582
Views
2
CrossRef citations to date
0
Altmetric
Review

Vibrational spectroscopy and its future applications in microbiology

ORCID Icon, , , & ORCID Icon

References

  • Maugeri, G.; Lychko, I.; Sobral, R.; Roque, A. C. A. Identification and Antibiotic-Susceptibility Profiling of Infectious Bacterial Agents: A Review of Current and Future Trends. Biotechnol. J. 2019, 14, e1700750. doi:10.1002/biot.201700750
  • Chirman, D.; Pleshko, N. Characterization of Bacterial Biofilm Infections with Fourier Transform Infrared Spectroscopy: A Review. Appl. Spectrosc. Rev. 2021, doi:10.1080/05704928.2020.1864392
  • Váradi, L.; Luo, J. L.; Hibbs, D. E.; Perry, J. D.; Anderson, R. J.; Orenga, S.; Groundwater, P. W. Methods for the Detection and Identification of Pathogenic Bacteria: Past, Present, and Future. Chem. Soc. Rev. 2017, 46, 818–4832. doi:10.1039/c6cs00693k
  • Thorpe, K. E.; Joski, P.; Johnston, K. J. Antibiotic-Resistant Infection Treatment Costs Have Doubled since 2002, Now Exceeding $2 Billion Annually. Health Aff. (Millwood) 2018, 37, 662–669. doi:10.1377/hlthaff.2017.1153
  • Dadgostar, P. Antimicrobial Resistance: Implications and Costs. Infect. Drug. Resist. 2019, 12, 3903–3910. doi:10.2147/IDR.S234610
  • Touat, M.; Opatowski, M.; Brun-Buisson, C.; Cosker, K.; Guillemot, D.; Salomon, J.; Tuppin, P.; de Lagasnerie, G.; Watier, L. A Payer Perspective of the Hospital Inpatient Additional Care Costs of Antimicrobial Resistance in France: A Matched Case-Control Study. Appl Health Econ Health Policy 2019, 17, 381–389. doi:10.1007/s40258-018-0451-1
  • Touat, M.; Brun-Buisson, C.; Opatowski, M.; Salomon, J.; Guillemot, D.; Tuppin, P.; de Lagasnerie, G.; Watier, L. Costs and Outcomes of 1-Year Post-Discharge Care Trajectories of Patients Admitted with Infection Due to Antibiotic-Resistant Bacteria. J. Infect. 2021, 82, 339–345. doi:10.1016/j.jinf.2021.02.001
  • Interagency Coordination Group of antimicrobial resistance. No time to wait: Securing the future from drug-resistant infections. Report to the secretary-general of the United Nations. https://www.who.int/antimicrobial-resistance/interagency-coordination-group/final-report/en/. (accessed April 21, 2021).
  • Novais, Â.; Freitas, A. R.; Rodrigues, C.; Peixe, L. Fourier Transform Infrared Spectroscopy: unlocking Fundamentals and Prospects for Bacterial Strain Typing. Eur. J. Clin. Microbiol. Infect. Dis. 2019, 38, 427–448. doi:10.1007/s10096-018-3431-3
  • Rohman, A.; Windarsih, A.; Lukitaningsih, E.; Rafi, M.; Betania, K.; Fadzillah, N. A. The Use of FTIR and Raman Spectroscopy in Combination with Chemometrics for Analysis of Biomolecules in Biomedical Fluids: A Review. BSI 2020, 8, 55–71. doi:10.3233/BSI-200189
  • Kögler, M.; Zhang, B.; Cui, L.; Shi, Y.; Yliperttula, M.; Laaksonen, T.; Viitala, T.; Zhang, K. Real-Time Raman Based Approach for Identification of Biofouling. Sens. Act B Chem. 2016, 230, 411–421. doi:10.1016/j.snb.2016.02.0790925-4005
  • Naumann, D.; Helm, D.; Labischinski, H. Microbiological Characterizations by FT-IR Spectroscopy. Nature 1991, 351, 81–82. doi:10.1038/351081a0
