392
Views
7
CrossRef citations to date
0
Altmetric
Review

Flow field-flow fractionation hyphenated with inductively coupled plasma mass spectrometry: a robust technique for characterization of engineered elemental metal nanoparticles in the environment

, ORCID Icon, , , , , , , & ORCID Icon show all

References

  • Son, D.; Bao, Z. A. Nanomaterials in Skin-Inspired Electronics: Toward Soft and Robust Skin-Like Electronic Nanosystems. ACS Nano 2018, 12, 11731–11739. doi:10.1021/acsnano.8b07738
  • Peters, R. J. B.; Bouwmeester, H.; Gottardo, S.; Amenta, V.; Arena, M.; Brandhoff, P.; Marvin, H. J. P.; Mech, A.; Moniz, F. B.; Pesudo, L. Q.; et al. Nanomaterials for Products and Application in Agriculture, Feed and Food. Trends Food Sci. Technol. 2016, 54, 155–164. doi:10.1016/j.tifs.2016.06.008
  • Mauter, M. S.; Elimelech, M. Environmental Applications of Carbon-Based Nanomaterials. Environ. Sci. Technol. 2008, 42, 5843–5859. doi:10.1021/es8006904
  • Barreto, J. A.; O’Malley, W.; Kubeil, M.; Graham, B.; Stephan, H.; Spiccia, L. Nanomaterials: Applications in Cancer Imaging and Therapy. Adv. Mater. 2011, 23, H18–H40. doi:10.1002/adma.201100140
  • Wagner, S.; Gondikas, A.; Neubauer, E.; Hofmann, T.; von der Kammer, F. Spot the Difference: Engineered and Natural Nanoparticles in the Environment — Release, Behavior, and Fate. Angew. Chem. Int. Ed. 2014, 53, 12398–12419.
  • Liu, L. C.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. doi:10.1021/acs.chemrev.7b00776
  • Pandey, R. K.; Chen, L.; Teraji, S.; Nakanishi, H.; Soh, S. Direct Deposition of Metal Nanoparticles on Graphite for Electrochemical Energy Conversion and Storage. ACS Appl. Mater. Interfaces 2019, 11, 36525–36534. doi:10.1021/acsami.9b09273
  • Kim, K. S.; Kim, J. H.; Yoo, S. I.; Sohn, B. H. Fluorescence Resonance Energy Transfer within Diblock Copolymer Micelles in the Proximity of Metal Nanoparticles. Macromol. Res. 2019, 27, 905–910. doi:10.1007/s13233-019-7127-z
  • Rai, M.; Yadav, A.; Gade, A. Silver Nanoparticles as a New Generation of Antimicrobials. Biotechnol. Adv. 2009, 27, 76–83. doi:10.1016/j.biotechadv.2008.09.002
  • Slavin, Y. N.; Asnis, J.; Hafeli, U. O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15, 65.
  • Liu, S. J.; Xia, T. Continued Efforts on Nanomaterial-Environmental Health and Safety is Critical to Maintain Sustainable Growth of Nanoindustry. Small 2020, 16, 2000603. doi:10.1002/smll.202000603
  • Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R. Transformations of Nanomaterials in the Environment. Environ. Sci. Technol. 2012, 46, 6893–6899. doi:10.1021/es300839e
  • Levard, C.; Hotze, E. M.; Lowry, G. V.; Brown, G. E. Environmental Transformations of Silver Nanoparticles: Impact on Stability and Toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Database] doi:10.1021/es2037405
  • Ju-Nam, Y.; Lead, J. R. Manufactured Nanoparticles: An Overview of Their Chemistry, Interactions and Potential Environmental Implications. Sci. Total Environ. 2008, 400, 396–414. doi:10.1016/j.scitotenv.2008.06.042
  • Deng, R.; Lin, D. H.; Zhu, L. Z.; Majumdar, S.; White, J. C.; Gardea-Torresdey, J. L.; Xing, B. S. Nanoparticle Interactions with Co-Existing Contaminants: Joint Toxicity, Bioaccumulation and Risk. Nanotoxicology 2017, 11, 591–612. doi:10.1080/17435390.2017.1343404
  • Guo, X. R.; Yin, Y. G.; Tan, Z. Q.; Liu, J. F.; Jiang, G. B. Catalytic Oxidation of Arsenic in Water by Silver Nanoparticles. Acta Chimica Sinica 2018, 76, 387–392. doi:10.6023/A18020067
  • Bilberg, K.; Malte, H.; Wang, T.; Baatrup, E. Silver Nanoparticles and Silver Nitrate Cause Respiratory Stress in Eurasian Perch (Perca Fluviatilis). Aquat. Toxicol. 2010, 96, 159–165. [Database] doi:10.1016/j.aquatox.2009.10.019
