1,106
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Characterization of cellulose nanocrystals by current spectroscopic techniques

, , , ORCID Icon, , & show all

Reference

  • Eyley, S.; Thielemans, W. Surface Modification of Cellulose Nanocrystals. Nanoscale 2014, 6, 7764–7779. doi:10.1039/C4NR01756K
  • Moon, R. J.; Martini, A.; Nairn, J.; Simonsen, J.; Youngblood, J. Cellulose Nanomaterials Review: Structure, Properties and Nanocomposites. Chem. Soc. Rev. 2011, 40, 3941.
  • Heinze, T. Cellulose: Structure and Properties. Adv. Polym. Sci. 2016, 271, 1–52.
  • Simon, I.; Scheraga, H.; Manley, R. S. J. Structure of Cellulose. 1. Low-Energy Conformations of Single Chains. Macromolecules 1988, 21, 983–990. doi:10.1021/ma00182a024
  • Jedvert, K.; Heinze, T. Cellulose Modification and shaping - A Review. J. Polym. Eng. 2017, 37, 845–860.
  • Belton, P. S.; Tanner, S. F.; Cartier, N.; Chanzy, H. High-Resolution Solid-State 13C Nuclear Magnetic Resonance Spectroscopy of Tunicin, an Animal Cellulose. Macromolecules 1989, 22, 1615–1617. doi:10.1021/ma00194a019
  • Yamamoto, H.; Horii, F. CP/MAS 13C NMR Analysis of the Crystal Transformation Induced for Valonia Cellulose by Annealing at High Temperatures. Macromolecules 1993, 26, 1313–1317. doi:10.1021/ma00058a020
  • Dissanayake, N.; Thalangamaarachchige, V. D.; Troxell, S.; Quitevis, E. L.; Abidi, N. Substituent Effects on Cellulose Dissolution in Imidazolium-Based Ionic Liquids. Cellulose 2018, 25, 6887–6900. doi:10.1007/s10570-018-2055-1
  • Dissanayake, N.; Thalangamaarachchige, V. D.; Thakurathi, M.; Knight, M.; Quitevis, E. L.; Abidi, N. Dissolution of Cotton Cellulose in 1:1 Mixtures of 1-Butyl-3-Methylimidazolium Methylphosphonate and 1-Alkylimidazole co-Solvents. Carbohydr. Polym. 2019, 221, 63-72.
  • Hu, Y.; Thalangamaarachchige, V. D.; Acharya, S.; Abidi, N. Role of Low-Concentration Acetic Acid in Promoting Cellulose Dissolution. Cellulose 2018, 25, 4389–4405. doi:10.1007/s10570-018-1863-7
  • Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of cellulose [correction of cellose] with ionic liquids. J. Am. Chem. Soc. 2002, 124, 4974–4975. doi:10.1021/ja025790m
  • Chen, Y. L.; Zhang, X.; You, T. T.; Xu, F. Deep Eutectic Solvents (DESs) for Cellulose Dissolution: A Mini-Review. Cellulose 2019, 26, 205–213. doi:10.1007/s10570-018-2130-7
  • Cuissinat, C.; Navard, P. Swelling and Dissolution of Cellulose Part II: Free Floating Cotton and Wood Fibres in NaOH-Water-Additives Systems. Macromol. Symp. 2006, 244, 19–30. doi:10.1002/masy.200651202
  • Mccormick, C. L.; Callais, P. A.; Hutchinson, B. H. Solution Studies of Cellulose in Lithium Chloride and N, N-Dimethylacetamide. Macromolecules 1985, 18, 2394–2401. doi:10.1021/ma00154a010
  • Habibi, Y.; Lucia, L. A.; Rojas, O. J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110, 3479–3500.
  • Kargarzadeh, H.; Mariano, M.; Gopakumar, D.; Ahmad, I.; Thomas, S.; Dufresne, A.; Huang, J.; Lin, N. Advances in Cellulose Nanomaterials. Cellulose 2018, 25, 2151–2189. doi:10.1007/s10570-018-1723-5
  • Thakur, V. K.; Voicu, S. I. Recent Advances in Cellulose and Chitosan Based Membranes for Water Purification: A Concise Review. Carbohydr. Polym. 2016, 146, 148-165.
  • Seta, F. T.; An, X.; Liu, L.; Zhang, H.; Yang, J.; Zhang, W.; Nie, S.; Yao, S.; Cao, H.; Xu, Q.; et al. Preparation and Characterization of High Yield Cellulose Nanocrystals (CNC) Derived from Ball Mill Pretreatment and Maleic Acid Hydrolysis. Carbohydr. Polym. 2020, 234, 115942–115951.
  • Sadeghifar, H.; Filpponen, I.; Clarke, S. P.; Brougham, D. F.; Argyropoulos, D. S. Production of Cellulose Nanocrystals Using Hydrobromic Acid and Click Reactions on Their Surface. J. Mater. Sci. 2011, 46, 7344–7355.