  • Uusitalo, S.; Kögler, M.; Välimaa, A.-L.; Popov, A.; Ryabchikov, Y.; Kontturi, V.; Siitonen, S.; Petäjä, J.; Virtanen, T.; Laitinen, R.; et al. Detection of Listeria innocua on Roll-to-Roll Produced SERS Substrates with Gold Nanoparticles. RSC Adv. 2016, 6, 62981–62989. doi:10.1039/C6RA08313G
  • Grunert, T.; Wenning, M.; Barbagelata, M. S.; Fricker, M.; Sordelli, D. O.; Buzzola, F. R.; Ehling-Schulz, M. Rapid and Reliable identification of staphylococcus aureus Capsular Serotypes by Means of Artificial Neural Network-Assisted Fourier Transform Infrared Spectroscopy. J. Clin. Microbiol. 2013, 51, 2261–2266. doi:10.1128/JCM.00581-13
  • AlRabiah, H.; Xu, Y.; Rattray, N. J.; Vaughan, A. A.; Gibreel, T.; Sayqal, A.; Upton, M.; Allwood, J. W.; Goodacre, R. Multiple Metabolomics of Uropathogenic E. coli Reveal Different Information Content in Terms of Metabolic Potential Compared to Virulence Factors. Analyst 2014, 139, 4193–4199. doi:10.1039/c4an00176a
  • Nyarko, E. B.; Puzey, K. A.; Donnelly, C. W. Rapid Differentiation of Listeria monocytogenes Epidemic Clones III and IV and Their Intact Compared with Heat-Killed Populations Using Fourier Transform Infrared Spectroscopy and Chemometrics . J. Food Sci. 2014, 79, M1189–M1193. doi:10.1111/1750-3841.12475
  • Colabella, C.; Corte, L.; Roscini, L.; Shapaval, V.; Kohler, A.; Tafintseva, V.; Tascini, C.; Cardinali, G. Merging FT-IR and NGS for Simultaneous Phenotypic and Genotypic Identification of Pathogenic Candida Species. PLoS One. 2017, 12, e0188104. doi:10.1371/journal.pone.0188104
  • Morais, I. M. C.; Cordeiro, A. L.; Teixeira, G. S.; Domingues, V. S.; Nardi, R. M. D.; Monteiro, A. S.; Alves, R. J.; Siqueira, E. P.; Santos, V. L. Biological and Physicochemical Properties of Biosurfactants Produced by Lactobacillus jensenii P6A and Lactobacillus gasseri P65. Microb. Cell Fact. 2017, 16, 155. doi:10.1186/s12934-017-0769-7
  • Wohlmeister, D.; Vianna, D. R. B.; Helfer, V. E.; Calil, L. N.; Buffon, A.; Fuentefria, A. M.; Corbellini, V. A.; Pilger, D. A. Differentiation of Candida albicans, Candida glabrata, and Candida krusei by FT-IR and Chemometrics by CHROMagar™ Candida. J. Microbiol. Methods. 2017, 141, 121–125. doi:10.1016/j.mimet.2017.08.013
  • Lasch, P.; Stämmler, M.; Zhang, M.; Baranska, M.; Bosch, A.; Majzner, K. FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis for Identification of Pathogenic Bacteria. Anal. Chem. 2018, 90, 8896–8904. doi:10.1021/acs.analchem.8b01024
  • Martak, D.; Valot, B.; Sauget, M.; Cholley, P.; Thouverez, M.; Bertrand, X.; Hocquet, D. Fourier-Transform InfraRed Spectroscopy Can Quickly Type Gram-Negative Bacilli Responsible for Hospital Outbreaks. Front Microbiol. 2019, 26, 1440. doi:10.3389/fmicb.2019.01440
  • Potocki, L.; Depciuch, J.; Kuna, E.; Worek, M.; Lewinska, A.; Wnuk, M. FTIR and Raman Spectroscopy-Based Biochemical Profiling Reflects Genomic Diversity of Clinical Candida Isolates That May Be Useful for Diagnosis and Targeted Therapy of Candidiasis. IJMS 2019, 20, 988. doi:10.3390/ijms20040988
  • Vogt, S.; Löffler, K.; Dinkelacker, A. G.; Bader, B.; Autenrieth, I. B.; Peter, S.; Liese, J. Fourier-Transform Infrared (FTIR) Spectroscopy for Typing of Clinical Enterobacter cloacae Complex Isolates. Front. Microbiol. 2019, 10, 2582. doi:10.3389/fmicb.2019.02582
