2,801
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Particulate matter indoors: a strategy to sample and monitor size-selective fractions

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, , , , ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & show all

References

  • Bennitt, F. B.; Wozniak, S. S.; Causey, K.; Burkart, K.; Brauer, M. Estimating Disease Burden Attributable to Household Air Pollution: New Methods within the Global Burden of Disease Study. Lancet Glob. Health. 2021, 9, S18. doi:10.1016/S2214-109X(21)00126-1
  • Han, Y.; Li, X.; Zhu, T.; Lv, D.; Chen, Y.; Hou, L.; Zhang, Y.; Ren, M. Characteristics and Relationships between Indoor and Outdoor PM2.5 in Beijing: A Residential Apartment Case Study. Aerosol Air Qual. Res. 2016, 16, 2386–2395. doi:10.4209/aaqr.2015.12.0682
  • Lakey, P. S. J.; Won, Y.; Shaw, D.; Østerstrøm, F. F.; Mattila, J.; Reidy, E.; Bottorff, B.; Rosales, C.; Wang, C.; Ampollini, L.; et al. Spatial and Temporal Scales of Variability for Indoor Air Constituents. Commun. Chem. 2021, 4, 1–7. doi:10.1038/s42004-021-00548-5
  • Oeder, S.; Dietrich, S.; Weichenmeier, I.; Schober, W.; Pusch, G.; Jörres, R. A.; Schierl, R.; Nowak, D.; Fromme, H.; Behrendt, H.; Buters, J. T. M. Toxicity and Elemental Composition of Particulate Matter from Outdoor and Indoor Air of Elementary Schools in Munich, Germany. Indoor Air. 2012, 22, 148–158. doi:10.1111/j.1600-0668.2011.00743.x
  • Park, M.; Joo, H. S.; Lee, K.; Jang, M.; Kim, S. D.; Kim, I.; Borlaza, L. J. S.; Lim, H.; Shin, H.; Chung, K. H.; et al. Differential Toxicities of Fine Particulate Matters from Various Sources. Sci. Rep. 2018, 8, 17007.
  • Lakey, P. S. J.; Won, Y.; Shaw, D.; Østerstrøm, F. F.; Mattila, J.; Reidy, E.; Bottorff, B.; Rosales, C.; Wang, C.; Ampollini, L.; et al. Spatial and Temporal Scales of Variability for Indoor Air Constituents. Commun. Chem 2021, 4, 1–7.
  • Spinazzè, A.; Borghi, F.; Rovelli, S.; Mihucz, V. G.; Bergmans, B.; Cattaneo, A.; Cavallo, D. M. Combined and Modular Approaches for Multicomponent Monitoring of Indoor Air Pollutants. Appl. Spectrosc. Rev. 2021, 0, 1–37. doi:10.1080/05704928.2021.1995405
  • ISO - International Organization for Standardization. 2008 ISO 16000-12:2008 - Indoor air — Part 12: Sampling strategy for polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs) and polycyclic aromatic hydrocarbons (PAHs).
  • ISO - International Organization for Standardization. 2019 ISO 16000-37:2019 - Indoor air — Part 37: Measurement of PM2,5 mass concentration.
