1,628
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Advanced instrumental approaches for chemical characterization of indoor particulate matter

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Heal, M. R.; Kumar, P.; Harrison, R. M. Particles, Air Quality, Policy and Health. Chem. Soc. Rev. 2012, 41, 6606–6630. doi:10.1039/c2cs35076a
  • von Schneidemesser, E.; Monks, P. S.; Allan, J. D.; Bruhwiler, L.; Forster, P.; Fowler, D.; Lauer, A.; Morgan, W. T.; Paasonen, P.; Righi, M.; et al. Chemistry and the Linkages between Air Quality and Climate Change. Chem. Rev. 2015, 115, 3856–3897. doi:10.1021/acs.chemrev.5b00089
  • George, C.; Ammann, M.; D'Anna, B.; Donaldson, D. J.; Nizkorodov, S. A. Heterogeneous Photochemistry in the Atmosphere. Chem. Rev. 2015, 115, 4218–4258. doi:10.1021/cr500648z
  • Pöschl, U.; Shiraiwa, M. Multiphase Chemistry at the Atmosphere-Biosphere Interface Influencing Climate and Public Health in the Anthropocene. Chem. Rev. 2015, 115, 4440–4475. doi:10.1021/cr500487s
  • Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C. J.; Fushimi, A.; Enami, S.; Arangio, A. M.; Fröhlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol Health Effects from Molecular to Global Scales. Environ. Sci. Technol. 2017, 51, 13545–13567. doi:10.1021/acs.est.7b04417
  • World Health Organization. 2021. WHO Global Air Quality Guidelines. Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide.
  • Bekö, G.; Carslaw, N.; Fauser, P.; Kauneliene, V.; Nehr, S.; Phillips, G.; Saraga, D.; Schoemaecker, C.; Wierzbicka, A.; Querol, X. The Past, Present, and Future of Indoor Air Chemistry. Indoor Air. 2020, 30, 373–376. doi:10.1111/ina.12634
  • Chen, B.; Jia, P.; Han, J. Role of Indoor Aerosols for COVID-19 Viral Transmission: A Review. Environ. Chem. Lett. 2021, 19, 1953–1970. doi:10.1007/s10311-020-01174-8
  • Stevens, R.; Dastoor, A. A Review of the Representation of Aerosol Mixing State in Atmospheric Models. Atmosphere (Basel 2019, 10, 168. doi:10.3390/atmos10040168
  • Cassee, F. R.; Héroux, M.-E.; Gerlofs-Nijland, M. E.; Kelly, F. J. Particulate Matter beyond Mass: recent Health Evidence on the Role of Fractions, Chemical Constituents and Sources of Emission. Inhal. Toxicol. 2013, 25, 802–812. doi:10.3109/08958378.2013.850127
  • Conny, J. M.; Norris, G. A. Scanning Electron Microanalysis and Analytical Challenges of Mapping Elements in Urban Atmospheric Particles. Environ. Sci. Technol. 2011, 45, 7380–7386. doi:10.1021/es2009049
  • Nozière, B.; Kalberer, M.; Claeys, M.; Allan, J.; D'Anna, B.; Decesari, S.; Finessi, E.; Glasius, M.; Grgić, I.; Hamilton, J. F.; et al. The Molecular Identification of Organic Compounds in the Atmosphere: State of the Art and Challenges. Chem. Rev. 2015, 115, 3919–3983. doi:10.1021/cr5003485
  • Johnston, M. V.; Kerecman, D. E. Molecular Characterization of Atmospheric Organic Aerosol by Mass Spectrometry. Annu. Rev. Anal. Chem. (Palo Alto Calif). 2019, 12, 247–274. doi:10.1146/annurev-anchem-061516-045135
  • Pratt, K. A.; Prather, K. A. Mass Spectrometry of Atmospheric Aerosols-Recent Developments and Applications. Part I: Off-Line Mass Spectrometry Techniques. Mass Spectrom. Rev. 2012, 31, 1–16. doi:10.1002/mas.20322
  • Pratt, K. A.; Prather, K. A. Mass Spectrometry of Atmospheric Aerosols-Recent Developments and Applications. Part II: On-Line Mass Spectrometry Techniques. Mass Spectrom. Rev. 2012, 31, 17–48. doi:10.1002/mas.20330
  • Duarte, R. M. B. O.; Matos, J. T. V.; Duarte, A. C. Multidimensional Analytical Characterization of Water-Soluble Organic Aerosols: Challenges and New Perspectives. Appl. Sci. 2021, 11, 2539.
  • Blanchard, O.; Glorennec, P.; Mercier, F.; Bonvallot, N.; Chevrier, C.; Ramalho, O.; Mandin, C.; Bot, B. L. Semivolatile Organic Compounds in Indoor Air and Settled Dust in 30 French Dwellings. Environ. Sci. Technol. 2014, 48, 3959–3969. doi:10.1021/es405269q
  • Raffy, G.; Mercier, F.; Blanchard, O.; Derbez, M.; Dassonville, C.; Bonvallot, N.; Glorennec, P.; Le Bot, B. Semi-Volatile Organic Compounds in the Air and Dust of 30 French Schools: A Pilot Study. Indoor Air. 2017, 27, 114–127. doi:10.1111/ina.12288
  • Duarte, R. M. B. O.; Duarte, A. C. 2017 NMR Studies of Organic Aer osols. In Annual Reports on NMR Spectroscopy, Webb, G.A., Ed., Academic Press: Oxford, pp 83–135.