  • Guliev, R. R.; Suntsova, A. Y.; Vostrikova, T. Y.; Shchegolikhin, A. N.; Popov, D. A.; Guseva, M. A.; Shevelev, A. B.; Kurochkin, I. N. Discrimination of Staphylococcus aureus Strains from Coagulase-Negative Staphylococci and Other Pathogens by Fourier Transform Infrared Spectroscopy. Anal. Chem. 2020, 92, 4943–4948. doi:10.1021/acs.analchem.9b05050
  • Rodrigues, C.; Sousa, C.; Lopes, J. A.; Novais, Â.; Peixe, L. A. Frontline on Klebsiella pneumoniae Capsular Polysaccharide Knowledge: Fourier Transform Infrared Spectroscopy as an Accurate and Fast Typing Tool. mSystems 2020, 5, e00386–19. doi:10.1128/mSystems.00386-19
  • Silva, L.; Rodrigues, C.; Lira, A.; Leão, M.; Mota, M.; Lopes, P.; Novais, Â.; Peixe, L. Fourier Transform Infrared (FT-IR) Spectroscopy Typing: A Real-Time Analysis of an Outbreak by Carbapenem-Resistant Klebsiella pneumoniae. Eur. J. Clin. Microbiol. Infect. Dis. 2020, 39, 2471–2475. doi:10.1007/s10096-020-03956-y
  • National Healthcare Safety Network. Current HAI Progress Report. https://www.cdc.gov/nhsn/datastat/index.html. (accessed April 21, 2021).
  • Mambatta, A. K.; Jayarajan, J.; Rashme, V. L.; Harini, S.; Menon, S.; Kuppusamy, J. Reliability of Dipstick Assay in Predicting Urinary Tract infection. J. Family Med. Prim. Care. 2015, 4, 265–268. doi:10.4103/2249-4863.154672
  • DeJong, C. S.; Wang, D. I.; Polyakov, A.; Rogacs, A.; Simske, S. J.; Shkolnikov, V. Bacterial Detection and Differentiation via Direct Volatile Organic Compound Sensing with Surface Enhanced Raman Spectroscopy. Chemistryselect 2017, 2, 8431–8435. doi:10.1002/slct.201701669
  • Schröder, U. C.; Ramoji, A.; Glaser, U.; Sachse, S.; Leiterer, C.; Csaki, A.; Hübner, U.; Fritzsche, W.; Pfister, W.; Bauer, M.; et al. Combined dielectrophoresis-Raman Setup for the Classification of Pathogens Recovered from the Urinary Tract. Anal. Chem. 2013, 85, 10717–10724. doi:10.1021/ac4021616
  • Guyot, K.; Biran, V.; Doit, C.; Moissenet, D.; Guillard, T.; Brasme, L.; Courroux, C.; Maquelin, K.; Leeuwen, W.; VuThien, H.; et al. Raman Spectroscopic Analysis of the Clonal and Horizontal Spread of CTX-M-15-Producing Klebsiella pneumoniae in a Neonatal Intensive Care Unit. Eur. J. Clin. Microbiol. Infect. Dis. 2012, 31, 2827–2834. doi:10.1007/s10096-012-1636-4
  • Willemse-Erix, D.; Bakker-Schut, T.; Slagboom-Bax, F.; Jachtenberg, J. W.; Lemmens-den Toom, N.; Papagiannitsis, C. C.; Kuntaman, K.; Puppels, G.; van Belkum, A.; Severin, J. A.; Goessens, W.; et al. Rapid Typing of Extended-Spectrum β-Lactamase- and Carbapenemase-Producing Escherichia coli and Klebsiella pneumoniae Isolates by Use of SpectraCell RA. J. Clin. Microbiol. 2012, 50, 1370–1375. doi:10.1128/JCM.05423-11
  • Rivera-Betancourt, O. E.; Karls, R.; Grosse-Siestrup, B.; Helms, S.; Quinn, F.; Dluhy, R. A. Identification of Mycobacteria Based on Spectroscopic Analyses of Mycolic acid profiles. Analyst 2013, 138, 6774–6785. doi:10.1039/c3an01157g
  • Henderson, K. C.; Sheppard, E. S.; Rivera-Betancourt, O. E.; Choi, J.-Y.; Dluhy, R. A.; Thurman, K. A.; Winchell, J.; M.; Krause, D. C. The Multivariate Detection Limit for Mycoplasma pneumoniae as Determined by Nanorod Array-Surface Enhanced Raman Spectroscopy and Comparison with Limit of Detection by qPCR. Analyst 2014, 139, 6426–6434. doi:10.1039/c4an01141d