  • Duarte, R. M. B. O.; Gomes, J. F. P.; Querol, X.; Cattaneo, A.; Bergmans, B.; Saraga, D.; Maggos, T.; Di Gilio, A.; Rovelli, S.; Villanueva, F. Advanced Instrumental Approaches for Chemical Characterization of Indoor Particulate Matter. Appl. Spectrosc. Rev. 2021, 0, 1–41. doi:10.1080/05704928.2021.2018596
  • Sakellaris, I.; Saraga, D.; Mandin, C.; de Kluizenaar, Y.; Fossati, S.; Spinazzè, A.; Cattaneo, A.; Mihucz, V.; Szigeti, T.; de Oliveira Fernandes, E.; et al. Association of Subjective Health Symptoms with Indoor Air Quality in European Office Buildings: The OFFICAIR Project. Indoor Air. 2021, 31, 426–439. Issue2 . doi:10.1111/ina.12749
  • Kruza, M.; McFiggans, G.; Waring, M. S.; Wells, J. R.; Carslaw, N. Indoor Secondary Organic Aerosols: Towards an Improved Representation of Their Formation and Composition in Models. Atmos. Environ. 2020, 240, 117784. doi:10.1016/j.atmosenv.2020.117784
  • Pagels, J.; Wierzbicka, A.; Nilsson, E.; Isaxon, C.; Dahl, A.; Gudmundsson, A.; Swietlicki, E.; Bohgard, M. Chemical Composition and Mass Emission Factors of Candle Smoke Particles. J. Aerosol. Sci. 2009, 40, 193–208., doi:10.1016/j.jaerosci.2008.10.005
  • Beko, G.; Weschler, C. J.; Wierzbicka, A.; Karottki, D. G.; Toftum, J.; Loft, S.; Clausen, G. Ultrafine Particles: Exposure and Source Apportionment in 56 Danish Homes. dx. Environ. Sci. Technol. 2013, 47, 10240–−10248. doi:10.1021/es402429h
  • Weschler, C. J. Ozone's Impact on Public Health: Contributions from Indoor Exposures to Ozone and Products of Ozone-Initiated Chemistry. Environ. Health Perspect. 2006, 114, 1489–1496. doi:10.1289/ehp.9256
  • Urso, P.; Cattaneo, A.; Garramone, G.; Peruzzo, C.; Cavallo, D. M.; Carrer, P. Identification of Particulate Matter Determinants in Residential Homes. Build. Environ. 2015, 86, 61–69. doi:10.1016/j.buildenv.2014.12.019
  • Li, Z.; Wen, Q.; Zhang, R. Sources, Health Effects and Control Strategies of Indoor Fine Particulate Matter (PM2.5): A Review. Sci. Total Environ. 2017, 586, 610–622. doi:10.1016/j.scitotenv.2017.02.029
  • Sarwar, G.; Olson, D. A.; Corsi, R. L.; Weschler, C. J. Indoor Fine Particles: The Role of Terpene Emissions from Consumer Products. J. Air Waste Manag. Assoc. 2004, 54, 367–377. doi:10.1080/10473289.2004.10470910
  • Aoki, T.; Tanabe, S. I. Generation of Sub-Micron Particles and Secondary Pollutants from Building Materials by Ozone Reaction. Atmos. Environ. 2007, 41, 3139–3150. doi:10.1016/j.atmosenv.2006.07.053
  • Nazaroff, W. W. Indoor Particle Dynamics. Indoor Air. 2004, 14(Suppl 7), 175–183. doi:10.1111/j.1600-0668.2004.00286.x
  • Lai, A. C. K. Particle Deposition Indoors: A Review. Indoor Air. 2002, 12, 211–214. doi:10.1046/j.0905-6947.2002.1r159a.x
  • Rovelli, S.; Cattaneo, A.; Nuzzi, C. P.; Spinazzè, A.; Piazza, S.; Carrer, P.; Cavallo, D. M. Airborne Particulate Matter in School Classrooms of Northern Italy. Int. J. Environ. Res. Public Health 2014, 11. doi:10.3390/ijerph110201398
  • Qian, J.; Peccia, J.; Ferro, A. R. Walking-Induced Particle Resuspension in Indoor Environments. Atmos. Environ. 2014, 89, 464–481. doi:10.1016/j.atmosenv.2014.02.035
  • International Commission on Radiological Protection (ICRP). 1994 ICRP Publication 66 - Human Respiratory Tract Model for Radiological Protection.
  • Hoover, M. D.; Stefaniak, A. B.; Day, G. A.; Geraci, C. L. 2007 Exposure Assessment Considerations for Nanoparticles in the Workplace. In Nanotoxicology: Characterization, Dosing and Health Effects, Monteiro-Riviere, N.A., Tran, C.L., Eds., CRC Press: Boca Raton, pp. 71–83.
