7,668
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Review of low-cost sensors for indoor air quality: Features and applications

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all

References

  • Zomorodian, Z.-S.; Tahsildoost, M.; Hafezi, M. Thermal Comfort in Educational Buildings: A Review Article. Renew. Sustain. Energy Rev. 2016, 59, 895–906. doi:10.1016/j.rser.2016.01.033
  • Forouzanfar, M. H.; Alexander, L.; Anderson, H. R.; Bachman, V. F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M. M.; Cohen, A.; et al. Global, Regional, and National Comparative Risk Assessment of 79 Behavioural, Environmental and Occupational, and Metabolic Risks or Clusters of Risks in 188 Countries, 1990 − 2013: A Systematic Analysis for the Global Burden of Disease Study. Lancet. 2015, 386, 2287–2323. doi:10.1016/S0140-6736(15)00128-2
  • WHO. 2021. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. WHO: Geneva, Switzerland. https://apps.who.int/iris/handle/10665/345329. (eletronic version).
  • Edwards, R.-D.; Jurvelin, J.; Koistinen, K.; Saarela, K.; Jantunen, M.; Askyl, J. VOC Source Identification from Personal and Residential Indoor, Outdoor and Workplace Microenvironment Samples in EXPOLIS-Helsinki, Finland. Atmos. Environ. 2001, 35, 4829–4841. doi:10.1016/S1352-2310(01)00271-0
  • González-Martín, J.; Kraakman, N.-J.-R.; Pérez, C.; Lebrero, R.; Muñoz, R. A State-of-the-Art Review on Indoor Air Pollution and Strategies for Indoor Air Pollution Control. Chemosphere. 2021, 262, 128376. DOI: 10.1016/J.CHEMOSPHERE.2020.128376.
  • Villanueva, F.; Rodenas, M.; Ruus, A.; Saffell, J.; Gabriel, M.-F. Sampling and Analysis Techniques for Inorganic Air Pollutants in Indoor Air. Appl. Spectrosc. Rev. 2021, 1–49. doi:10.1080/05704928.2021.2020807
  • Chojer, H.; Branco, P.-T.-B.-S.; Martins, F.-G.; Alvim-Ferraz, M.-C.-M.; Sousa, S.-I.-V. Development of Low-Cost Indoor Air Quality Monitoring Devices: Recent Advancements. Sci Total Environ. 2020, 727, 138385. doi:10.1016/j.scitotenv.2020.138385
  • Hulanicki, A.; Glab, S.; Ingman, F. Chemical Sensors Definitions and Classification. Pure Appl. Chem. 1991, 63, 1247–1250. doi:10.1351/pac199163091247
  • Lewis, A., Von Schneidemesser, E.; and Peltier, R. Low-Cost Sensors for the Measurement of Atmospheric Composition: Overview of Topic and Future Applications; WMO: Geneva, Switzerland, 2018.
  • Peltier, R.-E.; Castell, N.; Clements, A.L.; Dye, T.; Hüglin, C.; Kroll, J.-H.; Lung, S.-C.-C.; Ning, Z.; Parsons, M.; Penza, M.; Reisen, F.; Schneidemesser, E. An Update on Low-Cost Sensors for the Measurement of Atmospheric Composition, December 2020; WMO: Geneva, Switzerland, 2021.
  • Saini, J.; Dutta, M.; Marques, G. Sensors for Indoor Air Quality Monitoring and Assessment through Internet of Things: A Systematic Review. Environ. Monit. Assess. 2021, 193, 1–32. doi:10.1007/s10661-020-08781-6
  • NRC – National Research Council. Expanding the Vision of Sensor Materials; The National Academies Press: Washington, D.C., 1995. pp. 73–88. doi:10.17226/4782
  • Snyder, E. G.; Watkins, T. H.; Solomon, P. A.; Thoma, E. D.; Williams, R. W.; Hagler, G. S. W.; Shelow, D.; Hindin, D. A.; Kilaru, V. J.; Preuss, P. W.; et al. The Changing Paradigm of Air Pollution Monitoring. Environ. Sci. Technol. 2013, 47, 11369–11377. doi:10.1021/es4022602 SNYDER, 2013
  • Howard, J.; Murashov, V.; Cauda, E.; Snawder, J. Advanced Sensor Technologies and the Future of Work. Am. J. Ind. Med. 2022, 65, 3–11. doi:10.1002/ajim.23300
  • Standard CEN/TS 17660-1:2021: Air Quality—Performance Evaluation of Air Quality Sensor Systems—Part 1: Gaseous Pollutants in Ambient Air. https://standards.iteh.ai/catalog/standards/cen/5bdb236e-95a3-4b5b-ba7f-62ab08cd21f8/cen-ts-17660-1-2021 (accessed May 19, 2022).
  • Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe Europe (CAFE). Offi J Eur Union. 2008, 1, 1–44.