  • Brun, N. R.; Koch, B. E. V.; Varela, M.; Peijnenburg, W. J. G. M.; Spaink, H. P.; Vijver, M. G. Nanoparticles Induce Dermal and Intestinal Innate Immune System Responses in Zebrafish Embryos. Environ. Sci: Nano 2018, 5, 904–916. doi:10.1039/C8EN00002F
  • Vali, S.; Mohammadi, G.; Tavabe, K. R.; Moghadas, F.; Naserabad, S. S. The Effects of Silver Nanoparticles (Ag-NPs) Sublethal Concentrations on Common Carp (Cyprinus Carpio): Bioaccumulation, Hematology, Serum Biochemistry and Immunology, Antioxidant Enzymes, and Skin Mucosal Responses. Ecotoxicol. Environ. Saf. 2020, 194, 110353. doi:10.1016/j.ecoenv.2020.110353
  • Schrand, A. M.; Rahman, M. F.; Hussain, S. M.; Schlager, J. J.; Smith, D. A.; Ali, S. F. Metal-Based Nanoparticles and Their Toxicity Assessment. WIREs Nanomed. Nanobiotechnol. 2010, 2, 544–568. doi:10.1002/wnan.103
  • Liu, W.; Wu, Y. A.; Wang, C.; Li, H. C.; Wang, T.; Liao, C. Y.; Cui, L.; Zhou, Q. F.; Yan, B.; Jiang, G. B. Impact of Silver Nanoparticles on Human Cells: Effect of Particle Size. Nanotoxicology 2010, 4, 319–330. doi:10.3109/17435390.2010.483745
  • Meermann, B.; Nischwitz, V. ICP-MS for the Analysis at the Nanoscale — a Tutorial Review. J. Anal. At. Spectrom. 2018, 33, 1432–1468. doi:10.1039/C8JA00037A
  • He, M.; Chen, B. B.; Wang, H.; Hu, B. Microfluidic Chip-Inductively Coupled Plasma Mass Spectrometry for Trace Elements and Their Species Analysis in Cells. Appl. Spectrosc. Rev. 2019, 54, 250–263. doi:10.1080/05704928.2019.1565864
  • Wang, X. Y.; Yin, X. B.; Zeng, Z. G.; Chen, S. Multi-Element Analysis of Ferromanganese Nodules and Crusts by Inductively Coupled Plasma Mass Spectrometry. At. spectrosc. 2019, 40, 153–160. doi:10.46770/AS.2019.05.001
  • Laborda, F.; Bolea, E.; Jimenez-Lamana, J. Single Particle Inductively Coupled Plasma Mass Spectrometry for the Analysis of Inorganic Engineered Nanoparticles in Environmental Samples. Trends Environ. Anal. Chem. 2016, 9, 15–23. doi:10.1016/j.teac.2016.02.001
  • Liu, L. H.; Yin, Y. G.; Hu, L. G.; He, B.; Shi, J. B.; Jiang, G. B. Revisiting the Forms of Trace Elements in Biogeochemical Cycling: Analytical Needs and Challenges. TrAC, Trends Anal. Chem. 2020, 129, 115953. doi:10.1016/j.trac.2020.115953
  • Flores, K.; Turley, R. S.; Valdes, C.; Ye, Y. Q.; Cantu, J.; Hernandez-Viezcas, J. A.; Parsons, J. G.; Gardea-Torresdey, J. L. Environmental Applications and Recent Innovations in Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS). Appl. Spectrosc. Rev 2021, 56, 1–26. doi:10.1080/05704928.2019.1694937
  • Zhou, X. X.; Liu, R.; Liu, J. F. Rapid Chromatographic Separation of Dissoluble Ag(I) and Silver-Containing Nanoparticles of 1-100 Nanometer in Antibacterial Products and Environmental Waters. Environ. Sci. Technol. 2014, 48, 14516–14524. doi:10.1021/es504088e
  • Pitkanen, L.; Bustos, A. R. M.; Murphy, K. E.; Winchester, M. R.; Striegel, A. M. Quantitative Characterization of Gold Nanoparticles by Size-Exclusion and Hydrodynamic Chromatography, Coupled to Inductively Coupled Plasma Mass Spectrometry and Quasi-Elastic Light Scattering. J. Chromatogr. A 2017, 1511, 59–67. doi:10.1016/j.chroma.2017.06.064
  • Schmidt, B.; Loeschner, K.; Hadrup, N.; Mortensen, A.; Sloth, J. J.; Koch, C. B.; Larsen, E. H. Quantitative Characterization of Gold Nanoparticles by Field-Flow Fractionation Coupled on-Line with Light Scattering Detection and Inductively Coupled Plasma Mass Spectrometry. Anal. Chem. 2011, 83, 2461–2468. doi:10.1021/ac102545e
  • Pornwilard, M. M.; Siripinyanond, A. Field-Flow Fractionation with Inductively Coupled Plasma Mass Spectrometry: Past, Present, and Future. J. Anal. At. Spectrom. 2014, 29, 1739–1752.