  • DeCarlo, P. F.; Kimmel, J. R.; Trimborn, A.; Northway, M. J.; Jayne, J. T.; Aiken, A. C.; Gonin, M.; Fuhrer, K.; Horvath, T.; Docherty, K. S.; et al. Field-Deployable, High-Resolution, Time-of-Flight Aerosol Mass Spectrometer. Anal. Chem. 2006, 78, 8281–8289. doi:10.1021/ac061249n
  • Ng, N. L.; Canagaratna, M. R.; Zhang, Q.; Jimenez, J. L.; Tian, J.; Ulbrich, I. M.; Kroll, J. H.; Docherty, K. S.; Chhabra, P. S.; Bahreini, R.; et al. Organic Aerosol Components Observed in Northern Hemispheric Datasets from Aerosol Mass Spectrometry. Atmos. Chem. Phys. 2010, 10, 4625–4641. doi:10.5194/acp-10-4625-2010
  • Manousakas, M. I.; Florou, K.; Pandis, S. N. Source Apportionment of Fine Organic and Inorganic Atmospheric Aerosol in an Urban Background Area in Greece. Atmosphere (Basel). 2020, 11, 330. doi:10.3390/atmos11040330
  • Ng, N. L.; Herndon, S. C.; Trimborn, A.; Canagaratna, M. R.; Croteau, P. L.; Onasch, T. B.; Sueper, D.; Worsnop, D. R.; Zhang, Q.; Sun, Y. L.; Jayne, J. T. An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations of Ambient Aerosol. Aerosol Sci. Technol. 2011, 45, 780–794. doi:10.1080/02786826.2011.560211
  • Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Prévôt, A. S. H.; Baltensperger, U.; Schneider, J.; Kimmel, J. R.; Gonin, M.; Rohner, U.; et al. The ToF-ACSM: A Portable Aerosol Chemical Speciation Monitor with TOFMS Detection. Atmos. Meas. Tech. 2013, 6, 3225–3241. doi:10.5194/amt-6-3225-2013
  • Lopez-Hilfiker, F. D.; Mohr, C.; Ehn, M.; Rubach, F.; Kleist, E.; Wildt, J.; Mentel, T. F.; Lutz, A.; Hallquist, M.; Worsnop, D.; Thornton, J. A. A Novel Method for Online Analysis of Gas and Particle Composition: Description and Evaluation of a Filter Inlet for Gases and AEROsols (FIGAERO). Atmos. Meas. Tech. 2014, 7, 983–1001. doi:10.5194/amt-7-983-2014
  • Lee, B. H.; Mohr, C.; Lopez-Hilfiker, F. D.; Lutz, A.; Hallquist, M.; Lee, L.; Romer, P.; Cohen, R. C.; Iyer, S.; Kurtén, T.; et al. Highly Functionalized Organic Nitrates in the Southeast United States: Contribution to Secondary Organic Aerosol and Reactive Nitrogen Budgets. Proc Natl Acad Sci U S A. 2016, 113, 1516–1521. doi:10.1073/pnas.1508108113
  • Le Breton, M.; Wang, Y.; Hallquist, A. M.; Kant Pathak, R.; Zheng, J.; Yang, Y.; Shang, D.; Glasius, M.; Bannan, T. J.; Liu, Q.; et al. Online Gas- and Particle-Phase Measurements of Organosulfates, Organosulfonates and Nitrooxy Organosulfates in Beijing Utilizing a FIGAERO ToF-CIMS. Atmos. Chem. Phys. 2018, 18, 10355–10371. doi:10.5194/acp-18-10355-2018
  • Le Breton, M.; Psichoudaki, M.; Hallquist, M.; Watne, K.; Lutz, A.; Hallquist, M. Application of a FIGAERO ToF CIMS for on-Line Characterization of Real-World Fresh and Aged Particle Emissions from Buses. Aerosol Sci. Technol. 2019, 53, 244–259. doi:10.1080/02786826.2019.1566592
  • Roberts, J. M.; Veres, P.; Warneke, C.; Neuman, J. A.; Washenfelder, R. A.; Brown, S. S.; Baasandorj, M.; Burkholder, J. B.; Burling, I. R.; Johnson, T. J.; et al. Measurement of HONO, HNCO, and Other Inorganic Acids by Negative-Ion Proton-Transfer Chemical-Ionization Mass Spectrometry (NI-PT-CIMS): Application to Biomass Burning Emissions. Atmos. Meas. Tech. 2010, 3, 981–990. doi:10.5194/amt-3-981-2010
  • Buchholz, A.; Ylisirniö, A.; Huang, W.; Mohr, C.; Canagaratna, M.; Worsnop, D. R.; Schobesberger, S.; Virtanen, A. Deconvolution of FIGAERO–CIMS Thermal Desorption Profiles Using Positive Matrix Factorisation to Identify Chemical and Physical Processes during Particle Evaporation. Atmos. Chem. Phys. 2020, 20, 7693–7716. doi:10.5194/acp-20-7693-2020
  • Siegel, K.; Karlsson, L.; Zieger, P.; Baccarini, A.; Schmale, J.; Lawler, M.; Salter, M.; Leck, C.; Ekman, A. M. L.; Riipinen, I.; Mohr, C. Insights into the Molecular Composition of Semi-Volatile Aerosols in the Summertime Central Arctic Ocean Using FIGAERO-CIMS. Environ. Sci. Atmos. 2021, 1, 161–175. doi:10.1039/d0ea00023j
  • Lee, S. H.; Gordon, H.; Yu, H.; Lehtipalo, K.; Haley, R.; Li, Y.; Zhang, R. New Particle Formation in the Atmosphere: From Molecular Clusters to Global Climate. J. Geophys. Res. Atmos. 2019, 124, 7098–7146. doi:10.1029/2018JD029356
  • Passananti, M.; Zapadinsky, E.; Zanca, T.; Kangasluoma, J.; Myllys, N.; Rissanen, M. P.; Kurtén, T.; Ehn, M.; Attoui, M.; Vehkamäki, H. How Well Can we Predict Cluster Fragmentation inside a Mass Spectrometer? Chem Commun. (Camb). 2019, 55, 5946–5949. doi:10.1039/c9cc02896j
  • Bianchi, F.; Kurtén, T.; Riva, M.; Mohr, C.; Rissanen, M. P.; Roldin, P.; Berndt, T.; Crounse, J. D.; Wennberg, P. O.; Mentel, T. F.; et al. Highly Oxygenated Organic Molecules (HOM) from Gas-Phase Autoxidation Involving Peroxy Radicals: A Key Contributor to Atmospheric Aerosol. Chem. Rev. 2019, 119, 3472–3509. doi:10.1021/acs.chemrev.8b00395
  • Berndt, T.; Richters, S.; Jokinen, T.; Hyttinen, N.; Kurtén, T.; Otkjaer, R. V.; Kjaergaard, H. G.; Stratmann, F.; Herrmann, H.; Sipilä, M.; et al. Hydroxyl Radical-Induced Formation of Highly Oxidized Organic Compounds. Nat. Commun. 2016, 7, 13677.
  • Bianchi, F.; Garmash, O.; He, X.; Yan, C.; Iyer, S.; Rosendahl, I.; Xu, Z.; Rissanen, M. P.; Riva, M.; Taipale, R.; et al. The Role of Highly Oxygenated Molecules (HOMs) in Determining the Composition of Ambient Ions in the Boreal Forest. Atmos. Chem. Phys. 2017, 17, 13819–13831. doi:10.5194/acp-17-13819-2017