  • Koshani, R.; Van De Ven, T. G. M.; Madadlou, A. Characterization of Carboxylated Cellulose Nanocrytals Isolated through Catalyst-Assisted H2O2 Oxidation in a One-Step Procedure. J. Agric. Food Chem. 2018, 66, 7692–7700.
  • Chen, Y. W.; Lee, H. V.; Abd Hamid, S. B. Preparation and Characterization of Cellulose Crystallites via Fe(III)-, Co(II)- and Ni(II)-Assisted Dilute Sulfuric Acid Catalyzed Hydrolysis Process. J. Nano Res. 2016, 41, 96–109.
  • Liu, L.; Sun, J.; Cai, C.; Wang, S.; Pei, H.; Zhang, J. Corn Stover Pretreatment by Inorganic Salts and Its Effects on Hemicellulose and Cellulose Degradation. Bioresour. Technol 2009, 100, 5865–5871.
  • Yahya, M. B.; Lee, H. V.; Abd Hamid, S. B. Preparation of Nanocellulose via Transition Metal Salt-Catalyzed Hydrolysis Pathway. BioResources 2015, 10, 7627–7639. doi:10.15376/biores.10.4.7627-7639
  • Ribeiro, R. S. A.; Pohlmann, B. C.; Calado, V.; Bojorge, N.; Pereira, N. Production of Nanocellulose by Enzymatic Hydrolysis: Trends and Challenges. Eng. Life Sci. 2019, 19, 279–291.
  • De Aguiar, J.; Bondancia, T. J.; Claro, P. I. C.; Mattoso, L. H. C.; Farinas, C. S.; Marconcini, J. M. Enzymatic Deconstruction of Sugarcane Bagasse and Straw to Obtain Cellulose Nanomaterials. ACS Sustain. Chem. Eng. 2020, 8, 2287-2299.
  • Wang, W.; Mozuch, M. D.; Sabo, R. C.; Kersten, P.; Zhu, J. Y.; Jin, Y. Production of Cellulose Nanofibrils from Bleached Eucalyptus Fibers by Hyperthermostable Endoglucanase Treatment and Subsequent Microfluidization. Cellulose 2015, 22, 351–361. doi:10.1007/s10570-014-0465-2
  • Mohd Amin, K. N.; Annamalai, P. K.; Morrow, I. C.; Martin, D. Production of Cellulose Nanocrystals via a Scalable Mechanical Method. RSC Adv. 2015, 5, 57133–57140.
  • Miao, J.; Yu, Y.; Jiang, Z.; Zhang, L. One-Pot Preparation of Hydrophobic Cellulose Nanocrystals in an Ionic Liquid. Cellulose 2016, 23, 1209–1219. doi:10.1007/s10570-016-0864-7
  • Grishkewich, N.; Mohammed, N.; Tang, J.; Tam, K. C. Recent Advances in the Application of Cellulose Nanocrystals. Curr. Opin. Colloid Interface Sci. 2017, 29, 32–45.
  • Lam, E.; Male, K. B.; Chong, J. H.; Leung, A. C. W.; Luong, J. H. T. Applications of Functionalized and Nanoparticle-Modified Nanocrystalline Cellulose. Trends Biotechnol. 2012, 30, 283–290.
  • Klemm, D.; Kramer, F.; Moritz, S.; Lindstroem, T.; Ankerfors, M.; Gray, D.; Dorris, A. Nanocelluloses: A New Family of Nature-Based Materials. Angew. Chemie - Int. Ed. 2011, 42, no–no.
  • Mariano, M.; El Kissi, N.; Dufresne, A. Cellulose Nanocrystals and Related Nanocomposites: Review of Some Properties and Challenges. J. Polym. Sci. Part B Polym. Phys. [Database] 2014, 52, 791–806.
  • Wang, S.; Sun, J.; Jia, Y.; Yang, L.; Wang, N.; Xianyu, Y.; Chen, W.; Li, X.; Cha, R.; Jiang, X. Nanocrystalline Cellulose-Assisted Generation of Silver Nanoparticles for Nonenzymatic Glucose Detection and Antibacterial Agent. Biomacromolecules 2016, 17, 2472–2478. doi:10.1021/acs.biomac.6b00642
  • Mohanta, V.; Madras, G.; Patil, S. Layer-by-Layer Assembled Thin Films and Microcapsules of Nanocrystalline Cellulose for Hydrophobic Drug Delivery. ACS Appl. Mater. Interfaces. 2014, 6, 20093–20101. doi:10.1021/am505681e
  • Dong, S.; Roman, M. Fluorescently Labeled Cellulose Nanocrystals for Bioimaging Applications. J. Am. Chem. Soc. 2007, 129, 13810–13811.