  • Tan, Z. Q.; Liu, J. F.; Guo, X. R.; Yin, Y. G.; Byeon, S. K.; Moon, M. H.; Jiang, G. B. Toward Full Spectrum Speciation of Silver Nanoparticles and Ionic Silver by on-Line Coupling of Hollow Fiber Flow Field-Flow Fractionation and Minicolumn Concentration with Multiple Detectors. Anal. Chem. 2015, 87, 8441–8447. doi:10.1021/acs.analchem.5b01827
  • Giddings, J. C. Field-Flow Fractionation: Analysis of Macromolecular, Colloidal, and Particulate Materials. Science 1993, 260, 1456–1465. doi:10.1126/science.8502990
  • Wahlund, K. G. Flow Field-Flow Fractionation: Critical Overview. J. Chromatogr. A 2013, 1287, 97–112. doi:10.1016/j.chroma.2013.02.028
  • Pitkänen, L.; Striegel, A. M. Size-Exclusion Chromatography of Metal Nanoparticles and Quantum Dots. TrAC, Trends Anal. Chem. 2016, 80, 311–320. doi:10.1016/j.trac.2015.06.013
  • Joensson, J. A.; Carlshaf, A. Flow Field Flow Fractionation in Hollow Cylindrical Fibers. Anal. Chem. 1989, 61, 11–18. doi:10.1021/ac00176a004
  • Kostanski, L. K.; Keller, D. M.; Hamielec, A. E. Size-Exclusion Chromatography—A Review of Calibration Methodologies. J Biochem. Biophys. Methods 2004, 58, 159–186. doi:10.1016/j.jbbm.2003.10.001
  • Min, B. R.; Kim, S. J.; Ahn, K. H.; Moon, M. H. Hyperlayer Separation in Hollow Fiber Flow Field-Flow Fractionation: Effect of Membrane Materials on Resolution and Selectivity. J. Chromatogr. A. 2002, 950, 175–182. doi:10.1016/S0021-9673(02)00029-8
  • Baalousha, M.; Stolpe, B.; Lead, J. R. Flow Field-Flow Fractionation for the Analysis and Characterization of Natural Colloids and Manufactured Nanoparticles in Environmental Systems: A Critical Review. J. Chromatogr. A 2011, 1218, 4078–4103. doi:10.1016/j.chroma.2011.04.063
  • Moon, M. H.; Lee, K. H.; Min, B. R. Effect of Temperature on Particle Separation in Hollow Fiber Flow Field-Flow Fractionation. J. Micro. Sep. 1999, 11, 676–681. doi:10.1002/(SICI)1520-667X(199911)11:9<676::AID-MCS5>3.0.CO;2-O
  • Lee, W. J.; Min, B. R.; Moon, M. H. Improvement in Particle Separation by Hollow Fiber Flow Field-Flow Fractionation and the Potential Use in Obtaining Particle Site Distribution. Anal. Chem. 1999, 71, 3446–3452. doi:10.1021/ac981204p
  • Yohannes, G.; Jussila, M.; Hartonen, K.; Riekkola, M. L. Asymmetrical Flow Field-Flow Fractionation Technique for Separation and Characterization of Biopolymers and Bioparticles. J. Chromatogr. A 2011, 1218, 4104–4116. doi:10.1016/j.chroma.2010.12.110
  • Dubascoux, S.; Le Hécho, I.; Hassellöv, M.; Von Der Kammer, F.; Potin Gautier, M.; Lespes, G. Lespes, G. Field-Flow Fractionation and Inductively Coupled Plasma Mass Spectrometer Coupling: History, Development and Applications. J. Anal. At. Spectrom. 2010, 25, 613–623. doi:10.1039/b927500b