  • Brean, J.; Beddows, D. C. S.; Shi, Z.; Temime-Roussel, B.; Marchand, N.; Querol, X.; Alastuey, A.; Minguillon, M. C.; Harrison, R. M. Molecular Insights into New Particle Formation in Barcelona, Spain. Atmos. Chem. Phys. 2020, 20, 10029–10045. doi:10.5194/acp-20-10029-2020
  • Rodríguez, S.; Alastuey, A.; Querol, X. A Review of Methods for Long Term in Situ Characterization of Aerosol Dust. Aeolian Res. 2012, 6, 55–74. doi:10.1016/j.aeolia.2012.07.004
  • Thomas, R. M.; Trebs, I.; Otjes, R.; Jongejan, P. A. C.; Ten Brink, H.; Phillips, G.; Kortner, M.; Meixner, F. X.; Nemitz, E. An Automated Analyzer to Measure Surface-Atmosphere Exchange Fluxes of Water Soluble Inorganic Aerosol Compounds and Reactive Trace Gases. Environ. Sci. Technol. 2009, 43, 1412–1418. doi:10.1021/es8019403
  • Khezri, B.; Mo, H.; Yan, Z.; Chong, S. L.; Heng, A. K.; Webster, R. D. Simultaneous Online Monitoring of Inorganic Compounds in Aerosols and Gases in an Industrialized Area. Atmos. Environ. 2013, 80, 352–360. doi:10.1016/j.atmosenv.2013.08.008
  • Timonen, H.; Aurela, M.; Carbone, S.; Saarnio, K.; Saarikoski, S.; Mäkelä, T.; Kulmala, M.; Kerminen, V. M.; Worsnop, D. R.; Hillamo, R. High Time-Resolution Chemical Characterization of the Water-Soluble Fraction of Ambient Aerosols with PILS-TOC-IC and AMS. Atmos. Meas. Tech. 2010, 3, 1063–1074. doi:10.5194/amt-3-1063-2010
  • Timonen, H.; Carbone, S.; Aurela, M.; Saarnio, K.; Saarikoski, S.; Ng, N. L.; Canagaratna, M. R.; Kulmala, M.; Kerminen, V. M.; Worsnop, D. R.; Hillamo, R. Characteristics, Sources and Water-Solubility of Ambient Submicron Organic Aerosol in Springtime in Helsinki, Finland. J. Aerosol. Sci. 2013, 56, 61–77. doi:10.1016/j.jaerosci.2012.06.005
  • Xu, L.; Guo, H.; Weber, R. J.; Ng, N. L. Chemical Characterization of Water-Soluble Organic Aerosol in Contrasting Rural and Urban Environments in the Southeastern United States. Environ. Sci. Technol. 2017, 51, 78–88. doi:10.1021/acs.est.6b05002
  • Furger, M.; Minguillón, M. C.; Yadav, V.; Slowik, J. G.; Hüglin, C.; Fröhlich, R.; Petterson, K.; Baltensperger, U.; Prévôt, A. S. H. Elemental Composition of Ambient Aerosols Measured with High Temporal Resolution Using an Online XRF Spectrometer. Atmos. Meas. Tech. 2017, 10, 2061–2076. doi:10.5194/amt-10-2061-2017
  • Hyvärinen, A. P.; Vakkari, V.; Laakso, L.; Hooda, R. K.; Sharma, V. P.; Panwar, T. S.; Beukes, J. P.; Van Zyl, P. G.; Josipovic, M.; Garland, R. M.; et al. Correction for a Measurement Artifact of the Multi-Angle Absorption Photometer (MAAP) at High Black Carbon Mass Concentration Levels. Atmos. Meas. Tech. 2013, 6, 81–90. doi:10.5194/amt-6-81-2013
  • Harrison, R. M.; Beddows, D. C. S.; Jones, A. M.; Calvo, A.; Alves, C.; Pio, C. An Evaluation of Some Issues regarding the Use of Aethalometers to Measure Woodsmoke Concentrations. Atmos. Environ. 2013, 80, 540–548. doi:10.1016/j.atmosenv.2013.08.026
  • Herich, H.; Hueglin, C.; Buchmann, B. A 2.5 Year’s Source Apportionment Study of Black Carbon from Wood Burning and Fossil Fuel Combustion at Urban and Rural Sites in Switzerland. Atmos. Meas. Tech. 2011, 4, 1409–1420. doi:10.5194/amt-4-1409-2011
  • Fialho, P.; Hansen, A. D. A.; Honrath, R. E. Absorption Coefficients by Aerosols in Remote Areas: A New Approach to Decouple Dust and Black Carbon Absorption Coefficients Using Seven-Wavelength Aethalometer Data. J. Aerosol. Sci. 2005, 36, 267–282. doi:10.1016/j.jaerosci.2004.09.004
  • Collaud Coen, M.; Weingartner, E.; Apituley, A.; Ceburnis, D.; Fierz-Schmidhauser, R.; Flentje, H.; Henzing, J. S.; Jennings, S. G.; Moerman, M.; Petzold, A.; et al. Minimizing Light Absorption Measurement Artifacts of the Aethalometer: Evaluation of Five Correction Algorithms. Atmos. Meas. Tech. 2010, 3, 457–474. doi:10.5194/amt-3-457-2010
  • Drinovec, L.; Močnik, G.; Zotter, P.; Prévôt, A. S. H.; Ruckstuhl, C.; Coz, E.; Rupakheti, M.; Sciare, J.; Müller, T.; Wiedensohler, A.; Hansen, A. D. A. The ‘Dual-Spot’ Aethalometer: An Improved Measurement of Aerosol Black Carbon with Real-Time Loading Compensation. Atmos. Meas. Tech. 2015, 8, 1965–1979. doi:10.5194/amt-8-1965-2015
  • Rivas, I.; Viana, M.; Moreno, T.; Pandolfi, M.; Amato, F.; Reche, C.; Bouso, L.; Àlvarez-Pedrerol, M.; Alastuey, A.; Sunyer, J.; Querol, X. Child Exposure to Indoor and Outdoor Air Pollutants in Schools in Barcelona, Spain. Environ. Int. 2014, 69, 200–212. doi:10.1016/j.envint.2014.04.009
  • Bae, M. S.; Schauer, J. J.; DeMinter, J. T.; Turner, J. R.; Smith, D.; Cary, R. A. Validation of a Semi-Continuous Instrument for Elemental Carbon and Organic Carbon Using a Thermal-Optical Method. Atmos. Environ. 2004, 38, 2885–2893. doi:10.1016/j.atmosenv.2004.02.027
  • Karanasiou, A.; Panteliadis, P.; Perez, N.; Minguillón, M. C.; Pandolfi, M.; Titos, G.; Viana, M.; Moreno, T.; Querol, X.; Alastuey, A. Evaluation of the Semi-Continuous OCEC Analyzer Performance with the EUSAAR2 Protocol. Sci. Total Environ. 2020, 747, 141266.
  • Vodička, P.; Schwarz, J.; Brus, D.; Ždímal, V. Online Measurements of Very Low Elemental and Organic Carbon Concentrations in Aerosols at a Subarctic Remote Station. Atmos. Environ. 2020, 226, 117380. doi:10.1016/j.atmosenv.2020.117380
  • Cheng, Y.; Fai Ho, K.; Jing Wu, W.; Hang Ho, S. S.; Cheng Lee, S.; Huang, Y.; Wei Zhang, Y.; Shan Yau, P.; Gao, Y.; Sing Chan, C. Real-Time Characterization of Particle-Bound Polycyclic Aromatic Hydrocarbons at a Heavily Trafficked Roadside site. Aerosol. Air Qual. Res. 2012, 12, 1181–1188. doi:10.4209/aaqr.2011.11.0223