  • Avci, E.; Kaya, N. S.; Ucankus, G.; Culha, M. Discrimination of urinary tract infection Pathogens by Means of Their Growth Profiles Using Surface Enhanced Raman Scattering. Anal. Bioanal. Chem. 2015, 407, 8233–8241. doi:10.1007/s00216-015-8950-5
  • Park, K. J.; Wu, C.; Mercer-Smith, A. R.; Dodson, R. A.; Moersch, T. L.; Koonath, P.; Pipino, A. C. R.; Lu, H.-W.; Yang, Y.; Sapirstein, V. S.; et al. Raman System for Sensitive and Selective Identification of Volatile Organic Compounds. Sens. Act B Chem. 2015, 220, 491–499. doi:10.1039/D0AY00180E
  • Schröder, U. C.; Beleites, C.; Assmann, C.; Glaser, U.; Hübner, U.; Pfister, W.; Fritzsche, W.; Popp, J.; Neugebauer, U. Detection of Vancomycin Resistances in Enterococci within 3 K Hours. Sci. Rep. 2015, 5, 8217. doi:10.1038/srep0821
  • Liu, C.-Y.; Han, Y.-Y.; Shih, P.-H.; Lian, W.-N.; Wang, H.-H.; Lin, C.-H.; Hsueh, P.-R.; Wang, J.-K.; Wang, Y.-L. Rapid Bacterial Antibiotic Susceptibility Test Based on Simple Surface-Enhanced Raman Spectroscopic Biomarkers. Sci. Rep. 2016, 6, 23375. doi:10.1038/srep23375
  • Pazos-Perez, N.; Pazos, E.; Catala, C.; Mir-Simon, B.; Gómez-de Pedro, S.; Sagales, J.; Villanueva, C.; Vila, J.; Soriano, A.; García de Abajo, F. J.; Alvarez-Puebla, R. A. Ultrasensitive Multiplex Optical Quantification of Bacteria in Large Samples of Biofluids. Sci. Rep. 2016, 6, 29014. doi:10.1038/srep29014
  • Fargašová, A.; Balzerová, A.; Prucek, R.; Sedláková, M. H.; Bogdanová, K.; Gallo, J.; Kolář, M.; Ranc, V.; Zbořil, R. Detection of Prosthetic Joint Infection Based on Magnetically Assisted Surface Enhanced Raman Spectroscopy. Anal. Chem. 2017, 89, 6598–6607. doi:10.1021/acs.analchem.7b00759
  • Dekter, H. E.; Orelio, C. C.; Morsink, M. C.; Tektas, S.; Vis, B.; Te Witt, R.; van Leeuwen, W. B. Antimicrobial Susceptibility Testing of Gram-Positive and -Negative Bacterial Isolates Directly From Spiked Blood Culture Media With Raman Spectroscopy. Eur. J. Clin. Microbiol. Infect. Dis. 2017, 36, 81–89. doi:10.1007/s10096-016-2773-y
  • Schröder, U. C.; Kirchhoff, J.; Hübner, U.; Mayer, G.; Glaser, U.; Henkel, T.; Pfister, W.; Fritzsche, W.; Popp, J.; Neugebauer, U. On-chip Spectroscopic Assessment of Microbial Susceptibility to Antibiotics Within 3.5 Hours . J. Biophotonics. 2017, 10, 1547–1557. doi:10.1002/jbio.201600316
  • Kourkoumelis, N.; Gaitanis, G.; Velegraki, A.; Bassukas, I. D. Nail Raman Spectroscopy: A Promising Method for the Diagnosis of Onychomycosis. An Ex Vivo Pilot Study. Med. Mycol. 2018, 56, 551–558. doi:10.1093/mmy/myx078
  • Tien, N.; Lin, T. H.; Hung, Z. C.; Lin, H. S.; Wang, I. K.; Chen, H. C.; Chang, C. T. Diagnosis of Bacterial Pathogens in the Urine of Urinary-Tract-Infection Patients Using Surface-Enhanced Raman Spectroscopy. Molecules 2018, 23, 3374. doi:10.3390/molecules23123374
  • Ayala, O. D.; Doster, R. S.; Manning, S. D.; O'Brien, C. M.; Aronoff, D. M.; Gaddy, J. A.; Mahadevan-Jansen, A. Raman Microspectroscopy Differentiates Perinatal Pathogens on Ex Vivo Infected Human Fetal Membrane tissues. J. Biophotonics. 2019, 12, e201800449. doi:10.1002/jbio.201800449