  • Global burden of 87 risk factors in 204 countries and territories 1990–2019: A Systematic Analysis for the Global Burden of Disease Study 2019. The Lancet, GLOBAL HEALTH METRICS. October 2020, 396, P1223–1249. doi:10.1016/S0140-6736(20)30752-2
  • Seaton, A.; MacNee, W.; Donaldson, K.; Godden, D. Particulate Air Pollution and Acute Health Effects. Lancet 1995, 345, 176–178. doi:10.1016/S0140-6736(95)90173-6
  • Donaldson, K.; Stone, V.; Borm, P. J.; Jimenez, L. A.; Gilm our, P. S.; Schins, R. P.; Knaapen, A. M.; Rahman, I.; Faux, S. P.; Brown, D. M.; MacNee, W. Oxidative Stress and Calcium Signaling in the Adverse Effects of Environmental Particles (PM10). Free Radic. Biol. Med. 2003, 34, 1369–1382. doi:10.1016/S0891-5849(03)00150-3
  • Shimada, A.; Kawamura, N.; Okajima, M.; Kaewamatawong, T.; Inoue, H.; Morita, T. Translocation Pathway of the Intratracheally Instilled Ultrafine Particles from the Lung into the Blood Circulation in the Mouse. Toxicol. Pathol. 2006, 34, 949–957. anddoi:10.1080/01926230601080502
  • Kulkarni, P.; Baron, P. A.; Kulkarni, P.; Baron, P. A. 2011 An Approach to Performing Aerosol Measurements. In Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed., Willeke, K., Eds., John Wiley & Sons, Ltd, pp. 55–65. doi:10.1002/9781118001684.ch5
  • ISO - International Organization for Standardization. 2012 ISO 13138:2012 - Air quality — Sampling conventions for airborne particle deposition in the human respiratory system.
  • ISO - International Organization for Standardization. 1995 ISO 7708:1995 - Air quality — Particle size fraction definitions for health-related sampling.
  • Fine, P. M.; Cass, G. R.; Simoneit, B. R. T. Chemical Characterization of Fine Particle Emissions from the Wood Stove Combustion of Prevalent United States Tree Species. Environ. Eng. Sci. 2004, 21, 705–721. doi:10.1089/ees.2004.21.705
  • Minguillón, M. C.; Arhami, M.; Schauer, J. J.; Sioutas, C. Seasonal and Spatial Variations of Sources of Fine and Quasi-Ultrafine Particulate Matter in Neighborhoods near the Los Angeles-Long Beach harbor. Atmos. Environ. 2008, 42, 7317–7328. doi:10.1016/j.atmosenv.2008.07.036
  • ISO - International Organization for Standardization. 2021. ISO/DIS 16000-42 - Indoor air—Part 42: Measurement of the particle number concentration by Condensation Particle Counters. Available at: https://www.iso.org/standard/77911.html. (accessed 16 May 2022).
  • CEN - European Committee for Standardization. 1993 CEN EN 481:1993 - Workplace atmospheres - Size fraction definitions for measurement of airborne.
  • CEN - European Committee for Standardization. 2019 EN 689:2018 + AC:2019 Workplace exposure - Measurement of exposure by inhalation to chemical agents - Strategy for testing compliance with occupational exposure limit values - European Standards.
  • ISO - International Organization for Standardization. 2018 ISO - ISO 16000-34:2018 - Indoor air — Part 34: Strategies for the measurement of airborne particles. ISO - International Organization for Standardization.