  • Ganguly, K.; Patel, D. K.; Dutta, S. D.; Shin, W. C.; Lim, K. T. Stimuli-Responsive Self-Assembly of Cellulose Nanocrystals (CNCs): Structures, Functions, and Biomedical Applications. Int. J. Biol. Macromol. 2020, 155, 456-469.
  • Hoeng, F.; Denneulin, A.; Bras, J. Use of Nanocellulose in Printed Electronics: A Review. Nanoscale 2016, 8, 13131–13154. doi:10.1039/C6NR03054H
  • Agate, S.; Joyce, M.; Lucia, L.; Pal, L. Cellulose and Nanocellulose-Based Flexible-Hybrid Printed Electronics and Conductive Composites – a Review. Carbohydr. Polym. 2018, 198, 249–260.
  • Heredia-Guerrero, J. A.; Williams, C. A.; Guidetti, G.; Cataldi, P.; Ceseracciu, L.; Debellis, D.; Athanassiou, A.; Guzman-Puyol, S.; Hamad, W. Y.; Vignolini, S. Plant-Inspired Polyaleuritate–Nanocellulose Composite Photonic Films. ACS Appl. Polym. Mater. 2020, 2, 1528–1534.
  • Fang, X. L.; Chen, C.; Jin, M. S.; Kuang, Q.; Xie, Z. X.; Xie, S. Y.; Huang, R. B.; Zheng, L. S. Single-Crystal-like Hematite Colloidal Nanocrystal Clusters: Synthesis and Applications in Gas Sensors, Photocatalysis and Water Treatment. J. Mater. Chem. 2009, 19, 6154.
  • Li, X.; Li, J.; Gong, J.; Kuang, Y.; Mo, L.; Song, T. Cellulose Nanocrystals (CNCs) with Different Crystalline Allomorph for Oil in Water Pickering Emulsions. Carbohydr. Polym. 2018, 183, 303–310.
  • Cherhal, F.; Cousin, F.; Capron, I. Structural Description of the Interface of Pickering Emulsions Stabilized by Cellulose Nanocrystals. Biomacromolecules 2016, 17, 496–502. doi:10.1021/acs.biomac.5b01413
  • Huang, S.; Liu, X.; Chang, C.; Wang, Y. Recent Developments and Prospective Food-Related Applications of Cellulose Nanocrystals: A Review. Cellulose 2020, 27, 2991–3011. doi:10.1007/s10570-020-02984-3
  • Foster, E. J.; Moon, R. J.; Agarwal, U. P.; Bortner, M. J.; Bras, J.; Camarero-Espinosa, S.; Chan, K. J.; Clift, M. J. D.; Cranston, E. D.; Eichhorn, S. J.; et al. Current Characterization Methods for Cellulose Nanomaterials. Chem. Soc. Rev. 2018, 47, 2609–2679.
  • Atalla, R. H.; VanderHart, D. L. Native Cellulose: A Composite of Two Distinct Crystalline Forms. Science 1984, 223, 283–285.
  • Atalla, R. H.; VanderHart, D. L. The Role of Solid State 13C NMR Spectroscopy in Studies of the Nature of Native Celluloses. Solid State Nucl. Magn. Reson. 1999, 15, 1–19.
  • Park, S.; Johnson, D. K.; Ishizawa, C. I.; Parilla, P. A.; Davis, M. F. Measuring the Crystallinity Index of Cellulose by Solid State 13C Nuclear Magnetic Resonance. Cellulose 2009, 16, 641–647. doi:10.1007/s10570-009-9321-1
  • Kim, S. H.; Lee, C. M.; Kafle, K. Characterization of Crystalline Cellulose in Biomass: Basic Principles, Applications, and Limitations of XRD, NMR, IR, Raman, and SFG. Korean J. Chem. Eng. 2013, 30, 2127–2141.
  • Nessi, V.; Falourd, X.; Maigret, J. E.; Cahier, K.; D’Orlando, A.; Descamps, N.; Gaucher, V.; Chevigny, C.; Lourdin, D. Cellulose Nanocrystals-Starch Nanocomposites Produced by Extrusion: Structure and Behavior in Physiological Conditions. Carbohydr. Polym. 2019, 225, 115123–115131.
  • Dassanayake, R. S.; Gunathilake, C.; Dassanayake, A. C.; Abidi, N.; Jaroniec, M. Amidoxime-Functionalized Nanocrystalline Cellulose-Mesoporous Silica Composites for Carbon Dioxide Sorption at Ambient and Elevated Temperatures. J. Mater. Chem. A. 2017, 5, 7462–7473. doi:10.1039/C7TA01038A
  • Idström, A.; Schantz, S.; Sundberg, J.; Chmelka, B. F.; Gatenholm, P.; Nordstierna, L. 13C NMR Assignments of Regenerated Cellulose from Solid-State 2D NMR Spectroscopy. Carbohydr. Polym. 2016, 151, 480-487.