  • Ho, C. S.; Jean, N.; Hogan, C. A.; Blackmon, L.; Jeffrey, S. S.; Holodniy, M.; Banaei, N.; Saleh, A. A. E.; Ermon, S.; Dionne, J. Rapid Identification of Pathogenic Bacteria Using Raman Spectroscopy and Deep Learning. Nat. Commun. 2019, 10, 4927. doi:10.1038/s41467-019-12898-9
  • Gherman, A. M. R.; Dina, N. E.; Chiș, V.; Wieser, A.; Haisch, C. Yeast Cell wall - Silver Nanoparticles Interaction: A Synergistic Approach between Surface-Enhanced Raman Scattering and Computational Spectroscopy Tools. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2019, 222, 117223. doi:10.1016/j.saa.2019.117223
  • Yeh, Y.-T.; Gulino, K.; Zhang, Y.; Sabestien, A.; Chou, T.-W.; Zhou, B.; Lin, Z.; Albert, I.; Lu, H.; Swaminathan, V.; et al. A Rapid and Label-Free Platform for Virus Capture and Identification From Clinical Samples . Proc. Natl. Acad. Sci. USA. 2020, 117, 895–901. doi:10.1073/pnas.1910113117
  • Arend, N.; Pittner, A.; Ramoji, A.; Mondol, A. S.; Dahms, M.; Rüger, J.; Kurzai, O.; Schie, I. W.; Bauer, M.; Popp, J.; Neugebauer, U. Detection and Differentiation of Bacterial and Fungal Infection of Neutrophils from Peripheral Blood Using Raman Spectroscopy. Anal. Chem. 2020, 92, 10560–10568. doi:10.1021/acs.analchem.0c01384
  • Bauer, D.; Wieland, K.; Qiu, L.; Neumann-Cip, A. C.; Magistro, G.; Stief, C.; Wieser, A.; Haisch, C. Heteroresistant Bacteria Detected by an Extended Raman-Based Antibiotic Susceptibility Test. Anal. Chem. 2020, 92, 8722–8731. doi:10.1021/acs.analchem.9b05387
  • Choi, J.; Lee, J.; Jung, J. H. Fully Integrated Optofluidic SERS Platform for Real-Time And Continuous Characterization of Airborne Microorganisms . Biosens. Bioelectron. 2020, 169, 112611. doi:10.1016/j.bios.2020.112611
  • Gahlaut, S. K.; Savargaonkar, D.; Sharan, C.; Yadav, S.; Mishra, P.; Singh, J. P. SERS Platform for Dengue Diagnosis from Clinical Samples Employing a Hand Held Raman Spectrometer. Anal. Chem. 2020, 92, 2527–2534. doi:10.1021/acs.analchem.9b04129
  • Götz, T.; Dahms, M.; Kirchhoff, J.; Beleites, C.; Glaser, U.; Bohnert, J. A.; Pletz, M. W.; Popp, J.; Schlattmann, P.; Neugebauer, U. Automated and Rapid Identification of Multidrug Resistant Escherichia coli against the Lead Drugs of Acylureidopenicillins, Cephalosporins, and Fluoroquinolones Using Specific Raman Marker Bands. J Biophotonics 2020, 13, e202000149. doi:10.1002/jbio.202000149
  • Jin, H.; Wang, J.; Jin, S.; Jiang, L.; Zou, Y. Raman Spectroscopy of Potential Bio-Hazards Commonly Found in Bio-Aerosols. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2020, 243, 118753. doi:10.1016/j.saa.2020.118753
  • Carlomagno, C.; Bertazioli, D.; Gualerzi, A.; Picciolini, S.; Banfi, P. I.; Lax, A.; Messina, E.; Navarro, J.; Bianchi, L.; Caronni, A.; et al. COVID-19 Salivary Raman Fingerprint: innovative Approach for the Detection of Current and past SARS-CoV-2 infections. Sci. Rep. 2021, 11, 4943. doi:10.1038/s41598-021-84565-3
  • Yadav, S.; Senapati, S.; Desai, D.; Gahlaut, S.; Kulkarni, S.; Singh, J. P. Portable and Sensitive Ag Nanorods Based SERS Platform for Rapid HIV-1 Detection and Tropism Determination. Colloids Surf B Biointerfaces 2021, 198, 111477. doi:10.1016/j.colsurfb.2020.111477