  • Pachon, J. E.; Sarmiento, H.; Hoshiko, T. Temporal and Spatial Variability of Particle-Bound Polycyclic Aromatic Hydrocabons in Bogota, Colombia. Air Qual. Atmos. Health. 2014, 7, 567–576. doi:10.1007/s11869-014-0259-6
  • Klepeis, N. E.; Ott, W. R.; Switzer, P. Real-Time Measurement of Outdoor Tobacco Smoke Particles. J. Air Waste Manag Assoc. 2007, 57, 522–534. doi:10.3155/1047-3289.57.5.522
  • Chow, J. C.; Watson, J. G.; Doraiswamy, P.; Chen, L. W. A.; Sodeman, D. A.; Lowenthal, D. H.; Park, K.; Arnott, W. P.; Motallebi, N. Aerosol Light Absorption, Black Carbon, and Elemental Carbon at the Fresno Supersite, California. Atmos. Res. 2009, 93, 874–887. doi:10.1016/j.atmosres.2009.04.010
  • Davies, N. W.; Cotterell, M. I.; Fox, C.; Szpek, K.; Haywood, J. M.; Langridge, J. M. On the Accuracy of Aerosol Photoacoustic Spectrometer Calibrations Using Absorption by Ozone. Atmos. Meas. Tech. 2018, 11, 2313–2324. doi:10.5194/amt-11-2313-2018
  • Chiari, M.; Yubero, E.; Calzolai, G.; Lucarelli, F.; Crespo, J.; Galindo, N.; Nicolás, J. F.; Giannoni, M.; Nava, S. Comparison of PIXE and XRF Analysis of Airborne Particulate Matter Samples Collected on Teflon and Quartz Fibre Filters. Nucl. Instrum. Method. Phys. Res. Sect. B Beam Interact. Mater. Atoms 2018, 417, 128–132. doi:10.1016/j.nimb.2017.07.031
  • Matos, J. T. V.; Duarte, R. M. B. O.; Lopes, S. P.; Silva, A. M. S.; Duarte, A. C. Persistence of Urban Organic Aerosols Composition: Decoding Their Structural Complexity and Seasonal Variability. Environ. Pollut. 2017, 231, 281–290. doi:10.1016/j.envpol.2017.08.022
  • Zhang, C.; Chen, M.; Kang, S.; Yan, F.; Han, X.; Gautam, S.; Hu, Z.; Zheng, H.; Chen, P.; Gao, S.; et al. Light Absorption and Fluorescence Characteristics of Water-Soluble Organic Compounds in Carbonaceous Particles at a Typical Remote Site in the Southeastern Himalayas and Tibetan Plateau. Environ. Pollut. 2021, 272, 116000. doi:10.1016/j.envpol.2020.116000
  • Cavalli, F.; Viana, M.; Yttri, K. E.; Genberg, J.; Putaud, J.-P. Toward a Standardised Thermal-Optical Protocol for Measuring Atmospheric Organic and Elemental Carbon: The EUSAAR Protocol. Atmos. Meas. Tech. 2010, 3, 79–89. doi:10.5194/amt-3-79-2010
  • Brown, R. J. C.; Beccaceci, S.; Butterfield, D. M.; Quincey, P. G.; Harris, P. M.; Maggos, T.; Panteliadis, P.; John, A.; Jedynska, A.; Kuhlbusch, T. A. J.; et al. Standardisation of a European Measurement Method for Organic Carbon and Elemental Carbon in Ambient Air: Results of the Field Trial Campaign and the Determination of a Measurement Uncertainty and Working Range. Environ. Sci. Process. Impacts. 2017, 19, 1249–1259. doi:10.1039/c7em00261k
  • Duarte, R. M. B. O.; Duan, P.; Mao, J.; Chu, W.; Duarte, A. C.; Schmidt-Rohr, K. Exploring Water-Soluble Organic Aerosols Structures in Urban Atmosphere Using Advanced Solid-State 13C NMR Spectroscopy. Atmos. Environ. 2020, 230, 117503. doi:10.1016/j.atmosenv.2020.117503
  • Duarte, R. M. B. O.; Matos, J. T. V.; Paula, A. S.; Lopes, S. P.; Pereira, G.; Vasconcellos, P.; Gioda, A.; Carreira, R.; Silva, A. M. S.; Duarte, A. C.; et al. Structural Signatures of Water-Soluble Organic Aerosols in Contrasting Environments in South America and Western Europe. Environ. Pollut. 2017, 227, 513–525. doi:10.1016/j.envpol.2017.05.011
  • Duarte, R. M. B. O.; Piñeiro-Iglesias, M.; López-Mahía, P.; Muniategui-Lorenzo, S.; Moreda-Piñeiro, J.; Silva, A. M. S.; Duarte, A. C. Comparative Study of Atmospheric Water-Soluble Organic Aerosols Composition in Contrasting Suburban Environments in the Iberian Peninsula Coast. Sci. Total Environ. 2019, 648, 430–441. doi:10.1016/j.scitotenv.2018.08.171
  • Arhami, M.; Minguillón, M. C.; Polidori, A.; Schauer, J. J.; Delfino, R. J.; Sioutas, C. Organic Compound Characterization and Source Apportionment of Indoor and Outdoor Quasi-Ultrafine Particulate Matter in Retirement Homes of the Los Angeles Basin. Indoor Air. 2010, 20, 17–30. doi:10.1111/j.1600-0668.2009.00620.x
  • Hasheminassab, S.; Daher, N.; Shafer, M. M.; Schauer, J. J.; Delfino, R. J.; Sioutas, C. Chemical Characterization and Source Apportionment of Indoor and Outdoor Fine Particulate Matter (PM(2.5)) in Retirement Communities of the Los Angeles Basin. Sci. Total Environ. 2014, 490, 528–537. doi:10.1016/j.scitotenv.2014.05.044
  • Huang, W.; Baumgartner, J.; Zhang, Y.; Wang, Y.; Schauer, J. J. Source Apportionment of Air Pollution Exposures of Rural Chinese Women Cooking with Biomass Fuels. Atmos. Environ. 2015, 104, 79–87. doi:10.1016/j.atmosenv.2014.12.066
  • Psichoudaki, M.; Pandis, S. N. Atmospheric Aerosol Water-Soluble Organic Carbon Measurement: A Theoretical Analysis. Environ. Sci. Technol. 2013, 47, 9791–9798. doi:10.1021/es402270y
  • World Health Organization. 2020 Methods for Sampling and Analysis of Chemical Pollutants in Indoor Air.
  • Abbas, I.; Badran, G.; Verdin, A.; Ledoux, F.; Roumié, M.; Courcot, D.; Garçon, G. Polycyclic Aromatic Hydrocarbon Derivatives in Airborne Particulate Matter: Sources, Analysis and Toxicity. Environ. Chem. Lett. 2018, 16, 439–475.
  • Samburova, V.; Zielinska, B.; Khlystov, A. Do 16 Polycyclic Aromatic Hydrocarbons Represent PAH Air Toxicity? Toxics 2017, 5, 17–33. doi:10.3390/toxics5030017
  • ISO 12884:2000. Ambient air—Determination of Total (Gas and Particle-Phase) Polycyclic Aromatic Hydrocarbons—Collection on Sorbent-Backed Filters with Gas Chromatographic/Mass Spectrometric Analyses. 2000. https://www.iso.org/standard/1343.html (accessed November 5, 2021).