  • Larsson, P. T.; Hult, E. L.; Wickholm, K.; Pettersson, E.; Iversen, T. CP/MAS 13C-NMR Spectroscopy Applied to Structure and Interaction Studies on Cellulose I. Solid State Nucl. Magn. Reson. 1999, 15, 31-40.
  • Shang, Q.; Liu, C.; Hu, Y.; Jia, P.; Hu, L.; Zhou, Y. Bio-Inspired Hydrophobic Modification of Cellulose Nanocrystals with Castor Oil. Carbohydr. Polym. 2018, 191, 168–175.
  • Gonçalves, D. P. N.; Hegmann, T. Chirality Transfer from an Innately Chiral Nanocrystal Core to a Nematic Liquid Crystal: Surface-Modified Cellulose Nanocrystals. Angewandte Chemie, International Edition 2021.doi:10.1002/anie.202105357
  • Gunathilake, C.; Dassanayake, R. S.; Abidi, N.; Jaroniec, M. Amidoxime-Functionalized Microcrystalline Cellulose-Mesoporous Silica Composites for Carbon Dioxide Sorption at Elevated Temperatures. J. Mater. Chem. A. 2016, 4, 4808–4819. doi:10.1039/C6TA00261G
  • Navarro, J. R. G.; Conzatti, G.; Yu, Y.; Fall, A. B.; Mathew, R.; Edén, M.; Bergström, L. Multicolor Fluorescent Labeling of Cellulose Nanofibrils by Click Chemistry. Biomacromolecules 2015, 16, 1293–1300. doi:10.1021/acs.biomac.5b00083
  • Montanari, S.; Roumani, M.; Heux, L.; Vignon, M. R. Topochemistry of Carboxylated Cellulose Nanocrystals Resulting from TEMPO-Mediated Oxidation. Macromolecules 2005, 38, 1665–1671. doi:10.1021/ma048396c
  • Maunu, S.; Liitiä, T.; Kauliomäki, S.; Hortling, B.; Sundquist, J. 13C CPMAS NMR Investigations of Cellulose Polymorphs in Different Pulps. Cellulose 2000, 7, 147–159. doi:10.1023/A:1009200609482
  • Fumagalli, M.; Ouhab, D.; Boisseau, S. M.; Heux, L. Versatile Gas-Phase Reactions for Surface to Bulk Esterification of Cellulose Microfibrils Aerogels. Biomacromolecules 2013, 14, 3246–3255. doi:10.1021/bm400864z
  • Agarwal, U. P.; Reiner, R. S.; Ralph, S. A.; Catchmark, J.; Chi, K.; Foster, E. J.; Hunt, C. G.; Baez, C.; Ibach, R. E.; Hirth, K. C. Characterization of the Supramolecular Structures of Cellulose Nanocrystals of Different Origins. Cellulose 2021, 28, 1369–1385. doi:10.1007/s10570-020-03590-z
  • Vivian Abiaziem, C.; Bassey Williams, A.; Ibijoke Inegbenebor, A.; Theresa Onwordi, C.; Osereme Ehi-Eromosele, C.; Felicia Petrik, L. Preparation and Characterisation of Cellulose Nanocrystal from Sugarcane Peels by XRD, SEM and CP/MAS 13C NMR. J. Phys: Conf. Ser. 2019, 1299, 012123. doi:10.1088/1742-6596/1299/1/012123
  • Cheng, F.; Zhao, P.; Ouyang, T.; Sun, J.; Wu, Y. Comprehensive Utilization Strategy of Cellulose in a Facile, Controllable, High-Yield Preparation Process of Cellulose Nanocrystals Using Aqueous Tetrabutylphosphonium Hydroxid. Green Chem. 2021, 23, 1805–1815. doi:10.1039/D0GC04370B
  • Greczynski, G.; Hultman, L. X-Ray Photoelectron Spectroscopy: Towards Reliable Binding Energy Referencing. Prog. Mater. Sci. 2020, 107, 100591–100636.
  • Lin, W.; Hu, X.; You, X.; Sun, Y.; Wen, Y.; Yang, W.; Zhang, X.; Li, Y.; Chen, H. Hydrophobic Modification of Nanocellulose via a Two-Step Silanation Method. Polymers (Basel) 2018, 10, 1035.
  • Valencia, L.; Arumughan, V.; Jalvo, B.; Maria, H. J.; Thomas, S.; Mathew, A. P. Nanolignocellulose Extracted from Environmentally Undesired Prosopis Juliflora. ACS Omega 2019, 4, 4330–4338. doi:10.1021/acsomega.8b02685
  • Junior de Menezes, A.; Siqueira, G.; Curvelo, A. A. S.; Dufresne, A. Extrusion and Characterization of Functionalized Cellulose Whiskers Reinforced Polyethylene Nanocomposites. Polymer (Guildf) 2009, 50, 4552–4563.