  • Kumar, P.; Skouloudis, A. N.; Bell, M.; Viana, M.; Carotta, M. C.; Biskos, G.; Morawska, L. Real-Time Sensors for Indoor Air Monitoring and Challenges Ahead in Deploying Them to Urban Buildings. Sci. Total Environ. 2016b, 560-561, 150–159. doi:10.1016/j.scitotenv.2016.04.032
  • Kumar, P.; Morawska, L. Energy-Pollution Nexus for Urban Buildings. Environ Sci Technol. 2013, 47, 7591–7592. doi:10.1021/es402549p
  • Morawska, L.; Thai, P. K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ Int. 2018, 116, 286–299. doi:10.1016/j.envint.2018.04.018
  • Fanti, G.; Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Keller, M.; Cattaneo, A.; Cauda, E.; Cavallo, D.-M. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors. 2021, 2021, 21, 4513. doi:10.3390/s2113
  • Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the Use of Small and Cheaper Sensors and Devices for Indicative Citizen-Based Monitoring of Respirable Particulate Matter. Environ Pollut. 2015, 206, 696–704. doi:10.1016/j.envpol.2015.08.035
  • Kang, Y.; Aye, L.; Ngo, T. D.; Zhou, J. Performance Evaluation of Low-Cost Air Quality Sensors: A Review. Sci Total Environ. 2022, 818, 151769. doi:10.1016/j.scitotenv.2021.151769
  • Han, Y.; Li, X.; Zhu, T.; Lv, D.; Chen, Y.; Hou, L.; Zhang, Y.; Ren, M. Characteristics and Relationships between Indoor and Outdoor PM2.5 in Beijing: A Residential Apartment Case Study. Aerosol Air Qual. Res. 2016, 16, 2386–2395. doi:10.4209/aaqr.2015.12.0682
  • Carslaw, N. Chemical Reactions in the Indoor Atmosphere. In Indoor Air Pollution, Harrison, R. M., Hester, R. E., Eds.; Royal Society of Chemistry: Cambridge, 2019; 105–126 doi:10.1039/9781788016179-00105
  • Baldelli, A. Evaluation of a Low-Cost Multi-Channel Monitor for Indoor Air Quality through a Novel, Low-Cost, and Reproducible Platform. Measure Sens. 2021, 17, 100059. doi:10.1016/j.measen.2021.100059
  • Kumar, P.; Martani, C.; Morawska, L.; Norford, L.; Choudhary, R.; Bell, M.; Leach, M. Indoor Air Quality and Energy Management through Real-Time Sensing in Commercial Buildings. Energy Build. 2016a, 111, 145–153. doi:10.1016/j.enbuild.2015.11.037
  • Poulhet, G.; Dusanter, S.; Crunaire, S.; Locoge, N.; Kaluzny, P.; Coddeville, P. Recent Developments of Passive Samplers for Measuring Material Emission Rates: Toward Simple Tools to Help Improving Indoor Air Quality. Build Environ. 2015, 93, 106–114. doi:10.1016/j.buildenv.2015.02.034
  • Shen, H.; Hou, W.; Zhu, Y.; Zheng, S.; Ainiwaer, S.; Shen, G.; Chen, Y.; Cheng, H.; Hu, J.; Wan, Y.; Tao, S. Temporal and Spatial Variation of PM2.5 in Indoor Air Monitored by Low-Cost Sensors. Sci Total Environ. 2021, 770, 145304. doi:10.1016/j.scitotenv.2021.145304
  • Ciuzas, D.; Prasauskas, T.; Krugly, E.; Sidaraviciute, R.; Jurelionis, A.; Seduikyte, L.; Kauneliene, V.; Wierzbicka, A.; Martuzevicius, D. Characterization of Indoor Aerosol Temporal Variations for the Real-Time Management of Indoor Air Quality. Atmos. Environ. 2015, 118, 107–117. doi:10.1016/j.atmosenv.2015.07.044
  • Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D.-M, Luca Del Buono. Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. IJERPH. 2017, 14, 909. doi:10.3390/ijerph14080909
  • Cauda, E.; Snawder, J.; Spinazzè, A.; Cattaneo, A.; Howard, J.-C.-D. The Challenge for Industrial Hygiene 4.0. A NIOSH Perspective on Direct-Reading Methodologies and Real-Time Monitoring in Occupational Environments. The Synergist, 2022. https://synergist.aiha.org/202202-new-stage-ih?utm_source=aiha&utm_medium=email&utm_content=february-digital-edition&utm_campaign=sdigital22 (accessed April 20, 2022).
  • Kumar, A.; Gurjar, B.-R. Low-Cost Sensors for Air Quality Monitoring in Developing Countries – a Critical View. AJW. 2019, 16, 65–70. doi:10.3233/AJW190021
  • Cattaneo, A.; Spinazzè, A.; Cavallo, D. M. Indoor Air Quality in Offices. In Handbook of Indoor Air Quality, Zhang, Y., Hopke, P. K., Mandin, C., Eds. Springer: Singapore, 2022, doi:10.1007/978-981-10-5155-5_77-1
  • Kim, M.; Liu, H.; Kim, J.-T.; Yoo, C. Evaluation of Passenger Health Risk Assessment of Sustainable Indoor Air Quality Monitoring in Metro Systems Based on a non-Gaussian Dynamic Sensor Validation Method. J Hazard Mater. 2014, 278, 124–133. doi:10.1016/j.jhazmat.2014.05.098
  • Williams, R.; Nash, D.; Hagler, G.; Benedict, K. Peer Review and Supporting Literature Review of Air Sensor Technology Performance Targets. US Environmental Protection Agency. Office of Research and Development. National Exposure Research Laboratory, 2018. EPA/600/R-18/324. www.epa.gov/research.