  • Mercier, F.; Gilles, E.; Saramito, G.; Glorennec, P.; Le Bot, B. A Multi-Residue Method for the Simultaneous Analysis in Indoor Dust of Several Classes of Semi-Volatile Organic Compounds by Pressurized Liquid Extraction and Gas Chromatography/Tandem Mass Spectrometry. J. Chromatogr. A. 2014, 1336, 101–111. doi:10.1016/j.chroma.2014.02.004
  • Villanueva, F.; Sevilla, G.; Lara, S.; Martín, P.; Salgado, S.; Albaladejo, J.; Cabañas, B. Application of Gas Chromatography Coupled with Tandem Mass Spectrometry for the Assessment of PAH Levels in Non Industrial Indoor Air. Microchem. J. 2018, 142, 117–125. doi:10.1016/j.microc.2018.06.021
  • Reddy, A. V. B.; Moniruzzaman, M.; Aminabhavi, T. M. Polychlorinated Biphenyls (PCBs) in the Environment: Recent Updates on Sampling, Pretreatment, Cleanup Technologies and Their Analysis. Chem. Eng. J. 2019, 358, 1186–1207. doi:10.1016/j.cej.2018.09.205
  • Lao, W.; Maruya, K. A.; Tsukada, D. An Exponential Model Based New Approach for Correcting Aqueous Concentrations of Hydrophobic Organic Chemicals Measured by Polyethylene Passive Samplers. Sci. Total Environ. 2019, 646, 11–18. doi:10.1016/j.scitotenv.2018.07.192
  • Vorkamp, K.; Odsbjerg, L.; Langeland, M.; Mayer, P. Utilizing the Partitioning Properties of Silicone for the Passive Sampling of Polychlorinated Biphenyls (PCBs) in Indoor Air. Chemosphere. 2016, 160, 280–286. doi:10.1016/j.chemosphere.2016.06.054
  • Katsikantami, I.; Sifakis, S.; Tzatzarakis, M. N.; Vakonaki, E.; Kalantzi, O. I.; Tsatsakis, A. M.; Rizos, A. K. A Global Assessment of Phthalates Burden and Related Links to Health Effects. Environ. Int. 2016, 97, 212–236. doi:10.1016/j.envint.2016.09.013
  • Wang, Y.; Ding, D.; Shu, M.; Wei, Z.; Wang, T.; Zhang, Q.; Ji, X.; Zhou, P.; Dan, M. Characteristics of Indoor and Outdoor Fine Phthalates during Different Seasons and Haze Periods in Beijing. Aerosol Air Qual. Res. 2019, 19, 364–374. doi:10.4209/aaqr.2018.03.0114
  • Szewczyńska, M.; Dobrzyńska, E.; Pośniak, M. Determination of Phthalates in Particulate Matter and Gaseous Phase Emitted in Indoor Air of Offices. Environ. Sci. Pollut. Res. Int. 2021, 28, 59319–59327. doi:10.1007/s11356-020-10195-3
  • Vykoukalová, M.; Venier, M.; Vojta, Š.; Melymuk, L.; Bečanová, J.; Romanak, K.; Prokeš, R.; Okeme, J. O.; Saini, A.; Diamond, M. L.; Klánová, J. Organophosphate Esters Flame Retardants in the Indoor Environment. Environ. Int. 2017, 106, 97–104. doi:10.1016/j.envint.2017.05.020
  • de Boer, J.; El-Sayed, A.; Fiedler, H.; Legler, J.; Muir, D. C. G.; Nikiforov, V. A.; Tomy, G. T.; Tsunemi, K. 2010. Chlorinated Paraffins. Boer, J., Ed. Springer Berlin Heidelberg: Berlin, Heidelberg.
  • Sakhi, A. K.; Cequier, E.; Becher, R.; Bølling, A. K.; Borgen, A. R.; Schlabach, M.; Schmidbauer, N.; Becher, G.; Schwarze, P.; Thomsen, C. Concentrations of Selected Chemicals in Indoor Air from Norwegian Homes and Schools. Sci. Total Environ. 2019, 674, 1–8. doi:10.1016/j.scitotenv.2019.04.086
  • Fridén, U. E.; Mclachlan, M. S.; Berger, U. Chlorinated Paraf fi ns in Indoor Air and Dust : Concentrations, Congener Patterns, and Human Exposure. Environ. Int. 2011, 37, 1169–1174. doi:10.1016/j.envint.2011.04.002
  • Coelhan, M.; Hilger, B. Chlorinated Paraffins in Indoor Dust Samples: A Review. Coc. 2014, 18, 2209–2217. doi:10.2174/1385272819666140804230914
  • Garcia-Jares, C.; Regueiro, J.; Barro, R.; Dagnac, T.; Llompart, M. Analysis of Industrial Contaminants in Indoor Air. Part 2. Emergent Contaminants and Pesticides. J. Chromatogr. A. 2009, 1216, 567–597. doi:10.1016/j.chroma.2008.10.020
  • Melymuk, L.; Robson, M.; Helm, P. A.; Diamond, M. L. Evaluation of Passive Air Sampler Calibrations: Selection of Sampling Rates and Implications for the Measurement of Persistent Organic Pollutants in Air. Atmos. Environ. 2011, 45, 1867–1875. doi:10.1016/j.atmosenv.2011.01.011
  • Lim, Y. W.; Kim, H. H.; Lee, C. S.; Shin, D. C.; Chang, Y. S.; Yang, J. Y. Exposure Assessment and Health Risk of Poly-Brominated Diphenyl Ether (PBDE) Flame Retardants in the Indoor Environment of Elementary School Students in Korea. Sci. Total Environ. 2014, 470-471, 1376–1389. doi:10.1016/j.scitotenv.2013.09.013
  • Braouezec, C.; Enriquez, B.; Blanchard, M.; Chevreuil, M.; Teil, M. J. Cat Serum Contamination by Phthalates, PCBs, and PBDEs versus Food and Indoor Air. Environ. Sci. Pollut. Res. Int. 2016, 23, 9574–9584. doi:10.1007/s11356-016-6063-0
  • Ding, N.; Wang, T.; Chen, S. J.; Yu, M.; Zhu, Z. C.; Tian, M.; Luo, X. J.; Mai, B. X. Brominated Flame Retardants (BFRs) in Indoor and Outdoor Air in a Community in Guangzhou, a Megacity of Southern China. Environ. Pollut. 2016, 212, 457–463. doi:10.1016/j.envpol.2016.02.038
  • Melymuk, L.; Bohlin-Nizzetto, P.; Vojta, Š.; Krátká, M.; Kukučka, P.; Audy, O.; Přibylová, P.; Klánová, J. Distribution of Legacy and Emerging Semivolatile Organic Compounds in Five Indoor Matrices in a Residential Environment. Chemosphere. 2016, 153, 179–186. doi:10.1016/j.chemosphere.2016.03.012
  • Chen, D.; Zeng, X.; Sheng, Y.; Bi, X.; Gui, H.; Sheng, G.; Fu, J. The Concentrations and Distribution of Polycyclic Musks in a Typical Cosmetic Plant. Chemosphere. 2007, 66, 252–258. doi:10.1016/j.chemosphere.2006.05.024
  • Sofuoglu, A.; Kiymet, N.; Kavcar, P.; Sofuoglu, S. C. Polycyclic and Nitro Musks in Indoor Air: A Primary School Classroom and a Women's Sport Center. Indoor Air. 2010, 20, 515–522. doi:10.1111/j.1600-0668.2010.00674.x
  • Saini, A.; Okeme, J. O.; Goosey, E.; Diamond, M. L. Calibration of Two Passive Air Samplers for Monitoring Phthalates and Brominated Flame-Retardants in Indoor Air. Chemosphere. 2015, 137, 166–173. doi:10.1016/j.chemosphere.2015.06.099
  • Okeme, J. O.; Saini, A.; Yang, C.; Zhu, J.; Smedes, F.; Klánová, J.; Diamond, M. L. Calibration of Polydimethylsiloxane and XAD-Pocket Passive Air Samplers (PAS) for Measuring Gas- and Particle-Phase SVOCs. Atmos. Environ. 2016, 143, 202–208. doi:10.1016/j.atmosenv.2016.08.023
  • Simoneit, B. R. T. Composition and Major Sources of Organic Compounds of Aerosol Particulate Matter Sampled during the ACE-Asia Campaign. J. Geophys. Res. 2004, 109, D19S10. doi:10.1029/2004JD004598
  • Weschler, C. J.; Langer, S.; Fischer, A.; Bekö, G.; Toftum, J.; Clausen, G. Squalene and Cholesterol in Dust Samples Collected from Children’s Bedrooms and Daycare Centers in Denmark. 12th Int. Conf. Indoor Air Qual. Clim. 2011, 2011, 1074–1075.