  • de Souza, A. G.; Barbosa, R. F. S.; Rosa, D. S. Nanocellulose from Industrial and Agricultural Waste for Further Use in PLA Composites. J. Polym. Environ. 2020, 28, 1851–1868.
  • Ferreira, F. V.; Mariano, M.; Rabelo, S. C.; Gouveia, R. F.; Lona, L. M. F. Isolation and Surface Modification of Cellulose Nanocrystals from Sugarcane Bagasse Waste: From a Micro- to a Nano-Scale View. Appl. Surf. Sci. 2018, 436, 1113–1122.
  • Limaye, M. V.; Schütz, C.; Kriechbaum, K.; Wohlert, J.; Bacsik, Z.; Wohlert, M.; Xia, W.; Pléa, M.; Dembele, C.; Salazar-Alvarez, G.; Bergström, L. Functionalization and Patterning of Nanocellulose Films by Surface-Bound Nanoparticles of Hydrolyzable Tannins and Multivalent Metal Ions. Nanoscale 2019, 11, 19278–19284. doi:10.1039/C9NR04142G
  • Zhang, K.; Shen, M.; Liu, H.; Shang, S.; Wang, D.; Liimatainen, H. Facile Synthesis of Palladium and Gold Nanoparticles by Using Dialdehyde Nanocellulose as Template and Reducing Agent. Carbohydr. Polym. 2018, 186, 132–139.
  • Ruiz-Palomero, C.; Soriano, M. L.; Benítez-Martínez, S.; Valcárcel, M. Photoluminescent Sensing Hydrogel Platform Based on the Combination of Nanocellulose and S,N-Codoped Graphene Quantum Dots. Sens. Actuators B Chem. 2017, 245, 946–953.
  • Wei, J.; Yang, Z.; Sun, Y.; Wang, C.; Fan, J.; Kang, G.; Zhang, R.; Dong, X.; Li, Y. Nanocellulose-Based Magnetic Hybrid Aerogel for Adsorption of Heavy Metal Ions from Water. J. Mater. Sci. 2019, 54, 6709–6718.
  • Boujemaoui, A.; Mongkhontreerat, S.; Malmström, E.; Carlmark, A. Preparation and Characterization of Functionalized Cellulose Nanocrystals. Carbohydr. Polym. 2015, 115, 457–464.
  • Zhang, H.; Lyu, S.; Zhou, X.; Gu, H.; Ma, C.; Wang, C.; Ding, T.; Shao, Q.; Liu, H.; Guo, Z. Super Light 3D Hierarchical Nanocellulose Aerogel Foam with Superior Oil Adsorption. J. Colloid Interface Sci. 2019, 536, 245–251.
  • Liu, S.; Liu, Y. J.; Deng, F.; Ma, M. G.; Bian, J. Comparison of the Effects of Microcrystalline Cellulose and Cellulose Nanocrystals on Fe3O4/C Nanocomposites. RSC Adv. 2015, 5, 74198–74205.
  • Huan, S.; Bai, L.; Liu, G.; Cheng, W.; Han, G. Electrospun Nanofibrous Composites of Polystyrene and Cellulose Nanocrystals: Manufacture and Characterization. RSC Adv. 2015, 5, 50756–50766.
  • Morandi, G.; Heath, L.; Thielemans, W. Cellulose Nanocrystals Grafted with Polystyrene Chains through Surface-Initiated Atom Transfer Radical Polymerization (SI-ATRP). Langmuir 2009, 25, 8280–8286. doi:10.1021/la900452a
  • Tian, C.; Fu, S.; Habibi, Y.; Lucia, L. A. Polymerization Topochemistry of Cellulose Nanocrystals: A Function of Surface Dehydration Control. Langmuir 2014, 30, 14670–14679. doi:10.1021/la503990u
  • Baker, M. J.; Hussain, S. R.; Lovergne, L.; Untereiner, V.; Hughes, C.; Lukaszewski, R. A.; Thiéfin, G.; Sockalingum, G. D. Developing and Understanding Biofluid Vibrational Spectroscopy: A Critical Review. Chem. Soc. Rev. 2016, 45, 1803–1818. doi:10.1039/C5CS00585J
  • Rohman, A. The Use of Infrared Spectroscopy in Combination with Chemometrics for Quality Control and Authentication of Edible Fats and Oils: A Review. Appl. Spectrosc. Rev. 2017, 52, 589–604.
  • Valand, R.; Tanna, S.; Lawson, G.; Bengtström, L. A Review of Fourier Transform Infrared (FTIR) Spectroscopy Used in Food Adulteration and Authenticity Investigations. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2020, 37, 19–38.