  • Gilmour, M. I.; McGee, J.; Duvall, R. M.; Dailey, L.; Daniels, M.; Boykin, E.; Cho, S.-H.; Doerfler, D.; Gordon, T.; Devlin, R. B. Comparative Toxicity of Size-Fractionated Airborne Particulate Matter Obtained from Different Cities in the United States. Inhal. Toxicol. 2007, 19, 7–16. doi:10.1080/08958370701490379
  • Pauluhn, J. Retrospective Analysis of 4-Week Inhalation Studies in Rats with Focus on Fate and Pulmonary Toxicity of Two Nanosized Aluminum Oxyhydroxides (Boehmite) and Pigment-Grade Iron Oxide (Magnetite): The Key Metric of Dose is Particle Mass and Not Particle Surface Area. Toxicology. 2009, 259, 140–148. doi:10.1016/j.tox.2009.02.012
  • Atkinson, R. W.; Fuller, G. W.; Anderson, H. R.; Harrison, R. M.; Armstrong, B. Urban Ambient Particle Metrics and Health: A Time-Series Analysis. Epidemiology 2010, 21, 501–511. doi:10.1097/EDE.0b013e3181debc88
  • World Health Organization. 2006 WHO Global Air Quality Guidelines: particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide. World Health Organization. https://apps.who.int/iris/bitstream/handle/10665/345329/9789240034228-eng.pdf?sequence=1&isAllowed=y
  • WHO European Centre for Environment and Health. 2010 WHO guidelines for indoor air quality: selected pollutants. Available at: www.euro.who.int. (accessed 12 October 2021).
  • European Committee for Standardization (CEN). 2014 EN 12341:2014 Ambient air - Standard gravimetric measurement method for the determination of the PM10 or PM2,5 mass concentration of suspended particulate matter.
  • Wang, Z.; Calderón, L.; Patton, A. P.; Sorensen Allacci, M. A.; Senick, J.; Wener, R.; Andrews, C. J.; Mainelis, G. Comparison of Real-Time Instruments and Gravimetric Method When Measuring Particulate Matter in a Residential Building. J. Air Waste Manag. Assoc. 2016, 66, 1109–1120. doi:10.1080/10962247.2016.1201022
  • Watson, J. G.; Chow, J. C.; Shah, J. J.; Pace, T. G. The Effect of Sampling Inlets on the PM-10 and PM-15 to TSP Concentration Ratios. J. Air Pollut. Control Assoc. 1983, 33, 114–119. doi:10.1080/00022470.1983.10465552
  • Koistinen, K. J.; Kousa, A.; Tenhola, V.; Hänninen, O.; Jantunen, M. J.; Oglesby, L.; Kuenzli, N.; Georgoulis, L. Fine Particle (PM25) Measurement Methodology, Quality Assurance Procedures, and Pilot Results of the EXPOLIS Study. J. Air Waste Manag Assoc. 1999, 49, 1212–1220. doi:10.1080/10473289.1999.10463916
  • Cattaneo, A.; Peruzzo, C.; Garramone, G.; Urso, P.; Ruggeri, R.; Carrer, P.; Cavallo, D. Airborne Particulate Matter and Gaseous Air Pollutants in Residential Structures in Lodi Province, Italy. Indoor Air. 2011, 21, 489–500. doi:10.1111/j.1600-0668.2011.00731.x
  • Weisel, C. P.; Zhang, J. (.; Turpin, B. J.; Morandi, M. T.; Colome, S.; Stock, T. H.; Spektor, D. M.; Korn, L.; Winer, A.; Alimokhtari, S.; et al. Relationship of Indoor, Outdoor and Personal Air (RIOPA) Study: study Design, Methods and Quality Assurance/Control Results. J. Exp. Sci. Environ. Epidemiol. 2005, 15, 123–137. doi:10.1038/sj.jea.7500379
  • Mihucz, V. G.; Szigeti, T.; Dunster, C.; Giannoni, M.; de Kluizenaar, Y.; Cattaneo, A.; Mandin, C.; Bartzis, J. G.; Lucarelli, F.; Kelly, F. J.; Záray, G. An Integrated Approach for the Chemical Characterization and Oxidative Potential Assessment of Indoor PM2.5. Microchem. J. 2015, 119, 22–29. doi:10.1016/j.microc.2014.10.006
  • Szigeti, T.; Dunster, C.; Cattaneo, A.; Cavallo, D.; Spinazzè, A.; Saraga, D. E.; Sakellaris, I. A.; de Kluizenaar, Y.; Cornelissen, E. J. M.; Hänninen, O.; et al. Oxidative Potential and Chemical Composition of PM2.5in Office Buildings across Europe - the OFFICAIR Study. Environ. Int. 2016, 92–93, 324–333. doi:10.1016/j.envint.2016.04.015