  • Alves, C. A. Characterisation of Solvent Extractable Organic Constituents in Atmospheric Particulate Matter: An Overview. An. Acad. Bras. Ciênc. 2008, 80, 21–82. doi:10.1590/S0001-37652008000100003
  • Chow, J. C.; Watson, J. G. Review of Measurement Methods and Compositions for Ultrafine Particles. Aerosol Air Qual. Res. 2007, 7, 121–173. doi:10.4209/aaqr.2007.05.0029
  • Mukhtar, A.; Limbeck, A. A New Approach for the Determination of Silicon in Airborne Particulate Matter Using Electrothermal Atomic Absorption Spectrometry. Anal. Chim. Acta. 2009, 646, 17–22. doi:10.1016/j.aca.2009.05.009
  • Nair, P. R.; George, S. K.; Sunilkumar, S. V.; Parameswaran, K.; Jacob, S.; Abraham, A. Chemical Composition of Aerosols over Peninsular India during Winter. Atmos. Environ. 2006, 40, 6477–6493. doi:10.1016/j.atmosenv.2006.02.031
  • Lucarelli, F. How a Small Accelerator Can Be Useful for Interdisciplinary Applications: The Study of Air Pollution. Eur. Phys. J. Plus. 2020, 135, 538. doi:10.1140/epjp/s13360-020-00516-3
  • Galvão, E. S.; Santos, J. M.; Lima, A. T.; Reis, N. C.; Orlando, M. T. D. A.; Stuetz, R. M. Trends in Analytical Techniques Applied to Particulate Matter Characterization: A Critical Review of Fundaments and Applications. Chemosphere. 2018, 199, 546–568. doi:10.1016/j.chemosphere.2018.02.034
  • Yang, K. X.; Swami, K.; Husain, L. Determination of Trace Metals in Atmospheric Aerosols with a Heavy Matrix of Cellulose by Microwave Digestion-Inductively Coupled Plasma Mass Spectroscopy. Spectrochim. Acta Part B. Spectrosc. 2002, 57, 73–84. doi:10.1016/S0584-8547(01)00354-8
  • Karanasiou, A. A.; Thomaidis, N. S.; Eleftheriadis, K.; Siskos, P. A. Comparative Study of Pretreatment Methods for the Determination of Metals in Atmospheric Aerosol by Electrothermal Atomic Absorption Spectrometry. Talanta. 2005, 65, 1196–1202. doi:10.1016/j.talanta.2004.08.044
  • Querol, X.; Alastuey, A.; Pey, J.; Cusack, M.; Pérez, N.; Mihalopoulos, N.; Theodosi, C.; Gerasopoulos, E.; Kubilay, N.; Koçak, M. Variability in Regional Background Aerosols within the Mediterranean. Atmos. Chem. Phys. 2009, 9, 4575–4591. doi:10.5194/acp-9-4575-2009
  • Swami, K.; Judd, C. D.; Orsini, J.; Yang, K. X.; Husain, L. Microwave Assisted Digestion of Atmospheric Aerosol Samples Followed by Inductively Coupled Plasma Mass Spectrometry Determination of Trace Elements. Fresenius. J. Anal. Chem. 2001, 369, 63–70. doi:10.1007/s002160000575
  • Szigeti, T.; Mihucz, V. G.; Óvári, M.; Baysal, A.; Atilgan, S.; Akman, S.; Záray, G. Chemical Characterization of PM2.5 Fractions of Urban Aerosol Collected in Budapest and Istanbul. Microchem. J. 2013, 107, 86–94. doi:10.1016/j.microc.2012.05.029
  • Mihucz, V. G.; Szigeti, T.; Dunster, C.; Giannoni, M.; de Kluizenaar, Y.; Cattaneo, A.; Mandin, C.; Bartzis, J. G.; Lucarelli, F.; Kelly, F. J.; Záray, G. An Integrated Approach for the Chemical Characterization and Oxidative Potential Assessment of Indoor PM2.5. Microchem. J. 2015, 119, 22–29. doi:10.1016/j.microc.2014.10.006
  • Jalkanen, L. M.; Häsänen, E. K. Simple Method for the Dissolution of Atmospheric Aerosol Samples for Analysis by Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 1996, 11, 365–369. doi:10.1039/JA9961100365
  • Pekney, N. J.; Davidson, C. I. Determination of Trace Elements in Ambient Aerosol Samples. Anal. Chim. Acta. 2005, 540, 269–277. doi:10.1016/j.aca.2005.03.065
  • Giner Martínez-Sierra, J.; Galilea San Blas, O.; Marchante Gayón, J. M.; García Alonso, J. I. Sulfur Analysis by Inductively Coupled Plasma-Mass Spectrometry: A Review. Spectrochim. Acta Part B. Spectrosc. 2015, 108, 35–52. doi:10.1016/j.sab.2015.03.016
  • Amais, R. S.; Amaral, C. D. B.; Fialho, L. L.; Schiavo, D.; Nóbrega, J. A. Determination of P, S and Si in Biodiesel, Diesel and Lubricating Oil Using ICP-MS/MS. Anal. Methods. 2014, 6, 4516–4520. doi:10.1039/C4AY00279B
  • Wang, C. F.; Chen, W. H.; Yang, M. H.; Chiang, P. C. Microwave Decomposition for Airborne Particulate Matter for the Determination of Trace Elements by Inductively Coupled Plasma Mass Spectrometry. Analyst. 1995, 120, 1681–1686. doi:10.1039/an9952001681
  • Arı, A.; Arı, P. E.; Gaga, E. O. Chemical Characterization of Size-Segregated Particulate Matter (PM) by Inductively Coupled plasma - Tandem Mass Spectrometry (ICP-MS/MS). Talanta. 2020, 208, 120350. doi:10.1016/j.talanta.2019.120350
  • Rovelli, S.; Nischkauer, W.; Cavallo, D. M.; Limbeck, A. Multi-Element Analysis of Size-Segregated Fine and Ultrafine Particulate via Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Anal. Chim. Acta. 2018, 1043, 11–19. doi:10.1016/j.aca.2018.10.026
  • Hsieh, Y. K.; Chen, L. K.; Hsieh, H. F.; Huang, C. H.; Wang, C. F. Elemental Analysis of Airborne Particulate Matter Using an Electrical Low-Pressure Impactor and Laser Ablation/Inductively Coupled Plasma Mass Spectrometry. J. Anal. At. Spectrom. 2011, 26, 1502–1508. doi:10.1039/c0ja00207k
  • Nazir, R.; Shaheen, N.; Shah, M. H. Indoor/Outdoor Relationship of Trace Metals in the Atmospheric Particulate Matter of an Industrial Area. Atmos. Res. 2011, 101, 765–772. doi:10.1016/j.atmosres.2011.05.003
  • Srivastava, A.; Jain, V. K. A Study to Characterize the Suspended Particulate Matter in an Indoor Environment in Delhi, India. Build. Environ. 2007, 42, 2046–2052. doi:10.1016/j.buildenv.2006.03.007
  • Brown, R. J. C.; Milton, M. J. T. Analytical Techniques for Trace Element Analysis: An Overview. TrAC Trends Anal. Chem. 2005, 24, 266–274. doi:10.1016/j.trac.2004.11.010
  •  U.S. EPA Method IO-3.3 Determination of Metals in Ambient Particulate Matter Using X-Ray Fluorescence (XRF) Spectroscopy, In Compendium of Methods for the Determination of Inorganic Compounds in Ambient Air, EPA/625/R-96/010a, Environmental Protection Development, June 1999.