  • Alvarado, D. R.; Argyropoulos, D. S.; Scholle, F.; Peddinti, B. S. T.; Ghiladi, R. A. A Facile Strategy for Photoactive Nanocellulose-Based Antimicrobial Materials. Green Chem. 2019, 21, 3424–3435.
  • Amiralian, N.; Mustapic, M.; Hossain, M. S. A.; Wang, C.; Konarova, M.; Tang, J.; Na, J.; Khan, A.; Rowan, A. Magnetic Nanocellulose: A Potential Material for Removal of Dye from Water. J. Hazard. Mater. 2020, 394, 122571–122578.
  • Hemmati, F.; Jafari, S. M.; Taheri, R. A. Optimization of Homogenization-Sonication Technique for the Production of Cellulose Nanocrystals from Cotton Linter. Int. J. Biol. Macromol. 2019, 137, 374–381.
  • Dassanayake, R. S.; Gunathilake, C.; Jackson, T.; Jaroniec, M.; Abidi, N. Preparation and Adsorption Properties of Aerocellulose-Derived Activated Carbon Monoliths. Cellulose 2016, 23, 1363–1374. doi:10.1007/s10570-016-0886-1
  • Dassanayake, R. S.; Acharya, S.; Abidi, N. Biopolymer-Based Materials from Polysaccharides: Properties, Processing, Characterization and Sorption Applications. In Advanced Sorption Process Applications, 2019, IntechOpen Ltd.: London, UK.
  • Szymańska-Chargot, M.; Chylińska, M.; Pieczywek, P. M.; Zdunek, A. Tailored Nanocellulose Structure Depending on the Origin. Example of Apple Parenchyma and Carrot Root Celluloses. Carbohydr. Polym. 2019, 210, 186–195.
  • Maréchal, Y.; Chanzy, H. The Hydrogen Bond Network in I(β) Cellulose as Observed by Infrared Spectrometry. J. Mol. Struct. 2000, 523, 183–196.
  • Dassanayake, R. S.; Abidi, N. Cellulose Aerogels: Preparation, Characterization and Applications. In Cotton Fibres: Characteristics, Uses and Performance. 2017,  Nova Science Publishers, Inc.: New York.
  • Oh, S. Y.; Yoo, D. I.; Shin, Y.; Seo, G. FTIR Analysis of Cellulose Treated with Sodium Hydroxide and Carbon Dioxide. Carbohydr. Res. 2005, 340, 417–428.
  • Schwanninger, M.; Rodrigues, J. C.; Pereira, H.; Hinterstoisser, B. Effects of Short-Time Vibratory Ball Milling on the Shape of FT-IR Spectra of Wood and Cellulose. Vib. Spectrosc. 2004, 36, 24–40.
  • Abidi, N.; Cabrales, L.; Hequet, E. Fourier Transform Infrared Spectroscopic Approach to the Study of the Secondary Cell Wall Development in Cotton Fiber. Cellulose 2010, 17, 309–320. doi:10.1007/s10570-009-9366-1
  • Abidi, N.; Hequet, E.; Cabrales, L.; Gannaway, J.; Wilkins, T.; Wells, L. W. Evaluating Cell Wall Structure and Composition of Developing Cotton Fibers Using Fourier Transform Infrared Spectroscopy and Thermogravimetric Analysis. J. Appl. Polym. Sci. 2008, 107, 476–486.
  • Liang, C. Y.; Marchessault, R. H. Infrared Spectra of Crystalline Polysaccharides. I. Hydrogen Bonds in Native Celluloses. J. Polym. Sci. 1959, 37, 385–395.
  • Kondo, T. The Assignment of IR Absorption Bands Due to Free Hydroxyl Groups in Cellulose. Cellulose 1997, 4, 281–292. doi:10.1023/A:1018448109214
  • Persson, J.; Chanzy, H.; Sugiyama, J. Combined Infrared and Electron Diffraction Study of the Polymorphism of Native Celluloses. Macromolecules 1991, 24, 2461–2466.
  • Michell, A. J. Second-Derivative F.t.-i.r. spectra of Native Celluloses. Carbohydr. Res. 1990, 197, 53–60.
  • Michell, A. J. Second-Derivative FTIR Spectra of Native Celluloses from Valonia and Tunicin. Carbohydr. Res. 1993, 241, 47–54.
  • Niamsap, T.; Lam, N. T.; Sukyai, P. Production of Hydroxyapatite-Bacterial Nanocellulose Scaffold with Assist of Cellulose Nanocrystals. Carbohydr. Polym. 2019, 205, 159–166.
  • Poonguzhali, R.; Basha, S. K.; Kumari, V. S. Synthesis and Characterization of chitosan-PVP-Nanocellulose Composites for in-Vitro Wound Dressing Application. Int. J. Biol. Macromol. 2017, 105, 111–120.