  • Marassi, V.; Roda, B.; Zattoni, A.; Tanase, M.; Reschiglian, P. Hollow Fiber Flow Field-Flow Fractionation and Size-Exclusion Chromatography with Multi-Angle Light Scattering Detection: A Complementary Approach in Biopharmaceutical Industry. J. Chromatogr. A 2014, 1372, 196–203. doi:10.1016/j.chroma.2014.10.072
  • Litzen, A.; Walter, J. K.; Krischollek, H.; Wahlund, K. G. Separation and Quantitation of Monoclonal Antibody Aggregates by Asymmetrical Flow Field-Flow Fractionation and Comparison to Gel-Permeation Chromatography. Anal. Biochem 1993, 212, 469–480. doi:10.1006/abio.1993.1356
  • Meisterjahn, B.; Wagner, S.; von der Kammer, F.; Hennecke, D.; Hofmann, T. Silver and Gold Nanoparticle Separation Using Asymmetrical Flow-Field Flow Fractionation: Influence of Run Conditions and of Particle and Membrane Charges. J. Chromatogr. A 2016, 1440, 150–159. doi:10.1016/j.chroma.2016.02.059
  • Hagendorfer, H.; Kaegi, R.; Parlinska, M.; Sinnet, B.; Ludwig, C.; Ulrich, A. Characterization of Silver Nanoparticle Products Using Asymmetric Flow Field Flow Fractionation with a Multidetector Approach – A Comparison to Transmission Electron Microscopy and Batch Dynamic Light Scattering. Anal. Chem. 2012, 84, 2678–2685. doi:10.1021/ac202641d
  • Reschiglian, P.; Melucci, D.; Zattoni, A.; Mallo, L.; Hansen, M.; Kummerow, A.; Miller, M. Working without Accumulation Membrane in Flow Field-Flow Fractionation. Anal. Chem. 2000, 72, 5945–5954. doi:10.1021/ac000608q
  • Bolea, E.; Jimenez-Lamana, J.; Laborda, F.; Castillo, J. R. Size Characterization and Quantification of Silver Nanoparticles by Asymmetric Flow Field-Flow Fractionation Coupled with Inductively Coupled Plasma Mass Spectrometry. Anal. Bioanal. Chem. 2011, 401, 2723–2732. doi:10.1007/s00216-011-5201-2
  • Ramos, K.; Ramos, L.; Cámara, C.; Gómez-Gómez, M. M. Characterization and Quantification of Silver Nanoparticles in Nutraceuticals and Beverages by Asymmetric Flow Field Flow Fractionation Coupled with Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A 2014, 1371, 227–236. doi:10.1016/j.chroma.2014.10.060
  • Lee, W.-C.; Lee, B.-T.; Lee, S.; Hwang, Y. S.; Jo, E.; Eom, I.-C.; Lee, S.-W.; Kim, S.-O. Evaluation and Application of Asymmetrical Flow Field-Flow Fractionation with Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) to Characterise Silver Nanoparticles in Environmental Media. Microchem. J. 2016, 129, 219–230. doi:10.1016/j.microc.2016.06.030
  • Saenmuangchin, R.; Mettakoonpitak, J.; Shiowatana, J.; Siripinyanond, A. Separation of Silver Nanoparticles by Hollow Fiber Flow Field-Flow Fractionation: Addition of Tannic Acid into Carrier Liquid as a Modifier. J. Chromatogr. A 2015, 1415, 115–122. doi:10.1016/j.chroma.2015.08.047
  • Klein, T.; Huerzeler, C. Characterization of Biopolymers, proteins, Particles and Colloids by Means of Field-Flow Fractionation. GIT Labor. Fachz. 1999, 11, 1224–1228.
