016/0022-2836(76)90311-9.
  • Kosenkov, D.; Slipchenko, L. V. Solvent Effects on the Electronic Transitions of p-Nitroaniline: A QM/EFP Study. J. Phys. Chem. A 2011, 115, 392–401. doi:https://doi.org/10.1021/jp110026c
  • Zhao, W.; Pan, L.; Bian, W.; Wang, J. Influence of Solvent Polarity and Hydrogen Bonding on the Electronic Transition of Coumarin 120: A TDDFT Study. ChemPhysChem 2008, 9, 1593–1602. https://doi.org/10.1002/cphc.200800131.
  • De Silva, N.; Willow, S. Y.; Gordon, M. S. Solvent Induced Shifts in the UV Spectrum of Amides. J. Phys. Chem. A 2013, 117, 11847–11855. https://doi.org/10.1021/jp402999p.
  • Kistler, K. A.; Matsika, S. Solvatochromic Shifts of Uracil and Cytosine Using a Combined Multireference Configuration Interaction/Molecular Dynamics Approach and the Fragment Molecular Orbital Method. J. Phys. Chem. A 2009, 113, 12396–12403. doi:https://doi.org/10.1021/jp901601u
  • Almandoz, M. C.; Sancho, M. I.; Duchowicz, P. R.; Blanco, S. E. UV-Vis Spectroscopic Study and DFT Calculation on the Solvent Effect of Trimethoprim in Neat Solvents and Aqueous Mixtures. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2014, 129, 52–60. https://doi.org/10.1016/j.saa.2014.02.191.
  • Masternak, A.; Wenska, G.; Milecki, J.; Skalski, B.; Franzen, S. Solvatochromism of a Novel Betaine Dye Derived from Purine. J. Phys. Chem. A 2005, 109, 759–766. https://doi.org/10.1021/jp047098e.
  • Abraham, C. S.; Muthu, S.; Prasana, J. C.; Armaković, S. J.; Armaković, S.; Rizwana, B. F.; Ben, B. G. Spectroscopic Profiling (FT-IR, FT-Raman, NMR and UV-Vis), Autoxidation Mechanism (H-BDE) and Molecular Docking Investigation of 3-(4-Chlorophenyl)-N,N-Dimethyl-3-Pyridin-2-Ylpropan-1-Amine by DFT/TD-DFT and Molecular Dynamics: A Potential SSRI Drug. Comput. Biol. Chem. 2018, 77, 131–145. doi:https://doi.org/10.1016/j.compbiolchem.2018.08.010
  • Xu, Z.; Tsai, H.; Wang, H. L.; Cotlet, M. Solvent Polarity Effect on Chain Conformation, Film Morphology, and Optical Properties of a Water-Soluble Conjugated Polymer. J. Phys. Chem. B 2010, 114, 11746–11752. https://doi.org/10.1021/jp105032y.
  • Geng, T.; Schalk, O.; Neville, S. P.; Hansson, T.; Thomas, R. D. Dynamics in Higher Lying Excited States: Valence to Rydberg Transitions in the Relaxation Paths of Pyrrole and Methylated Derivatives. J. Chem. Phys. 2017, 146, 144307. https://doi.org/10.1063/1.4979681.
  • Zheng, Z.; Egger, D. A.; Brédas, J. L.; Kronik, L.; Coropceanu, V. Effect of Solid-State Polarization on Charge-Transfer Excitations and Transport Levels at Organic Interfaces from a Screened Range-Separated Hybrid Functional. J. Phys. Chem. Lett. 2017, 8, 3277–3283. https://doi.org/10.1021/acs.jpclett.7b01276.
  • Suess, C. J.; Hirst, J. D.; Besley, N. A. Quantum Chemical Calculations of Tryptophan → Heme Electron and Excitation Energy Transfer Rates in Myoglobin. J. Comput. Chem. 2017, 38, 1495–1502. https://doi.org/10.1002/jcc.24793.
  • Hossain, E.; Deng, S. M.; Gozem, S.; Krylov, A. I.; Wang, X.; Bin; Wenthold, P. G. Photoelectron Spectroscopy Study of Quinonimides. J. Am. Chem. Soc. 2017, 139, 11138–11148. https://doi.org/10.1021/jacs.7b05197.
  • Fennimore, M. A.; Karsili, T. N. V.; Matsika, S. Mechanisms of H and CO Loss from the Uracil Nucleobase following Low Energy Electron Irradiation. Phys. Chem. Chem. Phys. 2017, 19, 17233–17241. https://doi.org/10.1039/c7cp01345k.
  • Khrenova, M. G.; Meteleshko, Y. I.; Nemukhin, A. V. Mutants of the Flavoprotein ILOV as Prospective Red-Shifted Fluorescent Markers. J. Phys. Chem. B 2017, 121, 10018–10025. https://doi.org/10.1021/acs.jpcb.7b07533.
  • Saha, S.; Quiney, H. M. Solvent Effects on the Excited State Characteristics of Adenine-Thymine Base Pairs. RSC Adv. 2017, 7, 33426–33440. https://doi.org/10.1039/c7ra03244g.
  • Budzák, Š.; Laurent, A. D.; Laurence, C.; Medved, M.; Jacquemin, D. Solvatochromic Shifts in UV-Vis Absorption Spectra: The Challenging Case of 4-Nitropyridine N-Oxide. J. Chem. Theory Comput. 2016, 12, 1919–1929. https://doi.org/10.1021/acs.jctc.6b00149.
  • Kunitsa, A. A.; Bravaya, K. B. Electronic Structure of the Para-Benzoquinone Radical Anion Revisited. Phys. Chem. Chem. Phys. 2016, 18, 3454–3462. https://doi.org/10.1039/c5cp06476g.
  • Bohnwagner, M. V.; Burghard, I.; Dreuw, A. Solvent Polarity Tunes the Barrier Height for Twisted Intramolecular Charge Transfer in N-Pyrrolobenzonitrile (PBN). J. Phys. Chem. A 2016, 120, 14–27. https://doi.org/10.1021/acs.jpca.5b09115.
  • Arora, P.; Slipchenko, L. V.; Webb, S. P.; Defusco, A.; Gordon, M. S. Solvent-Induced Frequency Shifts: Configuration Interaction Singles Combined with the Effective Fragment Potential Method. J. Phys. Chem. A 2010, 114, 6742–6750. https://doi.org/10.1021/jp101780r.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.