  • Kolokotsa, D.; Santamouris, M. Review of the Indoor Environmental Quality and Energy Consumption Studies for Low Income Households in. Europe. Sci. Total Environ. 2015, 536, 316–330. doi:10.1016/j.scitotenv.2015.07.073
  • Demanega, I.; Mujan, I.; Singer, B.-C.; Anđelković, A.-S.; Babich, F.; Licina, D. Performance Assessment of Low-Cost Environmental Monitors and Single Sensors under Variable Indoor Air Quality and Thermal Conditions. Build Environ. 2021, 187, 107415. doi:10.1016/j.buildenv.2020.107415
  • Sá, J. P.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. Application of the Low-Cost Sensing Technology for Indoor Air Quality Monitoring: A Review. Environ. Technol. Innov. 2022, 28, 102551. doi:10.1016/j.eti.2022.102551
  • Castell, N.; Dauge, F.-R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ Int. 2017, 99, 293–302. volumeISSN 0160-4120,doi:10.1016/j.envint.2016.12.007
  • Tancev, G. Relevance of Drift Components and Unit-to-Unit Variability in the Predictive Maintenance of Low-Cost Electrochemical Sensor Systems in Air Quality Monitoring. Sensors. 2021, 21, 3298. doi:10.3390/s21093298
  • Kim, H.; Müller, M.; Henne, S.; Hüglin, C. Long-Term Behavior and Stability of Calibration Models for NO and NO2 Low-Cost Sensors. Atmos. Meas. Tech. 2022, 15, 2979–2992. doi:10.5194/amt-15-2979-2022
  • Bulot, F. M. J.; Russell, H. S.; Rezaei, M.; Johnson, M. S.; Ossont, S. J. J.; Morris, A. K. R.; Basford, P. J.; Easton, N. H. C.; Foster, G. L.; Loxham, M.; Cox, S. J. Laboratory Comparison of Low-Cost Particulate Matter Sensors to Measure Transient Events of Pollution. Sensors. 2020, 20, 2219. doi:10.3390/s20082219
  • Zimmerman, N. Tutorial: Guidelines for Implementing Low-Cost Sensor Networks for Aerosol Monitoring. J. Aerosol Sci. 2022, 159, 105872. doi:10.1016/j.jaerosci.2021.105872
  • Zhang, H.; Srinivasan, R. A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. Sustainability. 2020, 12, 9045. doi:10.3390/su12219045
  • Barsan, N.; Weimar, U. Fundamentals of Metal Oxide Gas Sensors. Book chapter at Metal Oxide-based Gas Sensors VII, 2012. doi:10.5162/IMCS2012/7.3.3
  • Mead, M.-I.; Popoola, O.-A.-M.; Stewart, G.-B.; Landshoff, P.; Calleja, M.; Hayes, M.; Baldovi, J.-J.; McLeod, M. W.; Hodgson, T.-F.; Dicks, J.; et al. The Use of Electrochemical Sensors for Monitoring Urban Air Quality in Low-Cost, High-Density Networks. Atmos. Environ. 2013, 70, 186–203. doi:10.1016/j.atmosenv.2012.11.060
  • Agbroko, S. O.; Covington, J. Low-Cost, Portable PID Sensor for the Detection of Volatile Organic Compounds. Sensor Actuat: B Chem. 2018, 275, 10–15. doi:10.1016/j.snb.2018.07.173
  • Di Gilio, A.; Palmisani, J.; Pulimeno, M.; Cerino, F.; Cacace, M.; Miani, A.; de Gennaro, G. CO2 Concentration Monitoring Inside Educational Buildings as a Strategic Tool to Reduce the Risk of Sars-CoV-2 Airborne Transmission. Environ Res. 2021, 202, 111560. doi:10.1016/j.envres.2021.111560
  • Liu, L.-J.; Slaughter, J.-C.; Larson, T.-V. Comparison of Light Scattering Devices and Impactors for Particulate Measurements in Indoor, Outdoor, and Personal Environments. Environ. Sci. Technol. 2002, 36, 2977–2986. doi:10.1021/es0112644
  • Marques, G.; Pitarma, R.-M.; Garcia, N.; Pombo, N. Internet of Things Architectures, Technologies, Applications, Challenges, and Future Directions for Enhanced Living Environments and Healthcare Systems: A Review. Electronics. 2019, 8, 1081. doi:10.3390/electronics8101081
  • Lopes, S.-I.; Pereira, F.; Vieira, J.-M.-N.; Carvalho, N.-B.; Curado, A. Design of Compact LoRa Devices for Smart Building Applications. GreeNets. 2018, 269, 1867–8211. doi:10.1007/978-3-030-12950-7_12
  • Li, J.; Li, H.; Ma, Y.; Wang, Y.; Abokifa, A.-A.; Lu, C.; Biswas, P. Spatiotemporal Distribution of Indoor Particulate Matter Concentration with a Low-Cost Sensor Network. Build Environ. 2018, 127, 138–147. doi:10.1016/j.buildenv.2017.11.001
  • Jo, D.; Kim, G.-J. ARIoT: Scalable Augmented Reality Framework for Interacting with Internet of Things Appliances Everywhere. IEEE Trans. Consumer Electron. 2016, 62, 334–340. doi:10.1109/TCE.2016.7613201
  • Cofta, P.; Orłowski, C.; Lebiedź, J. Trust-Based Model for the Assessment of the Uncertainty of Measurements in Hybrid IoT Networks. Sensors. 2020, 20, 6956. doi:10.3390/s20236956
  • Bagkis, E.; Kassandros, T.; Karteris, M.; Karteris, A.; Karatzas, K. Analyzing and Improving the Performance of a Particulate Matter Low Cost Air Quality Monitoring Device. Atmosphere. 2021, 12, 251. doi:10.3390/atmos12020251
  • Bigi, A.; Mueller, M.; Grange, S.-K.; Ghermandi, G.; Hueglin, C. Performance of NO, NO2 Low Cost Sensors and Three Calibration Approaches within a Real World Application. Atmos. Meas. Tech. 2018, 11, 3717–3735. doi:10.5194/amt-11-3717-2018
  • Zimmerman, N.; Presto, A. A.; Kumar, S. P. N.; Gu, J.; Hauryliuk, A.; Robinson, E. S.; Robinson, A. L.; Subramanian, R. A Machine Learning Calibration Model Using Random Forests to Improve Sensor Performance for Lower-Cost Air Quality Monitoring. Atmos. Meas. Tech. 2018, 11, 291–313. doi:10.5194/amt-11-291-2018
  • Bagkis, E.; Kassandros, T.; Karatzas, K. Learning Calibration Functions on the Fly: Hybrid Batch Online Stacking Ensembles for the Calibration of Low-Cost Air Quality Sensor Networks in the Presence of Concept Drift. Atmosphere. 2022, 13, 416. doi:10.3390/atmos13030416
  • Williams, R.; Kilaru, V.; Snyder, E.; Kaufman, A.; Dye, T.; Rutter, A.; Russell, A.; Hafner, H. Air Sensor Guidebook. EPA/600/R-14/159 (NTIS PB2015-100610); U.S. Environmental Protection Agency: Washington, DC, USA, 2014.