  • Liu, F. K.; Ko, F. H.; Huang, P. W.; Wu, C. H.; Chu, T. C. Studying the Size/Shape Separation and Optical Properties of Silver Nanoparticles by Capillary Electrophoresis. J. Chromatogr. A 2005, 1062, 139–145. doi:10.1016/j.chroma.2004.11.010
  • Geiss, O.; Cascio, C.; Gilliland, D.; Franchini, F.; Barrero-Moreno, J. Size and Mass Determination of Silver Nanoparticles in an Aqueous Matrix Using Asymmetric Flow Field Flow Fractionation Foupled to Inductively Coupled Plasma Mass Spectrometer and Ultraviolet-Visible Detectors. J. Chromatogr. A 2013, 1321, 100–108. doi:10.1016/j.chroma.2013.10.060
  • Hoque, M. E.; Khosravi, K.; Newman, K.; Metcalfe, C. D. Detection and Characterization of Silver Nanoparticles in Aqueous Matrices Using Asymmetric-Flow Field Flow Fractionation with Inductively Coupled Plasma Mass Spectrometry. J. Chromatogr. A 2012, 1233, 109–115. doi:10.1016/j.chroma.2012.02.011
  • Cho, T. J.; Hackley, V. A. Fractionation and Characterization of Gold Nanoparticles in Aqueous Solution: Asymmetric-Flow Field Flow Fractionation with MALS, DLS, and UV-Vis Detection. Anal. Bioanal. Chem. 2010, 398, 2003–2018. doi:10.1007/s00216-010-4133-6
  • Marassi, V.; Casolari, S.; Roda, B.; Zattoni, A.; Reschiglian, P.; Panzavolta, S.; Tofail, S. A. M.; Ortelli, S.; Delpivo, C.; Blosi, M.; Costa, A. L. Hollow-Fiber Flow Field-Flow Fractionation and Multi-Angle Light Scattering Investigation of the Size, Shape and Metal-Release of Silver Nanoparticles in Aqueous Medium for Nano-Risk Assessment. J. Pharm. Biomed. Anal. 2015, 106, 92–99. doi:10.1016/j.jpba.2014.11.031
  • Mekprayoon, S.; Siripinyanond, A. Performance Evaluation of Flow Field-Flow Fractionation and Electrothermal Atomic Absorption Spectrometry for Size Characterization of Gold Nanoparticles. J. Chromatogr. A 2019, 1604, 460493. doi:10.1016/j.chroma.2019.460493
  • Hassellov, M.; Lyven, B.; Haraldsson, C.; Sirinawin, W. Determination of Continuous Size and Trace Element Distribution of Colloidal Material in Natural Water by on-Line Coupling of Flow Field-Flow Fractionation with ICPMS. Anal. Chem. 1999, 71, 3497–3502. doi:10.1021/ac981455y
  • Dubascoux, S.; Le Hecho, I.; Gautier, M. P.; Lespes, G. On-Line and off-Line Quantification of Trace Elements Associated to Colloids by as-Fl-FFF and ICP-MS. Talanta 2008, 77, 60–65. doi:10.1016/j.talanta.2008.05.050
  • Loeschner, K.; Navratilova, J.; Legros, S.; Wagner, S.; Grombe, R.; Snell, J.; von der Kammer, F.; Larsen, E. H. Optimization and Evaluation of Asymmetric Flow Field-Flow Fractionation of Silver Nanoparticles. J. Chromatogr. A 2013, 1272, 116–125. doi:10.1016/j.chroma.2012.11.053
  • Meermann, B.; Fabricius, A. L.; Duester, L.; Vanhaecke, F.; Ternes, T. Fraction-Related Quantification of Silver Nanoparticles via on-Line Species-Unspecific Post-Channel Isotope Dilution in Combination with Asymmetric Flow-Field-Flow Fractionation (AF4)/Sector Field ICP-Mass Spectrometry (ICP-SF-MS). J. Anal. At. Spectrom. 2014, 29, 287–296. doi:10.1039/C3JA50179E
  • Sanchez-Cachero, A.; Lopez-Sanz, S.; Farinas, N. R.; Rios, A.; Martin-Doimeadios, R. D. R. A Method Based on Asymmetric Flow Field Flow Fractionation Hyphenated to Inductively Coupled Plasma Mass Spectrometry for the Monitoring of Platinum Nanoparticles in Water Samples. Talanta 2021, 222, 121513.