  • Opota, O.; Croxatto, A.; Prod'hom, G.; Greub, G. Blood Culture-Based Diagnosis of Bacteraemia: state of the Art. Clin. Microbiol. Infect. 2015, 21, 313–322. doi:10.1016/j.cmi.2015.01.003
  • Khan, Z. A.; Siddiqui, M. F.; Park, S. Current and Emerging Methods of Antibiotic Susceptibility Testing. Diagnostics 2019, 9, 49. doi:10.3390/diagnostics9020049
  • Humphries, R. M.; Kircher, S.; Ferrell, A.; Krause, K. M.; Malherbe, R.; Hsiung, A.; Burnham, C.-A. D. The Continued Value of Disk Diffusion for Assessing Antimicrobial Susceptibility in Clinical Laboratories: report from the Clinical and Laboratory Standards Institute Methods Development and Standardization Working Group. J. Clin. Microbiol. 2018, 56, e00437–18. doi:10.1128/JCM.00437-18
  • Zimmermann, S.; Burckhardt, I. Development and Application of MALDI-TOF for Detection of Resistance Mechanisms. In MALDI-TOF and Tandem MS for Clinical Microbiology; Shah, H. N.; Saheer, E. G. Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2017; pp. 231–248
  • Centers for Disease Control and Prevention. Burden of Fungal Diseases in the United States. https://www.cdc.gov/fungal/cdc-and-fungal/burden.html. (accessed April 21, 2021).
  • da Matta, D. A.; Souza, A. C. R.; Colombo, A. L. Revisiting Species Distribution and Antifungal Susceptibility of Candida Bloodstream Isolates from Latin American Medical Centers. J Fungi 2017, 3, 24. doi:10.3390/jof3020024
  • Geddes-McAlister, J.; Shapiro, R. S. New Pathogens, New Tricks: emerging, drug-resistant fungal pathogens and future prospects for antifungal therapeutics . Ann. N Y Acad. Sci. 2019, 1435, 57–78. doi:10.1111/nyas.13739
  • Sekyere, J. O.; Asante, J. Emerging Mechanisms of Antimicrobial Resistance in Bacteria and Fungi: advances in the Era of Genomics. Future Microbiol. 2018, 13, 241–262. doi:10.2217/fmb-2017-0172
  • Consortium OPATHY; Gabaldón, T. Recent Trends in Molecular Diagnostics of Yeast Infections: From PCR to NGS. FEMS Microbiol. Rev. 2019, 43, 517–547. doi:10.1093/femsre/fuz015
  • Ditta, A.; Nawaz, H.; Mahmood, T.; Majeed, M. I.; Tahir, M.; Rashid, N.; Muddassar, M.; Al-Saadi, A. A.; Byrne, H. J. Principal Components Analysis of Raman Spectral Data for Screening of Hepatitis C infection. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2019, 221, 117173. doi:10.1016/j.saa.2019.117173
  • Procházka, M. Surface-Enhanced Raman Spectroscopy. In Biological and Medical Physics, Biomedical Engineering. Springer International Publishing: Switzerland, 2016; pp 1–221
  • Kögler, M.; Paul, A.; Anane, E.; Birkholz, M.; Bunker, A.; Viitala, T.; Maiwald, M.; Junne, S.; Neubauer, P. Comparison of time-gated surface-enhanced raman spectroscopy (TG-SERS) and classical SERS based monitoring of Escherichia coli cultivation samples. Biotechnol. Prog. 2018, 34, 1533–1542. doi:10.1002/btpr.2665
  • Kögler, M.; Itkonen, J.; Viitala, T.; Casteleijn, M. G. Assessment of Recombinant Protein Production in E. coli with Time-Gated Surface Enhanced Raman Spectroscopy (TG-SERS). Sci. Rep. 2020, 10, 11. doi:10.1038/s41598-020-59091-3
  • Du, Z.; Qi, Y.; He, J.; Zhong, D.; Zhou, M. Recent Advances in Applications of Nanoparticles in SERS in Vivo Imaging. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2021, 13, e1672. doi:10.1002/wnan.1672