  • Borghi, F.; Spinazzè, A.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.-M. Precision and Accuracy of a Direct-Reading Miniaturized Monitor in PM2.5 Exposure Assessment. Sensors. 2018, 18, 3089. doi:10.3390/s18093089
  • Spinazzè, A.; Fanti, G.; Borghi, F.; Del Buono, L.; Campagnolo, D.; Rovelli, S.; Cattaneo, A.; Cavallo, D.-M. Field Comparison of Instruments for Exposure Assessment of Airborne Ultrafine Particles and Particulate Matter. Atmos. Environ. 2017, 154, 274–284. doi:10.1016/j.atmosenv.2017.01.054
  • Zikova, N.; Hopke, P.-H.; Ferro, A.-R. Evaluation of New Low-Cost Particle Monitors for PM2.5 Concentrations Measurements. J. Aerosol Sci. 2017, 105, 24–34. doi:10.1016/j.jaerosci.2016.11.010
  • Watson, J.-C.; Chow, J.-C.; Moosmuller, H. 1998. Guidance for Using Continuous Monitoring in PM2.5 Monitoring Networks. EPA-454/R-98-012; Environmental Protection Agency, 1998.
  • Altman, D.-G.; Bland, J.-M. Measurement in Medicine: The Analysis of Method Comparison Studies. Statistician. 1983, 32, 307–317. doi:10.2307/2987937
  • Bland, J.-M.; Altman, D.-G. Statistical Methods for Assessing Agreement between Two Methods of Clinical Measurement. Lancet. 1986, 327, 307–310. doi:10.1016/S0140-6736(86)90837-8
  • Karagulian, F.; Barbiere, M.; Kotsev, A.; Spinelle, L.; Gerboles, M.; Lagler, F.; Redon, N.; Crunaire, S.; Borowiak, A. Review of the Performance of Low-Cost Sensors for Air Quality Monitoring. Atmosphere-Basel. 2019, 10, 506. doi:10.3390/atmos10090506
  • Borrego, C.; Costa, A. M.; Ginja, J.; Amorim, M.; Coutinho, M.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; et al. Assessment of Air Quality Microsensors versus Reference Methods: The Eunetair Joint Exercise. Atmos. Environ. 2016, 147, 246–263. doi:10.1016/j.atmosenv.2016.09.050
  • Collier-Oxandale, A.; Feenstra, B.; Papapostolou, V.; Zhang, H.; Kuang, M.; Der Boghossian, B.; Polidori, A. Field and Laboratory Performance Evaluations of 28 Gas-Phase Air Quality Sensors by the AQ-SPEC Program. Atmos. Environ. 2020, 220, 117092. doi:10.1016/j.atmosenv.2019.117092
  • Rai, A. C.; Kumar, P.; Pilla, F.; Skouloudis, A. N.; Di Sabatino, S.; Ratti, C.; Yasar, A.; Rickerby, D. End-User Perspective of Low-Cost Sensors for Outdoor Air Pollution Monitoring. Sci. Total Environ. 2017, 607–608, 691–705. doi:10.1016/j.scitotenv.2017.06.266
  • Cross, E. S.; Williams, L. R.; Lewis, D. K.; Magoon, G. R.; Onasch, T. B.; Kaminsky, M. L.; Worsnop, D. R.; Jayne, J. T. Use of Electrochemical Sensors for Measurement of Air Pollution: correcting Interference Response and Validating Measurements. Atmos. Meas. Tech. 2017, 10, 3575–3588. doi:10.5194/amt-10-3575-2017
  • Cordero, J.-M.; Borge, R.; Narros, A. Using Statistical Methods to Carry out in Field Calibrations of Low Cost Air Quality Sensors. Sens. Actuators B Chem. 2018, 267, 245–254. doi:10.1016/j.snb.2018.04.021
  • Wang, Y.; Li, J.; Jing, H.; Zhang, Q.; Jiang, J.; Biswas, P. Laboratory Evaluation and Calibration of Three Low-Cost Particle Sensors for Particulate Matter Measurement. Aerosol Sci. Technol. 2015, 49, 1063–1077. doi:10.1080/02786826.2015.1100710
  • Manikonda, A.; Zíková, N.; Hopke, P.-K.; Ferro, A.-R. Laboratory Assessment of Low-Cost PM Monitors. J. Aerosol Sci. 2016, 102, 29–40. doi:10.1016/j.jaerosci.2016.08.010
  • Holstius, D.-M.; Pillarisetti, A.; Smith, K.-R.; Seto, E.-J.-A.-M.-T. Field Calibrations of a Low-Cost Aerosol Sensor at a Regulatory Monitoring Site in California. Atmos. Meas. Tech. 2014, 7, 1121–1131. doi:10.5194/amt-7-1121-2014
  • Malings, C.; Tanzer, R.; Hauryliuk, A.; Kumar, S. P. N.; Zimmerman, N.; Kara, L. B.; Presto, A. A, R. Subramanian Development of a General Calibration Model and Long-Term Performance Evaluation of Low-Cost Sensors for Air Pollutant Gas Monitoring. Atmos. Meas. Tech. 2019, 12, 903–920. doi:10.5194/amt-12-903-2019