  • Peng, Z. M.; Yang, H. Designer Platinum Nanoparticles: Control of Shape, Composition in Alloy, Nanostructure and Electrocatalytic Property. Nano Today 2009, 4, 143–164. doi:10.1016/j.nantod.2008.10.010
  • Xu, M.; Soliman, M. G.; Sun, X.; Pelaz, B.; Feliu, N.; Parak, W. J.; Liu, S. J. How Entanglement of Different Physicochemical Properties Complicates the Prediction of in Vitro and in Vivo Interactions of Gold Nanoparticles. ACS Nano 2018, 12, 10104–10113. doi:10.1021/acsnano.8b04906
  • Dwivedi, A. D.; Dubey, S. P.; Sillanpaa, M.; Kwon, Y. N.; Lee, C.; Varma, R. S. Fate of Engineered Nanoparticles: Implications in the Environment. Coord. Chem. Rev 2015, 287, 64–78. doi:10.1016/j.ccr.2014.12.014
  • Cervantes-Aviles, P.; Huang, Y. X.; Keller, A. A. Incidence and Persistence of Silver Nanoparticles throughout the Wastewater Treatment Process. Water Res. 2019, 156, 188–198. doi:10.1016/j.watres.2019.03.031
  • El Hadri, H.; Louie, S. M.; Hackley, V. A. Assessing the Interactions of Metal Nanoparticles in Soil and Sediment Matrices — A Quantitative Analytical Multi-Technique Approach. Environ. Sci. Nano 2018, 5, 203–214. doi:10.1039/C7EN00868F
  • Liu, H. H.; Bilal, M.; Lazareva, A.; Keller, A.; Cohen, Y. Simulation Tool for Assessing the Release and Environmental Distribution of Nanomaterials. Beilstein J. Nanotechnol. 2015, 6, 938–951. doi:10.3762/bjnano.6.97
  • Koopmans, G. F.; Hiemstra, T.; Regelink, I. C.; Molleman, B.; Comans, R. N. J. Asymmetric Flow Field-Flow Fractionation of Manufactured Silver Nanoparticles Spiked into Soil Solution. J. Chromatogr. A 2015, 1392, 100–109. doi:10.1016/j.chroma.2015.02.073
  • Yi, Z. B.; Loosli, F.; Wang, J. J.; Berti, D.; Baalousha, M. How to Distinguish Natural versus Engineered Nanomaterials: Insights from the Analysis of TiO2 and CeO2 in Soils. Environ. Chem. Lett. 2020, 18, 215–227. doi:10.1007/s10311-019-00926-5
  • Brown, S. D.; Nativo, P.; Smith, J. A.; Stirling, D.; Edwards, P. R.; Venugopal, B.; Flint, D. J.; Plumb, J. A.; Graham, D.; Wheate, N. J. Gold Nanoparticles for the Improved Anticancer Drug Delivery of the Active Component of Oxaliplatin. J. Am. Chem. Soc. 2010, 132, 4678–4684. [Database] doi:10.1021/ja908117a
  • Lapresta-Fernandez, A.; Fernandez, A.; Blasco, J. Nanoecotoxicity Effects of Engineered Silver and Gold Nanoparticles in Aquatic Organisms. TrAC, Trends Anal. Chem. 2012, 32, 40–59. doi:10.1016/j.trac.2011.09.007
  • Judy, J. D.; Unrine, J. M.; Bertsch, P. M. Evidence for Biomagnification of Gold Nanoparticles within a Terrestrial Food Chain. Environ. Sci. Technol. 2011, 45, 776–781. doi:10.1021/es103031a
  • Krystek, P.; Brandsma, S.; Leonards, P.; de Boer, J. Exploring Methods for Compositional and Particle Size Analysis of Noble Metal Nanoparticles in Daphnia Magna. Talanta 2016, 147, 289–295. doi:10.1016/j.talanta.2015.09.063
  • Krystek, P.; Kettler, K.; van der Wagt, B.; de Jong, W. H. Exploring Influences on the Cellular Uptake of Medium-Sized Silver Nanoparticles into THP-1 Cells. Microchem. J. 2015, 120, 45–50. doi:10.1016/j.microc.2015.01.005
  • Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the Nanoparticle-Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc. Natl. Acad. Sci. USA 2007, 104, 2050–2055. doi:10.1073/pnas.0608582104