  • Mandin, C.; Trantallidi, M.; Cattaneo, A.; Canha, N.; Mihucz, V. G.; Szigeti, T.; Mabilia, R.; Perreca, E.; Spinazzè, A.; Fossati, S.; et al. Assessment of Indoor Air Quality in Office Buildings across Europe – the OFFICAIR Study. Sci. Total Environ. 2017, 579, 169–178. doi:10.1016/j.scitotenv.2016.10.238
  • Babich, P.; Davey, M.; Allen, G.; Koutrakis, P. Method Comparisons for Particulate Nitrate, Elemental Carbon, and PM2.5 Mass in Seven U. S. Cities. J. Air Waste Manag. Assoc. 2000, 50, 1095–1105. doi:10.1080/10473289.2000.10464152
  • Cyrys, J.; Dietrich, G.; Kreyling, W.; Tuch, T.; Heinrich, J. PM2.5 Measurements in Ambient Aerosol: Comparison between Harvard Impactor (HI) and the Tapered Element Oscillating Microbalance (TEOM) System. Sci. Total Environ. 2001, 278, 191–197. doi:10.1016/S0048-9697(01)00648-9
  • Yanosky, J. D.; MacIntosh, D. L. A Comparison of Four Gravimetric Fine Particle Sampling Methods. J. Air Waste Manag. Assoc. 2001, 51, 878–884. doi:10.1080/10473289.2001.10464320
  • Singh, M.; Misra, C.; Sioutas, C. Field Evaluation of a Personal Cascade Impactor Sampler (PCIS). Atmos. Environ. 2003, 37, 4781–4793. doi:10.1016/j.atmosenv.2003.08.013
  • Winberry, W. T.; Forehand, L.; Murphy, N. T.; Ceroli, A.; Phinney, B. 1990 Compendium of methods for the determination of air pollutants in indoor air. https://www.osti.gov/biblio/6943454.
  • Watson, J. G.; Chow, J. C. 2011 Ambient Aerosol Sampling. In Aerosol Measurement: Principles, Techniques, and Applications, Kulkarni, P., Baron, P.A., Willeke, K., Eds., Wiley, pp 591–614, 3rd ed.
  • Watson, J. G.; Tropp, R. J.; Kohl, S. D.; Wang, X.; Chow, J. C. Filter Processing and Gravimetric Analysis for Suspended Particulate Matter Samples. Aerosol Sci. Eng. 2017, 1, 93–105. doi:10.1007/s41810-017-0010-4
  • Soo, J. C.; Monaghan, K.; Lee, T.; Kashon, M.; Harper, M. Air Sampling Filtration Media: Collection Efficiency for Respirable Size-Selective Sampling. Aerosol Sci Technol. 2016, 50, 76–87. doi:10.1080/02786826.2015.1128525
  • Chow, J. C.; Watson, J. G. Review of Measurement Methods and Compositions for Ultrafine Particles. Aerosol Air Qual. Res. 2007, 7, 121–173. doi:10.4209/aaqr.2007.05.0029
  • Brown, A. S.; Yardley, R. E.; Quincey, P. G.; Butterfield, D. M. Studies of the Effect of Humidity and Other Factors on Some Different Filter Materials Used for Gravimetric Measurements of Ambient Particulate Matter. Atmos. Environ. 2006, 40, 4670–4678. doi:10.1016/j.atmosenv.2006.04.028
  • Kajino, M.; Winiwarter, W.; Ueda, H. Modeling Retained Water Content in Measured Aerosol Mass. Atmos. Environ. 2006, 40, 5202–5213. doi:10.1016/j.atmosenv.2006.04.016
  • Perrino, C.; Canepari, S.; Catrambone, M. Comparing the Performance of Teflon and Quartz Membrane Filters Collecting Atmospheric PM: Influence of Atmospheric Water. Aerosol Air Qual. Res. 2013, 13, 137–147. doi:10.4209/aaqr.2012.07.0167
  • Using, A.; Samplers, C.; Fractions, A.; Agents, C.; Concentrations, P, ASTM D6552-06(2021) Standard Practice for Controlling and Characterizing Errors in Weighing Collected. ASTM International (American Society for Testing and Materials), 2011, 06, 1–8. doi:10.1520/D6552-06R21
  • McMurry, P. H. A Review of Atmospheric Aerosol Measurements. Atmos. Environ. 2000, 34, 1959–1999. doi:10.1016/S1352-2310(99)00455-0
  • Huang, L.; Bohac, S. V.; Chernyak, S. M.; Batterman, S. A. Composition and Integrity of PAHs, Nitro-PAHs, Hopanes and Steranes in Diesel Exhaust Particulate Matter. Water. Air. Soil Pollut. 2013, 224, doi:10.1007/s11270-013-1630-1.