  • Kaliszewski, M.; Włodarski, M.; Młyńczak, J.; Kopczyński, K. Comparison of Low-Cost Particulate Matter Sensors for Indoor Air Monitoring during COVID-19 Lockdown. Sensors. 2020, 20, 7290. doi:10.3390/s20247290
  • Lewis, A. C.; Lee, J. D.; Edwards, P. M.; Shaw, M. D.; Evans, M. J.; Moller, S. J.; Smith, K. R.; Buckley, J. W.; Ellis, M.; Gillot, S. R.; White, A. Evaluating the Performance of Low Cost Chemical Sensors for Air Pollution Research. Faraday Discuss. 2016, 189, 85–103. doi:10.1039/c5fd00201j
  • US EPA. Evaluation of Emerging Air Pollution Sensor Performance. Air Sensor Toolbox 2021. https://www.epa.gov/air-sensor-toolbox/evaluation-emerging-air-sensor-performance.
  • AQ-SPEC. Air Quality Sensor Performance Evaluation Center (AQ-SPEC).: http://www.aqmd.gov/aq-spec. (accessed March 5, 2022).
  • AIRLAB Microsensors Challenge. 2021 Edition. Airparif. https://airlab.solutions/en/projets/challenge-microcapteurs-edition-2021-90 (accessed May 24, 2022).
  • ASTM D8405-21. Standard Test Method for Evaluating PM2.5 Sensors or Sensor Systems Used in Indoor Air Applications. ASTM International. 2021. https://www.astm.org/d8405-21.html. (accessed May 2, 2022).
  • AIREAMOS. Promotion of ventilation for reducing the risk of COVID-19 infection (https://www.aireamos.org). Guide about Affordable CO2 detectors for COVID-19 Prevention, https://bit.ly/monitorsCO2.
  • Muñoz, A.; Borrás, E.; Ródenas, M.; Vera, T.; Pedersen, H.A. Atmospheric oxidation of a thiocarbamate herbicide used in winter cereals. Environ. Sci. Technol. 2018, 52, 9136–9144. https://doi.org/10.1021/acs.est.8b02157.
  • Office of Energy Efficiency & Renewable Energy. https://www.energy.gov/eere/buildings/downloads/development-laboratory-test-methods-low-cost-indoor-air-quality-sensors.
  • Di Carlo, S..; Falasconi, M. Drift Correction Methods for Gas Chemical Sensors in Artificial Olfaction Systems: techniques and Challenges. Adv. Chem. Sensors. 2012, 2012, 953–978.
  • Spinelle, L.; Gerboles, M.; Aleixandre, M. Performance Evaluation of Amperometric Sensors for the Monitoring of O3 and NO2 in Ambient Air at Ppb Level. Procedian Eng. 2015, 120, 480–483. doi:10.1016/j.proeng.2015.08.676
  • Tryner, J.; Phillips, M.; Quinn, C.; Neymark, G.; Wilson, A.; Jathar, S. H.; Carter, E.; Volckens, J. Design and Testing of a Low-Cost Sensor and Sampling Platform for Indoor Air Quality. J. Build Environ. 2021, 206, 108398. doi:10.1016/j.buildenv.2021.108398
  • Borrego, C.; Ginja, J.; Coutinho, M.; Ribeiro, C.; Karatzas, K.; Sioumis, T.; Katsifarakis, N.; Konstantinidis, K.; De Vito, S.; Esposito, E.; et al. Assessment of Air Quality Microsensors versus Reference Methods: The EuNetAir Joint Exercise – Part II. Atmos. Environ. 2018, 193, 127–142. doi:10.1016/j.atmosenv.2018.08
  • Williams, D.-E.; Henshaw, G. S.; Bart, M.; Laing, G.; Wagner, J.; Naisbitt, S.; Salmond, J.-A. Validation of Low-Cost Ozone Measurement Instruments Suitable for Use in an Air-Quality Monitoring Network. Meas. Sci. Technol. 2013, 24, 065803. doi:10.1088/0957-0233/24/6/065803
  • Bhagat, R.-K.; Wykes, M.-D.; Dalziel, S.-B.; Linden, P.-F. Effects of Ventilation on the Indoor Spread of COVID-19. J. Fluid Mech. 2020, 903, F1-1–F1-18. doi:10.1017/jfm.2020.720
  • Coulby, G.; Clear, A.; Jones, J.; Godfrey, A. A Scoping Review of Technological Approaches to Environmental Monitoring. IJERPH. 2020, 17, 3995. doi:10.3390/ijerph17113995
  • ASTM WK74360. New Test Method for Evaluating CO2 Indoor Air Quality Sensors or Sensor Systems Used in Indoor Applications. ASTM International, 2020. https://www.astm.org/workitem-wk74360.