  • Walkey, C. D.; Olsen, J. B.; Song, F. Y.; Liu, R.; Guo, H. B.; Olsen, D. W. H.; Cohen, Y.; Emili, A.; Chan, W. C. W. Protein Corona Fingerprinting Predicts the Cellular Interaction of Gold and Silver Nanoparticles. ACS Nano 2014, 8, 2439–2455. doi:10.1021/nn406018q
  • Xu, L. N.; Xu, M.; Wang, R. X.; Yin, Y. G.; Lynch, I.; Liu, S. J. The Crucial Role of Environmental Coronas in Determining the Biological Effects of Engineered Nanomaterials. Small 2020, 16, 2003691. doi:10.1002/smll.202003691
  • Wimuktiwan, P.; Shiowatana, J.; Siripinyanond, A. Investigation of Silver Nanoparticles and Plasma Protein Association Using Flow Field-Flow Fractionation Coupled with Inductively Coupled Plasma Mass Spectrometry (FlFFF-ICP-MS. ).J. Anal. At. Spectrom. 2015, 30, 245–253. doi:10.1039/C4JA00225C
  • Lopez-Sanz, S.; Rodriguez Farinas, N.; Martin-Doimeadios, R. D. R.; Rios, A. Analytical Strategy Based on Asymmetric Flow Field Flow Fractionation Hyphenated to ICP-MS and Complementary Techniques to Study Gold Nanoparticles Transformations in Cell Culture Medium. Anal. Chim. Acta 2019, 1053, 178–185.
  • Liu, W.; Worms, I. A. M.; Herlin-Boime, N.; Truffier-Boutry, D.; Michaud-Soret, I.; Mintz, E.; Vidaud, C.; Rollin-Genetet, F. Interaction of Silver Nanoparticles with Netallothionein and Ceruloplasmin: Impact on Metal Substitution by Ag(I), Corona Formation and Enzymatic Activity. Nanoscale 2017, 9, 6581–6594. doi:10.1039/C7NR01075C
  • Delay, M.; Dolt, T.; Woellhaf, A.; Sembritzki, R.; Frimmel, F. H. Interactions and Stability of Silver Nanoparticles in the Aqueous Phase: Influence of Natural Organic Matter (NOM) and Ionic Strength. J. Chromatogr. A 2011, 1218, 4206–4212. doi:10.1016/j.chroma.2011.02.074
  • Tan, Z. Q.; Yin, Y. G.; Guo, X. R.; Amde, M.; Moon, M. H.; Liu, J. F.; Jiang, G. B. Tracking the Transformation of Nanoparticulate and Ionic Silver at Environmentally Relevant Concentration Levels by Hollow Fiber Flow Field-Flow Fractionation Coupled to ICPMS. Environ. Sci. Technol. 2017, 51, 12369–12376. doi:10.1021/acs.est.7b03439
  • Liu, X. S.; Chen, Y. J.; Li, H.; Huang, N.; Jin, Q.; Ren, K. F.; Ji, J. Enhanced Retention and Cellular Uptake of Nanoparticles in Tumors by Controlling Their Aggregation Behavior. ACS Nano 2013, 7, 6244–6257. doi:10.1021/nn402201w
  • Guo, H. Y.; Xing, B. S.; He, L. L. Development of a Filter-Based Method for Detecting Silver Nanoparticles and Their Heteroaggregation in Aqueous Environments by Surface-Enhanced Raman Spectroscopy. Environ. Pollut. 2016, 211, 198–205. doi:10.1016/j.envpol.2015.12.049
  • Wang, C.; Lv, B. W.; Hou, J.; Wang, P. F.; Miao, L. Z.; Ci, H. L. Quantitative Measurement of Aggregation Kinetics Process of Nanoparticles Using Nanoparticle Tracking Analysis and Dynamic Light Scattering. J. Nanopart. Res. 2019, 21, 87.
  • Kim, S. T.; Lee, Y. J.; Hwang, Y. S.; Lee, S. Study on Aggregation Behavior of Cytochrome C-Conjugated Silver Nanoparticles Using Asymmetrical Flow Field-Flow Fractionation. Talanta 2015, 132, 939–944. doi:10.1016/j.talanta.2014.05.060
  • Pamies, R.; Cifre, J. G. H.; Espin, V. F.; Collado-Gonzalez, M.; Banos, F. G. D.; de la Torre, J. G. Aggregation Behaviour of Gold Nanoparticles in Saline Aqueous Media. J. Nanopart. Res. 2014, 16, 2376.