  • Tasić, V.; Jovašević-Stojanović, M.; Vardoulakis, S.; Milošević, N.; Kovačević, R.; Petrović, J. Comparative Assessment of a Real-Time Particle Monitor against the Reference Gravimetric Method for PM10 and PM2.5 in Indoor Air. Atmos. Environ. 2012, 54, 358–364. doi:10.1016/j.atmosenv.2012.02.030
  • Chung, A.; Chang, D. P. Y.; Kleeman, M. J.; Perry, K. D.; Cahill, T. A.; Dutcher, D.; McDougall, E. M.; Stroud, K. Comparison of Real-Time Instruments Used to Monitor Airborne Particulate Matter. J. Air Waste Manag. Assoc. 2001, 51, 109–120. doi:10.1080/10473289.2001.10464254
  • Alves, C.; Nunes, T.; Silva, J.; Duarte, M. Comfort Parameters and Particulate Matter (PM10 and PM2.5) in School Classrooms and Outdoor Air. Aerosol Air Qual. Res. 2013, 13, 1521–1535. doi:10.4209/aaqr.2012.11.0321
  • Sioutas, C.; Kim, S.; Chang, M.; Terrell, L. L.; Gong, H. Field Evaluation of a Modified DataRAM Mie Scattering Monitor for Real-Time PM2.5 Mass Concentration Measurements. Atmos. Environ. 2000, 34, 4829–4838. doi:10.1016/S1352-2310(00)00244-2
  • Wang, X.; Chancellor, G.; Evenstad, J.; Farnsworth, J. E.; Hase, A.; Olson, G. M.; Sreenath, A.; Agarwal, J. K. A Novel Optical Instrument for Estimating Size Segregated Aerosol Mass Concentration in Real Time. Aerosol Sci. Technol. 2009, 43, 939–950. doi:10.1080/02786820903045141
  • Wallace, L. A.; Wheeler, A. J.; Kearney, J.; Van Ryswyk, K.; You, H.; Kulka, R. H.; Rasmussen, P. E.; Brook, J. R.; Xu, X. Validation of Continuous Particle Monitors for Personal, Indoor, and Outdoor Exposures. J. Expo. Sci. Environ. Epidemiol. 2011, 21, 49–64. doi:10.1038/jes.2010.15
  • Fissan, H.; Neumann, S.; Trampe, A.; Pui, D. Y. H.; Shin, W. G. Rationale and Principle of an Instrument Measuring Lung Deposited Nanoparticle Surface Area. J. Nanopart. Res. 2006, 9, 53–59. doi:10.1007/s11051-006-9156-8
  • Sorensen, C. M.; Gebhart, J.; O’Hern, T. J.; Rader, D. J. 2011 Optical Measurement Techniques: Fundamentals and Applications. In Aerosol Measurement: Principles, Techniques, and Applications, Kulkarni, P., Baron, P.A., Willeke, K., Eds., John Wiley & Sons, Ltd, pp. 269–312, 3rd ed.