  • Piedrahita, R.; Xiang, Y.; Masson, N.; Ortega, J.; Collier, A.; Jiang, Y.; Li, K.; Dick, R.-P.; Lv, Q.; Hannigan, M.; Shang, L. The Next Generation of Low-Cost Personal Air Quality Sensors for Quantitative Exposure Monitoring. Atmos. Meas. Tech. 2014, 7, 3325–3336. doi:10.5194/amt-7-3325-2014
  • Spinelle, L.; Gerboles, M.; Villani, M.-G.; Aleixandre, M.; Bonavitacola, F. Field Calibration of a Cluster of Low-Cost Commercially Available Sensors for Air Quality Monitoring. Part B: NO, CO and CO2. Sens. Actuators B Chem. 2017a, 238, 706–715. doi:10.1016/j.snb.2016.07.036
  • Gillooly, S.-E.; Zhou, Y.; Vallarino, J.; Chu, M.-T.; Michanowicz, D.-R.; Levy, J.-I.; Adamkiewicz, G. Development of an in-Home, Real-Time Air Pollutant Sensor Platform and Implications for Community Use. Env. Pollut. 2019, 244, 440–450. doi:10.1016/j.envpol.2018.10.064
  • Casey, G.-C.; Ortega, J.; Coffey, E.; Hannigan, M. Low-Cost Measurement Techniques to Characterize the Influence of Home Heating Fuel on Carbon Monoxide in Navajo Homes. Sci. Total Environ. 2018, 625, 608–618. doi:10.1016/j.scitotenv.2017.12.312
  • Duvall, R.-M.; Long, R.-W.; Beaver, M.-R.; Kronmiller, K.-G.; Wheeler, M.-L.; Szykman, J.-J. Performance Evaluation and Community Application of Low-Cost Sensors for Ozone and Nitrogen Dioxide. Sensors-Basel. 2016, 16, 1698. doi:10.3390/s16101698
  • Duvall, R. M.; Hagler, G. S. W.; Clements, A. L.; Benedict, K.; Barkjohn, K.; Kilaru, V.; Hanley, T.; Watkins, N.; Kaufman, A.; Kamal, A.; et al. Deliberating Performance Targets: Follow-on Workshop Discussing PM10, NO2, CO, and SO2 Air Sensor Targets. Atmos. Environ. 2021, 246, 118099. doi:10.1016/j.atmosenv.2020.118099
  • Brown, S.-K.; Sim, M.-R.; Abramson, M.-J.; Gray, C.-N. Concentrations of Volatile Organic Compounds in Indoor Air–A Review. Indoor Air. 1994, 4, 123–134. doi:10.1111/j.1600-0668.1994.t01-2-00007.x
  • Spinelle, L.; Gerboles, M.; Kok, G.; Persijn, S.; Sauerwald, T. Review of Portable and Low-Cost Sensors for the Ambient Air Monitoring of Benzene and Other Volatile Organic Compounds. Sensors. 2017b, 17, 1520. doi:10.3390/s17071520
  • Hori, H.; Ishimatsu, S.; Fueta, Y.; Hinoue, M.; Ishidao, T. Comparison of Sensor Characteristics of Three Real-Time Monitors for Organic Vapors. J Occup Health. 2015, 57, 13–19. doi:10.1539/joh.14-0146-OA
  • Herberger, S.; Herold, M.; Ulmer, H.; Burdack-Freitag, A.; Mayer, F. Detection of Human Effluents by a MOS Gas Sensor in Correlation to VOC Quantification by GC/MS. Build Environ. 2010, 45, 2430–2439. doi:10.1016/j.buildenv.2010.05.005
  • Palmisani, J.; Di Gilio, A.; Viana, M.; de Gennaro, G.; Ferro, A. Indoor Air Quality Evaluation in Oncology Units at Two European Hospitals: Low-Cost Sensors for TVOCs, PM2.5 and CO2 Real-Time Monitoring. Build. Environ. 2021, 205, 108237. doi:10.1016/j.buildenv.2021.108237
  • Schutze, A.; Baur, T.; Leidinger, M.; Reimringer, W.; Jung, R.; Conrad, T.; Sauerwald, T. Highly Sensitive and Selective VOC Sensor Systems Based on Semiconductor Gas Sensors: How to? Environments. 2017, 4, 20. doi:10.3390/environments4010020
  • Yurko, G.; Roostaei, J.; Dittrich, T.; Xu, L.; Ewing, M.; Zhang, Y.; Shreve, G. Real-Time SensorResponse Characteristics of 3 Commercial Metal Oxide Sensors for Detection of BTEX and Chlorinated Aliphatic Hydrocarbon Organic Vapors. Chemosensors. 2019, 7, 40. doi:10.3390/chemosensors7030040
  • Goletto, V.; Mialon, G.; Faivre, T.; Wang, Y.; Lesieur, I.; Petigny, N.; Vijapurapu, S. Formaldehyde and Total VOC (TVOC) Commercial Low-Cost Monitoring Devices: From an Evaluation in Controlled Conditions to a Use Case Application in a Real Building. Chemosensors. 2020, 8, 8. doi:10.3390/chemosensors8010008vocs
  • Szulczynski, B.; Gebicki, J. Currently Commercially Available Chemical Sensors Employed for Detection of Volatile Organic. Environments. 2017, 4, 21–35.