  • Sharma, C.; Bhardwaj, N. K. Biotransformation of Fermented Black Tea into Bacterial Nanocellulose via Symbiotic Interplay of Microorganisms. Int. J. Biol. Macromol. 2019, 132, 166–177.
  • Sharma, C.; Bhardwaj, N. K. Fabrication of Natural-Origin Antibacterial Nanocellulose Films Using Bio-Extracts for Potential Use in Biomedical Industry. Int. J. Biol. Macromol. 2020, 145, 914–925.
  • Shahzamani, M.; Taheri, S.; Roghanizad, A.; Naseri, N.; Dinari, M. Preparation and Characterization of Hydrogel Nanocomposite Based on Nanocellulose and Acrylic Acid in the Presence of Urea. Int. J. Biol. Macromol. 2020, 147, 187–193.
  • Azzam, F.; Heux, L.; Putaux, J. L.; Jean, B. Preparation by Grafting onto, Characterization, and Properties of Thermally Responsive Polymer-Decorated Cellulose Nanocrystals. Biomacromolecules 2010, 11, 3652–3659. doi:10.1021/bm101106c
  • Lasseuguette, E. Grafting onto Microfibrils of Native Cellulose. Cellulose 2008, 15, 571–580. doi:10.1007/s10570-008-9200-1
  • Mangalam, A. P.; Simonsen, J.; Benight, A. S. Cellulose/DNA Hybrid Nanomaterials. Biomacromolecules 2009, 10, 497–504. doi:10.1021/bm800925x
  • Saito, T.; Nishiyama, Y.; Putaux, J. L.; Vignon, M.; Isogai, A. Homogeneous Suspensions of Individualized Microfibrils from TEMPO-Catalyzed Oxidation of Native Cellulose. Biomacromolecules 2006, 7, 1687–1691. doi:10.1021/bm060154s
  • Gallardo-Sánchez, M. A.; Diaz-Vidal, T.; Navarro-Hermosillo, A. B.; Figueroa-Ochoa, E. B.; Casillas, R. R.; Hernández, J. A.; Rosales-Rivera, L. C.; Martínez, J. F. A. S.; Enríquez, S. G.; Macías-Balleza, E. R. Optimization of the Obtaining of Cellulose Nanocrystals from Agave Tequilana Weber Var. Nanomaterials 2021, 11, 520–521. doi:10.3390/nano11020520
  • Dutta, S.; Patel, K.; Ganguly, D.; Ki-Taek Lim, K. Isolation and Characterization of Cellulose Nanocrystals from Coffee Grounds for Tissue Engineering. Mater. Lett. 2021, 287, 129311. doi:10.1016/j.matlet.2021.129311
  • Raman, C. V.; Krishnan, K. S. Polarisation of Scattered Light-Quanta [7]. Nature 1928, 122, 169–169. doi:10.1038/122169a0
  • Efremov, E. V.; Ariese, F.; Gooijer, C. Achievements in Resonance Raman Spectroscopy. Review of a Technique with a Distinct Analytical Chemistry Potential. Anal. Chim. Acta 2008, 606, 119–134.
  • Das, R. S.; Agrawal, Y. K. Raman Spectroscopy: Recent Advancements, Techniques and Applications. Vib. Spectrosc. 2011, 57, 163–176.
  • Asher, S. A. UV Resonance Raman Spectroscopy for Analytical, Physical, and Biophysical Chemistry. Part 1. Anal. Chem. 1993, 65, 201A–210A.
  • Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P. Surface-Enhanced Raman Spectroscopy. Anal. Chem. 2005, 77, 338 A–346A. doi:10.1021/ac053456d
  • Kudelski, A. Analytical Applications of Raman Spectroscopy. Talanta 2008, 76, 1–8. doi:10.1016/j.talanta.2008.02.042
  • Zhang, X.; Young, M. A.; Lyandres, O.; Van Duyne, R. P. Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2005, 127, 4484–4489.