  • Lucarelli, F.; Chiari, M.; Calzolai, G.; Giannoni, M.; Nava, S.; Udisti, R.; Severi, M.; Querol, X.; Amato, F.; Alves, C.; Eleftheriadis, K. The Role of PIXE in the AIRUSE Project ‘Testing and Development of Air Quality Mitigation Measures in Southern Europe. Nucl. Instrum. Method. Phys. Res. Sect. B Beam Interact. Mater. Atoms. 2015, 363, 92–98. doi:10.1016/j.nimb.2015.08.023
  • Lucarelli, F.; Calzolai, G.; Chiari, M.; Giannoni, M.; Mochi, D.; Nava, S.; Carraresi, L. The Upgraded External-Beam PIXE/PIGE Set-up at LABEC for Very Fast Measurements on Aerosol Samples. Nucl. Inst. Methods Phys. Res. B. 2014, 318, 55–59. doi:10.1016/j.nimb.2013.05.099
  • Szigeti, T.; Kertész, Z.; Dunster, C.; Kelly, F. J.; Záray, G.; Mihucz, V. G. Exposure to PM2.5 in Modern Office Buildings through Elemental Characterization and Oxidative Potential. Atmos. Environ. 2014, 94, 44–52. doi:10.1016/j.atmosenv.2014.05.014
  • Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Mantilla, E.; Ruiz, C. R. Monitoring of PM10 and PM2.5 around Primary Particulate Anthropogenic Emission Sources. Atmos. Environ. 2001, 35, 845–858. doi:10.1016/S1352-2310(00)00387-3
  • Querol, X.; Alastuey, A.; Rodriguez, S.; Plana, F.; Ruiz, C. R.; Cots, N.; Massagué, G.; Puig, O. PM10 and PM2.5 Source Apportionment in the Barcelona Metropolitan Area, Catalonia, Spain. Atmos. Environ. 2001, 35, 6407–6419. doi:10.1016/S1352-2310(01)00361-2
  • Emma, G.; Snell, J.; Charoud-Got, J.; Held, A.; Emons, H. Feasibility Study of a Candidate Reference Material for Ions in PM2.5: does Commutability Matter Also for Inorganic Matrices? Anal. Bioanal. Chem. 2018, 410, 6001–6008. doi:10.1007/s00216-018-1220-6
  • Karthikeyan, S.; See, S. W.; Balasubramanian, R. Simultaneous Determination of Inorganic Anions and Selected Organic Acids in Airborne Particulate Matter by Ion Chromatography. Anal. Lett. 2007, 40, 793–804. doi:10.1080/00032710601017920
  • Ye, Z.; Liu, J.; Gu, A.; Feng, F.; Liu, Y.; Bi, C.; Xu, J.; Li, L.; Chen, H.; Chen, Y.; et al. Chemical Characterization of Fine Particulate Matter in Changzhou, China, and Source Apportionment with Offline Aerosol Mass Spectrometry. Atmos. Chem. Phys. 2017, 17, 2573–2592. doi:10.5194/acp-17-2573-2017
  • Karthikeyan, S.; Balasubramanian, R. Determination of Water-Soluble Inorganic and Organic Species in Atmospheric Fine Particulate Matter. Microchem. J. 2006, 82, 49–55. doi:10.1016/j.microc.2005.07.003
  • Vecchi, R.; Chiari, M.; D’Alessandro, A.; Fermo, P.; Lucarelli, F.; Mazzei, F.; Nava, S.; Piazzalunga, A.; Prati, P.; Silvani, F.; Valli, G. A Mass Closure and PMF Source Apportionment Study on the Sub-Micron Sized Aerosol Fraction at Urban Sites in Italy. Atmos. Environ. 2008, 42, 2240–2253. doi:10.1016/j.atmosenv.2007.11.039
  • Zhou, Y.; Wang, T.; Gao, X.; Xue, L.; Wang, X.; Wang, Z.; Gao, J.; Zhang, Q.; Wang, W. Continuous Observations of Water-Soluble Ions in PM2.5 at Mount Tai (1534 Ma.s.l.) in Central-Eastern. J. Atmos. Chem. 2009, 64, 107–127. doi:10.1007/s10874-010-9172-z
  • Thriene, B.; Sobottka, A.; Willer, H.; Weidhase, J. Man-Made Mineral Fibre Boards in buildings - Health Risks Caused by Quality Deficiencies. Toxicol. Lett. 1996, 88, 299–303. doi:10.1016/0378-4274(96)03753-8
  • Gaudichet, A.; Petit, G.; Billon-Galland, M. A.; Dufour, G. Levels of Atmospheric Pollution by Man-Made Mineral Fibres in Buildings. IARC Sci. Publ. 1989, 90, 291–298.
  • Miller, M. E.; Lees, P. S. J.; Breysse, P. N. A Comparison of Airborne Man-Made Vitreous Fiber Concentrations before and after Installation of Insulation in New Construction Housing. Appl. Occup. Environ. Hyg. 1995, 10, 182–187. doi:10.1080/1047322X.1995.10387624
  • Schneider, T. Manmade Mineral Fibers and Other Fibers in the Air and in Settled Dust. Environ. Int. 1986, 12, 61–65. doi:10.1016/0160-4120(86)90014-0
  • Salonen, H. J.; Lappalainen, S. K.; Riuttala, H. M.; Tossavainen, A. P.; Pasanen, P. O.; Reijula, K. E. Man-Made Vitreous Fibers in Office Buildings in the Helsinki Area. J. Occup. Environ. Hyg. 2009, 6, 624–631. doi:10.1080/15459620903133667
  • Rocha-Santos, T.; Duarte, A. C. A Critical Overview of the Analytical Approaches to the Occurrence, the Fate and the Behavior of Microplastics in the Environment. TrAC Trends Anal. Chem. 2015, 65, 47–53. doi:10.1016/j.trac.2014.10.011
  • Dris, R.; Gasperi, J.; Mirande, C.; Mandin, C.; Guerrouache, M.; Langlois, V.; Tassin, B. A First Overview of Textile Fibers, Including Microplastics, in Indoor and Outdoor Environments. Environ. Pollut. 2017, 221, 453–458. doi:10.1016/j.envpol.2016.12.013
  • Cai, L.; Wang, J.; Peng, J.; Tan, Z.; Zhan, Z.; Tan, X.; Chen, Q. Characteristic of Microplastics in the Atmospheric Fallout from Dongguan City, China: preliminary Research and First Evidence. Environ. Sci. Pollut. Res. Int. 2017, 24, 24928–24935. doi:10.1007/s11356-017-0116-x
  • Vianello, A.; Jensen, R. L.; Liu, L.; Vollertsen, J. Simulating Human Exposure to Indoor Airborne Microplastics Using a Breathing Thermal Manikin. Sci. Rep. 2019, 9, 1–11.
  • Mbachu, O.; Jenkins, G.; Pratt, C.; Kaparaju, P. A New Contaminant Superhighway? A Review of Sources, Measurement Techniques and Fate of Atmospheric Microplastics. Water. Air. Soil. Pollut. 2020, 231, 85.