  • ASTM D27297-21. Standard Practice for Evaluating Residential Indoor Air Quality Concern. ASTM International, 2014. https://www.astm.org/d7297-21.html (accessed April 4, 2022)
  • Moreno-Rangel, A.; Sharpe, T.; Musau, F.; McGill, G. Field Evaluation of a Low-Cost Indoor Air Quality Monitor to Quantify Exposure to Pollutants in Residential Environments. J. Sens. Sens. Syst. 2018, 7, 373–388. doi:10.5194/jsss-7-373-2018
  • Wallace, L. Indoor Sources of Ultrafine and Accumulation Mode Particles: number Concentrations and Size Distributions. Aerosol Sci. Technol. 2006, 40, 348–360. doi:10.1080/02786820600612250
  • Marval, J.; Tronville, P. Ultrafine Particles: A Review about Their Health Effects, Presence, Generation, and Measurement in Indoor Environments. Build Environ. 2022, 216, 108992. doi:10.1016/j.buildenv.2022.108992
  • Bekö, G.; Weschler, C.-J.; Wierzbicka, A.; Karottki, D.-G.; Toftum, J.; Loft, S.; Clausen, G. Ultrafine Particles: Exposure and Source Apportionment in 56 Danish Homes. Environ Sci Technol. 2013, 47, 10240–10248. doi:10.1021/es402429h
  • Kuula, J.; Kuuluvainen, H.; Rönkkö, T.; Niemi, J. V.; Saukko, E.; Portin, H.; Aurela, M.; Saarikoski, S.; Rostedt, A.; Hillamo, R.; Timonen, H. Applicability of Optical and Diffusion Charging-Based Particulate Matter Sensors to Urban Air Quality Measurements. Aerosol Air Qual. Res. 2019b, 19, 1024–1039. doi:10.4209/aaqr.2018.04.0143
  • Pope, F. D.; Gatari, M.; Ng’ang’a, D.; Poynter, A.; Blake, R. Airborne Particulate Matter Monitoring in Kenya Using Calibrated Low-Cost Sensors. Atmos. Chem. Phys. 2018, 18, 15403–15418. doi:10.5194/acp-18-15403-20182018
  • Malings, C.; Tanzer, R.; Hauryliuk, A.; Saha, P.-K.; Robinson, A.-L.; Presto, A.-A.; Subramanian, R. Fine Particle Mass Monitoring with Low-Cost Sensors: Corrections and Long-Term Performance Evaluation. Aerosol Sci. Technol. 2020, 54, 160–174. doi:10.1080/02786826.2019.1623863
  • Liu, Q.; Liu, D.; Chen, X.; Zhang, Q.; Jiang, J.; Chen, D.-R. A Cost-Effective, Miniature Electrical Ultrafine Particle Sizer (Mini-eUPS) for Ultrafine Particle (UFP) Monitoring Network. Aerosol Air Qual. Res. 2020, 20, 231–241. doi:10.4209/aaqr.2018.11.0427
  • Kuula, J. Opportunities and Limitations of Aerosol Sensors to Urban Air Quality Monitoring. PhD Dissertation, Aalto University, 2019a, 978–952. http://urn.fi/URN:ISBN:60-3843-8.
  • Hegde, S.; Min, K.-T.; Moore, J.; Lundrigan, P.; Patwari, N.; Collingwood, S.; Balch, A.; Kelly, K.-E. Indoor Household Particulate Matter Measurements Using a Network of Low-Cost Sensors. Aerosol Air Qual. Res. 2020, 20, 381–394. doi:10.4209/aaqr.2019.01.0046
  • Zamora, M. L.; Rice, J.; Koehler, K. One Year Evaluation of Three Low-Cost PM2.5 Monitors. Atmos. Environ. 2020, 235, 117615. doi:10.1016/j.atmosenv.2020.117615.
  • Manibusan, S.; Mainelis, G. Performance of Four Consumer-Grade Air Pollution Measurement Devices in Different Residences. Aerosol Air Qual. Res. 2020, 20, 217–230. doi:10.4209/aaqr.2019.01.0045.