  • Kubryk, P.; Niessner, R.; Ivleva, N. P. The Origin of the Band at around 730 cm(-1) in the SERS spectra of bacteria: a stable isotope approach. Analyst 2016, 141, 2874–2878. doi:10.1039/c6an00306k
  • Premasiri, W. R.; Lemler, P.; Chen, Y.; Gebregziabher, Y.; Ziegler, L. A. SERS Analysis of Bacteria, Human Blood, and Cancer Cells: A Metabolomic and Diagnostic Tool. In Frontiers of Surface‐Enhanced Raman Scattering: Single Nanoparticles and Single Cells; Ozaki, Y.; Kneipp, K.; Aroca, R. Eds. John Wiley & Sons, Ltd: Hoboken, New Jersey, USA, 2014; pp. 257–283
  • Bibikova, O.; Haas, J.; López-Lorente, A. I.; Popov, A.; Kinnunen, M.; Meglinski, I.; Mizaikoff, B. Towards Enhanced Optical Sensor Performance: SEIRA and SERS with Plasmonic Nanostars. Analyst 2017, 142, 951–958. doi:10.1039/C6AN02596J
  • Orelio, C. C.; Beiboer, S. H. W.; Morsink, M. C.; Tektas, S.; Dekter, H. E.; van Leeuwen, W. B. Comparison of Raman Spectroscopy and Two Molecular Diagnostic Methods for Burkholderia cepacia Complex Species identification. J. Microbiol. Methods. 2014, 107, 126–132. doi:10.1016/j.mimet.2014.10.002
  • Tsalik, E. L.; Li, Y.; Hudson, L. L.; Chu, V. H.; Himmel, T.; Limkakeng, A. T.; Katz, J. N.; Glickman, S. W.; McClain, M. T.; Welty-Wolf, K. E.; et al. Potential Cost-Effectiveness of Early Identification of Hospital-Acquired Infection in Critically Ill Patients. Ann. Am. Thorac. Soc. 2016, 13, 401–413. doi:10.1513/AnnalsATS.201504-205OC
  • Magdy, C.; Issam, F.; Amir, P.; Adel, S.; ElGohary, S. COVID-19 Detection Using SERS Technique. MOJ App. Bio. Biomech. 2020, 4, 86–91. doi:10.15406/mojabb.2020.04.00141
  • Hu, J.; Wan, F.; Wang, P.; Ge, H.; Chen, W. Application of Frequency-Locking Cavity-Enhanced Spectroscopy for Highly Sensitive Gas Sensing: A Review. Appl. Spectr. Rev. 2021, doi:10.1080/05704928.2021.1894438
  • Wang, C.; Sahay, P. Breath Analysis Using Laser Spectroscopic Techniques: breath Biomarkers, Spectral Fingerprints, and Detection Limits. Sensors (Basel) 2009, 9, 8230–8262. doi:10.3390/s91008230
  • Selvaraj, R.; Vasa, N. J.; Nagendra, S. M. S.; Mizaikoff, B. Advances in Mid-Infrared Spectroscopy-Based Sensing Techniques for Exhaled Breath Diagnostics. Molecules 2020, 25, 2227. doi:10.3390/molecules25092227
  • Ahmed, W. M.; Lawal, O.; Nijsen, T. M.; Goodacre, R.; Fowler, S. J. Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infect Dis 2017, 3, 695–710. doi:10.1021/acsinfecdis.7b00088
  • World Health Organization. Ten threats to global health in 2019. https://www.who.int/news-room/spotlight/ten-threats-to-global-health-in-2019. (accessed March 31, 2021).
  • Centers for Disease Control and Prevention. Antibiotic/Antimicrobial Resistance (AR/AMR). https://www.cdc.gov/drugresistance/index.html. (accessed March 31, 2021).
  • Burnham, C.-A. D.; Yarbrough, M. L. Best Practices for Detection of Bloodstream Infection. J. Appl. Lab. Med. 2019, 3, 740–742. doi:10.1373/jalm.2018.026260
  • Neubrech, F.; Huck, C.; Weber, K.; Pucci, A.; Giessen, H. Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. Chem. Rev. 2017, 117, 5110–5145. doi:10.1021/acs.chemrev.6b00743

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.