  • Hidalgo-Ruz, V.; Gutow, L.; Thompson, R. C.; Thiel, M. Microplastics in the Marine Environment: A Review of the Methods Used for Identification and Quantification. Environ. Sci. Technol. 2012, 46, 3060–3075. doi:10.1021/es2031505
  • Hurley, R. R.; Lusher, A. L.; Olsen, M.; Nizzetto, L. Validation of a Method for Extracting Microplastics from Complex, Organic-Rich, Environmental Matrices. Environ. Sci. Technol. 2018, 52, 7409–7417. doi:10.1021/acs.est.8b01517
  • Avio, C. G.; Gorbi, S.; Regoli, F. Experimental Development of a New Protocol for Extraction and Characterization of Microplastics in Fish Tissues: First Observations in Commercial Species from Adriatic Sea. Mar. Environ. Res. 2015, 111, 18–26. doi:10.1016/j.marenvres.2015.06.014
  • Dehaut, A.; Cassone, A. L.; Frère, L.; Hermabessiere, L.; Himber, C.; Rinnert, E.; Rivière, G.; Lambert, C.; Soudant, P.; Huvet, A.; et al. Microplastics in Seafood: Benchmark Protocol for Their Extraction and Characterization. Environ. Pollut 2016, 215, 223–233. doi:10.1016/j.envpol.2016.05.018
  • Cole, M.; Webb, H.; Lindeque, P. K.; Fileman, E. S.; Halsband, C.; Galloway, T. S. Isolation of Microplastics in Biota-Rich Seawater Samples and Marine Organisms. Sci. Rep 2014, 4, 1–8.
  • Abbasi, S.; Keshavarzi, B.; Moore, F.; Delshab, H.; Soltani, N.; Sorooshian, A. Investigation of Microrubbers, Microplastics and Heavy Metals in Street Dust: A Study in Bushehr City. Iran. Environ. Earth Sci 2017, 76, 1–19.
  • Abbasi, S.; Keshavarzi, B.; Moore, F.; Turner, A.; Kelly, F. J.; Dominguez, A. O.; Jaafarzadeh, N. Distribution and Potential Health Impacts of Microplastics and Microrubbers in Air and Street Dusts from Asaluyeh County, Iran. Environ. Pollut 2019, 244, 153–164. doi:10.1016/j.envpol.2018.10.039
  • Dehghani, S.; Moore, F.; Akhbarizadeh, R. Microplastic Pollution in Deposited Urban Dust, Tehran Metropolis, Iran. Environ. Sci. Pollut. Res. Int. 2017, 24, 20360–20371. doi:10.1007/s11356-017-9674-1
  • Tagg, A. S.; Harrison, J. P.; Ju-Nam, Y.; Sapp, M.; Bradley, E. L.; Sinclair, C. J.; Ojeda, J. J. Fenton's Reagent for the Rapid and Efficient Isolation of Microplastics from Wastewater. Chem Commun (Camb) 2016, 53, 372–375. doi:10.1039/c6cc08798a
  • Dekiff, J. H.; Remy, D.; Klasmeier, J.; Fries, E. Occurrence and Spatial Distribution of Microplastics in Sediments from Norderney. Environ. Pollut 2014, 186, 248–256. doi:10.1016/j.envpol.2013.11.019
  • Mihara, T.; Mochida, M. Characterization of Solvent-Extractable Organics in Urban Aerosols Based on Mass Spectrum Analysis and Hygroscopic Growth Measurement. Environ. Sci. Technol. 2011, 45, 9168–9174. doi:10.1021/es201271w
  • Chen, Q.; Miyazaki, Y.; Kawamura, K.; Matsumoto, K.; Coburn, S.; Volkamer, R.; Iwamoto, Y.; Kagami, S.; Deng, Y.; Ogawa, S.; et al. Characterization of Chromophoric Water-Soluble Organic Matter in Urban, Forest, and Marine Aerosols by HR-ToF-AMS Analysis and Excitation-Emission Matrix Spectroscopy. Environ. Sci. Technol. 2016, 50, 10351–10360. doi:10.1021/acs.est.6b01643
  • Brege, M.; Paglione, M.; Gilardoni, S.; Decesari, S.; Cristina Facchini, M.; Mazzoleni, L. R. Molecular Insights on Aging and Aqueous-Phase Processing from Ambient Biomass Burning Emissions-Influenced Po Valley Fog and Aerosol. Atmos. Chem. Phys. 2018, 18, 13197–13214. doi:10.5194/acp-18-13197-2018
  • Bozzetti, C.; El Haddad, I.; Salameh, D.; Daellenbach, K. R.; Fermo, P.; Gonzalez, R.; Minguillón, M. C.; Iinuma, Y.; Poulain, L.; Elser, M.; et al. Organic Aerosol Source Apportionment by offline-AMS over a Full Year in Marseille. Atmos. Chem. Phys. 2017, 17, 8247–8268. doi:10.5194/acp-17-8247-2017
  • Lai, A. M.; Carter, E.; Shan, M.; Ni, K.; Clark, S.; Ezzati, M.; Wiedinmyer, C.; Yang, X.; Baumgartner, J.; Schauer, J. J. Chemical Composition and Source Apportionment of Ambient, Household, and Personal Exposures to PM2.5 in Communities Using Biomass Stoves in Rural China. Sci Total Environ. 2019, 646, 309–319. doi:10.1016/j.scitotenv.2018.07.322
  • Laskin, A.; Laskin, J.; Nizkorodov, S. A. Chemistry of Atmospheric Brown Carbon. Chem. Rev. 2015, 115, 4335–4382. doi:10.1021/cr5006167
  • Moise, T.; Flores, J. M.; Rudich, Y. Optical Properties of Secondary Organic Aerosols and Their Changes by Chemical Processes. Chem. Rev. 2015, 115, 4400–4439. doi:10.1021/cr5005259
  • Almeida, A. S.; Ferreira, R. M. P.; Silva, A. M. S.; Duarte, A. C.; Neves, B. M.; Duarte, R. M. B. O. Structural Features and Pro-Inflammatory Effects of Water-Soluble Organic Matter in Inhalable Fine Urban Air Particles. Environ. Sci. Technol. 2020, 54, 1082–1091. doi:10.1021/acs.est.9b04596
  • Willoughby, A. S.; Wozniak, A. S.; Hatcher, P. G. Detailed Source-Specific Molecular Composition of Ambient Aerosol Organic Matter Using Ultrahigh Resolution Mass Spectrometry and 1H NMR. Atmosphere (Basel). 2016, 7, 79. doi:10.3390/atmos7060079
  • Bao, H.; Niggemann, J.; Luo, L.; Dittmar, T.; Kao, S. J. Molecular Composition and Origin of Water-Soluble Organic Matter in Marine Aerosols in the Pacific off China. Atmos. Environ. 2018, 191, 27–35. doi:10.1016/j.atmosenv.2018.07.059
  • Tang, J.; Li, J.; Su, T.; Han, Y.; Mo, Y.; Jiang, H.; Cui, M.; Jiang, B.; Chen, Y.; Tang, J.; et al. Molecular Compositions and Optical Properties of Dissolved Brown Carbon in Biomass Burning, Coal Combustion, and Vehicle Emission Aerosols Illuminated by Excitation–Emission Matrix Spectroscopy and Fourier Transform Ion Cyclotron Resonance Mass Spectromet. Atmos. Chem. Phys. 2020, 20, 2513–2532. doi:10.5194/acp-20-2513-2020
  • Krauss, M.; Singer, H.; Hollender, J. LC-High Resolution MS in Environmental Analysis: From Target Screening to the Identification of Unknowns. Anal. Bioanal. Chem. 2010, 397, 943–951. doi:10.1007/s00216-010-3608-9