  • Elísio, S.; Peralta, L. Development of a Low-Cost Monitor for Radon Detection in Air. Nucl. Instrum. Methods Phys. Res. A. 2020, 969, 164033. doi:10.1016/j.nima.2020.164033
  • Studnička, F.; Štěpán, J.; Šlégr, J. Low-Cost Radon Detector with Low-Voltage Air-Ionization Chamber. Sensors. 2019, 19, 3721. doi:10.3390/s19173721
  • Pereira, F.; Lopes, S.-I.; Carvalho, N.-B.; Curado, A. RnProbe: A LoRa-Enabled IoT Edge Device for Integrated Radon Risk Management. IEEE Access. 2020, 8, 203488–203502. doi:10.1109/ACCESS.2020.3036980
  • Alvarellos, A.; Gestal, M.; Dorado, J.; Rabuñal, J.-R. Developing a Secure Low-Cost Radon Monitoring System. Sensors. 2020, 20, 752. doi:10.3390/s20030752
  • Carlo, D.; Lepore, C.; Gugliermetti, L.; Remetti, L. R. An Inexpensive and Continuous Radon Progeny Detector for Indoor Air-Quality Monitoring. WIT Trans. Ecol. Environ. 2019, 236, 1743–3541. doi:10.2495/AIR190321
  • Gugliermetti, L.; Lepore, L.; Remetti, R.; Colarieti-Tosti, M. Alpha Spectrometry with the Inexpensive Open-Source Detector Alphaino. Nucl. Instrum. Methods Phys. Res. 2019, 928A, 13–19. doi:10.1016/j.nima.2019.03.018
  • Morishita, Y.; Ye, Y.; Mata, L.; Pozzi, S.-A.; Kearfott, K.-J. Radon Measurements with a Compact, Organic-Scintillator-Based Alpha/Beta Spectrometer. Radiat. Meas. 2020, 137, 106428. doi:10.1016/j.radmeas.2020.106428
  • Miles, J. Methods of Radon Measurement and Devices. 4th European Conference on Protection against Radon at Home and at Work Conference Programme and Session Presentations, 2004, 377.
  • Pronost, G.; Ikeda, M.; Nakamura, T.; Sekiya, H.; Tasaka, S. Development of New Radon Monitoring Systems in the Kamioka Mine. Prog. Theor. Exp. Phys. 2018, 9, 093H01.
  • Martín-Martín, A.; Gutiérrez-Villanueva, J.-L.; Muñoz, J.-M.; García-Talavera, M.; Adamiec, G.; Íñiguez, M.-P. Radon Measurements with a PIN Photodiode. Appl Radiat Isot. 2006, 64, 1287–1290. doi:10.1016/j.apradiso.2006.02.035
  • Sá, J.-P.; Branco, P.-T.-B.-S.; Alvim-Ferraz, M.-C.-M.; Martins, F.-G.; Sousa, S.-I.-V. Radon in Indoor Air: Towards Continuous Monitoring. Sustainability. 2022, 14, 1529. doi:10.3390/su14031529
  • Nazaroff, W.-W.; Weschler, C.-J. Indoor Acids and Bases. Indoor Air. 2020, 30, 559–644. doi:10.1111/INA.12670
  • Schieweck, A.; Uhde, E.; Salthammer, T.; Salthammer, L. C.; Morawska, L.; Mazaheri, M.; Kumar, P. Smart Homes and the Control of Indoor Air Quality. Renew. Sustain. Energy Rev. 2018, 94, 705–718. doi:10.1016/j.rser.2018.05.057
  • Benammar, M.; Abdaoui, A.; Ahmad, S.-H.; Touati, F.; Kadri, A. A Modular IoT Platform for Real-Time Indoor Air Quality Monitoring. Sensors. 2018, 18, 581. doi:10.3390/s18020581
  • Lowther, S.-D.; Jones, K.-C.; Wang, X.; Whyatt, J.-D.; Wild, O.; Booker, D. Particulate Matter Measurement Indoors: A Review of Metrics, Sensors, Needs, and Applications. Environ. Sci. Technol. 2019, 53, 11644–11656. doi:10.1021/acs.est.9b03425
  • Samad, A.; Melchor Mimiaga, F.-E.; Laquai, B.; Vogt, U. Investigating a Low-Cost Dryer Designed for Low-Cost PM Sensors Measuring Ambient Air Quality. Sensors. 2021, 21, 804. doi:10.3390/s21030804
  • Di Antonio, A.; Popoola, O.; Ouyang, B.; Saffell, J.; Jones, R. Developing a Relative Humidity Correction for Low-Cost Sensors Measuring Ambient Particulate Matter. Sensors. 2018, 18, 2790. doi:10.3390/s18092790
  • Jiao, W.; Hagler, G.; Williams, R.; Sharpe, R.; Brown, R.; Garver, D.; Judge, R.; Caudill, M.; Rickard, J.; Davis, M.; et al. Community Air Sensor Network (CAIRSENSE) Project: evaluation of Low-Cost Sensor Performance in a Suburban Environment in the Southeastern United States. Atmos. Meas. Tech. 2016, 9, 5281–5292. doi:10.5194/amt-9-5281-2016
  • Sun, L.; Wong, K. C.; Wei, P.; Ye, S.; Huang, H.; Yang, F.; Westerdahl, D.; Louie, P. K.; Luk, C. W.; Ning, Z. Development and Application of a Next Generation Air Sensor Network for the Hong Kong Marathon 2015 Air Quality Monitoring. Sensors. 2016, 16, 211. doi:10.3390/s16020211
  • Masey, N.; Gillespie, J.; Ezani, E.; Lin, C.; Wu, H.; Ferguson, N. S.; Hamilton, S.; Heal, M. R.; Beverland, I. J. Temporal Changes in Field Calibration Relationships for Aeroqual S500 O3 and NO2 Sensor-Based Monitors. Sens. Actuators B Chem. 2018, 273, 1800–1806. doi:10.1016/j.snb.2018.07.087
  • Suriano, D.; Cassano, G.; Penza, M. Design and Development of a Flexible, Plug-and-Play, Cost-Effective Tool for on-Field Evaluation of Gas Sensors. J. Sens. 2020, 2020, (1–20 pp.). doi:10.1155/2020/8812025