  • Agarwal, U. P.; Reiner, R. S.; Ralph, S. A. Cellulose I Crystallinity Determination Using FT-Raman Spectroscopy: Univariate and Multivariate Methods. Cellulose 2010, 17, 721–733. doi:10.1007/s10570-010-9420-z
  • Agarwal, U. P.; Ralph, S. A.; Reiner, R. S.; Baez, C. Probing Crystallinity of Never-Dried Wood Cellulose with Raman Spectroscopy. Cellulose 2016, 23, 125–144. doi:10.1007/s10570-015-0788-7
  • Zhang, K.; Brendler, E.; Fischer, S. FT Raman Investigation of Sodium Cellulose Sulfate. Cellulose 2010, 17, 427–435. doi:10.1007/s10570-009-9375-0
  • Schenzel, K.; Fischer, S.; Brendler, E. New Method for Determining the degree of Cellulose I Crystallinity by Means of FT Raman Spectroscopy. Cellulose 2005, 12, 223–231. doi:10.1007/s10570-004-3885-6
  • Ding, S.-Y.; Yi, J.; Li, J.-F.; Ren, B.; and De-Yin Wu, R. P.; Tian, Z.-Q. Nanostructure-Based Plasmon-Enhanced Raman Spectroscopy for Surface Analysis of Materials. Nat. Rev. Mater. 2016, 1, 16021. doi:10.1038/natrevmats.2016.21
  • Le Ru, E. C.; Meyer, M.; Etchegoin, P. G. Proof of Single-Molecule Sensitivity in surface enhanced Raman Scattering (SERS) by Means of a Two-Analyte Technique. J. Phys. Chem. B. 2006, 110, 1944–1948. doi:10.1021/jp054732v
  • Lin, T.; Song, Y.-L.; Liao, J.; Liu, F.; Zeng, T.-T. Applications of Surface-Enhanced Raman Spectroscopy in Detection Fields. Nanomedicine (Lond) 2020, 15, 2971–2989. doi:10.2217/nnm-2020-0361
  • Adar, F. Characterizing Modified Celluloses Using Raman Spectroscopy. Spectroscopy 2016, 31, 22–30.
  • Agarwal, U. P. An Overview of Raman Spectroscopy as Applied to Lignocellulosic Materials. In Advances in Lignocellulosics Characterization, 1999; pp 201–225. TAPPI Press: Atlanta, Ga.
  • Agarwal, U. P.; Reiner, R. R.; Ralph, S. A. Estimation of Cellulose Crystallinity of Lignocelluloses Using near-IR FT-Raman Spectroscopy and Comparison of the Raman and Segal-WAXS Methods. J. Agric. Food Chem. 2013, 61, 103–113.
  • Qing, Y.; Sabo, R.; Zhu, J. Y.; Agarwal, U.; Cai, Z.; Wu, Y. A Comparative Study of Cellulose Nanofibrils Disintegrated via Multiple Processing Approaches. Carbohydr. Polym. 2013, 97, 226–234.
  • Chen, L.; Wang, Q.; Hirth, K.; Baez, C.; Agarwal, U. P.; Zhu, J. Y. Tailoring the Yield and Characteristics of Wood Cellulose Nanocrystals (CNC) Using Concentrated Acid Hydrolysis. Cellulose 2015, 22, 1753–1762. doi:10.1007/s10570-015-0615-1
  • Agarwal, U. P. Raman Spectroscopy in the Analysis of Cellulose Nanomaterials. Nanocelluloses Prep. Prop. Appl. 2017, 1251, 75–90.
  • Agarwal, U. P. 1064 nm FT-Raman Spectroscopy for Investigations of Plant Cell Walls and Other Biomass Materials. Front. Plant Sci. 2014, 5, 490.
  • Atalla, R. H.; Dimick, B. E. Raman-Spectral Evidence for Differences between the Conformations of Cellulose I and Cellulose II. Carbohydr. Res. 1975, 39, C1–C3.
  • Chundawat, S. P. S.; Donohoe, B. S.; Da Costa Sousa, L.; Elder, T.; Agarwal, U. P.; Lu, F.; Ralph, J.; Himmel, M. E.; Balan, V.; Dale, B. E. Multi-Scale Visualization and Characterization of Lignocellulosic Plant Cell Wall Deconstruction during Thermochemical Pretreatment. Energy Environ. Sci. 2011, 4, 973.
  • Agarwal, U. P.; Ralph, S. A.; Reiner, R. S.; Baez, C. New Cellulose Crystallinity Estimation Method That Differentiates between Organized and Crystalline Phases. Carbohydr. Polym. 2018, 4, 973–984.
  • Lin, N.; Dufresne, A. Surface Chemistry, Morphological Analysis and Properties of Cellulose Nanocrystals with Gradiented Sulfation Degrees. Nanoscale 2014, 6, 5384–5393. doi:10.1039/C3NR06761K
  • Agarwal, U. P.; Sabo, R.; Reiner, R. S.; Clemons, C. M.; Rudie, A. W. Spatially Resolved Characterization of Cellulose nanocrystal- Polypropylene Composite by Confocal Raman Microscopy. Appl. Spectrosc. 2012, 66, 750-756.
  • Lu, B.; Xu, A.; Wang, J. Cation Does Matter: How Cationic Structure Affects the Dissolution of Cellulose in Ionic Liquids. Green Chem. 2014, 16, 1326–1335.
  • Xu, X.; Liu, F.; Jiang, L.; Zhu, J. Y.; and Haagenson, D.; Wiesenborn, D. P. Cellulose Nanocrystals vs. Cellulose Nanofibrils: A Comparative Study on Their Microstructures and Effects as Polymer Reinforcing Agents. ACS Appl Mater Interfaces2013, 5, 2999–3009. doi:10.1021/am302624t

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.