  • Yin, Y. G.; Yang, X. Y.; Zhou, X. X.; Wang, W. D.; Yu, S. J.; Liu, J. F.; Jiang, G. B. Water Chemistry Controlled Aggregation and Photo-Transformation of Silver Nanoparticles in Environmental Waters. J. Environ. Sci. 2015, 34, 116–125. doi:10.1016/j.jes.2015.04.005
  • Antonio, D. C.; Cascio, C.; Jaksic, Z.; Jurasin, D.; Lyons, D. M.; Nogueira, A. J. A.; Rossi, F.; Calzolai, L. Assessing Silver Nanoparticles Behaviour in Artificial Seawater by Mean of AF4 and spICP-MS. Mar. Environ. Res. 2015, 111, 162–169. doi:10.1016/j.marenvres.2015.05.006
  • Stankus, D. P.; Lohse, S. E.; Hutchison, J. E.; Nason, J. A. Interactions between Natural Organic Matter and Gold Nanoparticles Stabilized with Different Organic Capping Agents. Environ. Sci. Technol. 2011, 45, 3238–3244. doi:10.1021/es102603p
  • Sikder, M.; Wang, J. J.; Poulin, B. A.; Tfaily, M. M.; Baalousha, M. Nanoparticle Size and Natural Organic Matter Composition Determine Aggregation Behavior of Polyvinylpyrrolidone Coated Platinum Nanoparticles. Environ. Sci: Nano 2020, 7, 3318–3332. doi:10.1039/D0EN00659A
  • Yin, Y. G.; Shen, M. H.; Tan, Z. Q.; Yu, S. J.; Liu, J. F.; Jiang, G. B. Particle Coating-Dependent Interaction of Molecular Weight Fractionated Natural Organic Matter: Impacts on the Aggregation of Silver Nanoparticles. Environ. Sci. Technol. 2015, 49, 6581–6589. doi:10.1021/es5061287
  • Motellier, S.; Pelissier, N.; Mattei, J. G. Aging of Silver Nanocolloids in Sunlight: Particle Size Has a Major Influence. Environ. Chem. 2018, 15, 450–462. doi:10.1071/EN18056
  • Klitzke, S.; Metreveli, G.; Peters, A.; Schaumann, G. E.; Lang, F. The Fate of Silver Nanoparticles in Soil Solution — Sorption of Solutes and Aggregation. Sci. Total Environ. 2015, 535, 54–60. doi:10.1016/j.scitotenv.2014.10.108
  • Zhang, W. C.; Xiao, B. D.; Fang, T. Chemical Transformation of Silver Nanoparticles in Aquatic Environments: Mechanism, Morphology and Toxicity. Chemosphere 2018, 191, 324–334. doi:10.1016/j.chemosphere.2017.10.016
  • Furtado, L. M.; Hoque, M. E.; Mitrano, D. F.; Ranville, J. F.; Cheever, B.; Frost, P. C.; Xenopoulos, M. A.; Hintelmann, H.; Metcalfe, C. D. The Persistence and Transformation of Silver Nanoparticles in Littoral Lake Mesocosms Monitored Using Various Analytical Techniques. Environ. Chem. 2014, 11, 419–430. doi:10.1071/EN14064
  • Yin, Y. G.; Liu, J. F.; Jiang, G. B. Sunlight-Induced Reduction of Ionic Ag and Au to Metallic Nanoparticles by Dissolved Organic Matter. ACS Nano 2012, 6, 7910–7919. doi:10.1021/nn302293r
  • Levard, C.; Reinsch, B. C.; Michel, F. M.; Oumahi, C.; Lowry, G. V.; Brown, G. E. Sulfidation Processes of PVP-Coated Silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate. Environ. Sci. Technol. 2011, 45, 5260–5266. doi:10.1021/es2007758
  • Pettibone, J. M.; Gigault, J.; Hackley, V. A. Discriminating the Sates of Matter in Metallic Nanoparticle Transformations: What Are We Missing? ACS Nano 2013, 7, 2491–2499. doi:10.1021/nn3058517
  • Pettibone, J. M.; Liu, J. Y. Sin Situ Methods for Monitoring Silver Nanoparticle Sulfidation in Simulated Waters. Environ. Sci. Technol. 2016, 50, 11145–11153. doi:10.1021/acs.est.6b03023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.