  • Kangasluoma, J.; Hering, S.; Picard, D.; Lewis, G.; Enroth, J.; Korhonen, F.; Kulmala, M.; Sellegri, K.; Attoui, M.; Petäjä, T. Characterization of Three New Condensation Particle Counters for Sub-3\,nm Particle Detection during the Helsinki CPC Workshop: The ADI Versatile Water CPC, TSI 3777 Nano Enhancer and Boosted TSI 3010. Atmos. Meas. Tech. 2017, 10, 2271–2281. doi:10.5194/amt-10-2271-2017
  • Cattaneo, A.; Taronna, M.; Garramone, G.; Peruzzo, C.; Schlitt, C.; Consonni, D.; Cavallo, D. M. Comparison between Personal and Individual Exposure to Urban Air Pollutants. Aerosol Sci. Technol. 2010, 44, 370–379. doi:10.1080/02786821003662934
  • Kupc, A.; Bischof, O.; Tritscher, T.; Beeston, M.; Krinke, T.; Wagner, P. E. Laboratory Characterization of a New Nano-Water-Based CPC 3788 and Performance Comparison to an Ultrafine Butanol-Based CPC 3776. Aerosol Sci. Technol. 2013, 47, 183–191. doi:10.1080/02786826.2012.738317
  • European Committee for Standardization (CEN). 2016 CEN/TS 16976:2016 : Ambient air - Determination of the Particle Number Concentration of Atmospheric Aerosol.
  • ISO - International Organization for Standardization. 2020 ISO 15900:2020 - Determination of particle size distribution — Differential electrical mobility analysis for aerosol particles.
  • European Committee for Standardization (CEN). 2020 CEN/TS 17434:2020: Ambient air - Determination of the Particle Number Size Distribution of Atmospheric Aerosol Using a Mobility Particle Size Spectrometer (MPSS).
  • Volkwein, J. C.; Maynard, A. D.; Harper, M. 2011 Workplace Aerosol Measurement. In Aerosol Measurement: Principles, Techniques, and Applications, Kulkarni, P., Baron, P.A., Willeke, K., Eds., John Wiley & Sons, Ltd, pp. 571–590, 3rd ed.
  • Maynard, A. D.; Kuempel, E. D. Airborne Nanostructured Particles and Occupational Health. J. Nanopart. Res. 2005, 7, 587–614. doi:10.1007/s11051-005-6770-9
  • Maynard, A. D.; Aitken, R. J. Assessing Exposure to Airborne Nanomaterials: Current Abilities and Future Requirements. Nanotoxicology 2007, 1, 26–41. doi:10.1080/17435390701314720
  • Oberdörster, G.; Stone, V.; Donaldson, K. Toxicology of Nanoparticles: A Historical Perspective. Nanotoxicology 2007, 1, 2–25. doi:10.1080/17435390701314761
  • Oberdörster, G.; Oberdörster, E.; Oberdörster, J. Nanotoxicology: An Emerging Discipline Evolving from Studies of Ultrafine Particles. Environ. Health Perspect. 2005, 113, 823–839. doi:10.1289/ehp.7339
  • Albuquerque, P. C.; Gomes, J. F.; Bordado, J. C. Assessment of Exposure to Airborne Ultrafine Particles in the Urban Environment of Lisbon, Portugal. J. Air Waste Manag. Assoc. 2012, 62, 373–380. doi:10.1080/10962247.2012.658957
  • Fierz, M.; Houle, C.; Steigmeier, P.; Burtscher, H. Design, Calibration, and Field Performance of a Miniature Diffusion Size Classifier. Aerosol. Sci. Technol. 2011, 45, 1–10. doi:10.1080/02786826.2010.516283
  • Fierz, M.; Meier, D.; Steigmeier, P.; Burtscher, H. Miniature Nanoparticle Sensors for Exposure Measurement and TEM Sampling. J. Phys. Conf. Ser. 2015, 617, 12034.
  • Marra, J.; Voetz, M.; Kiesling, H.-J. Monitor for Detecting and Assessing Exposure to Airborne Nanoparticles. J. Nanopart. Res. 2010, 12, 21–37. doi:10.1007/s11051-009-9695-x
  • Todea, A. M.; Beckmann, S.; Kaminski, H.; Asbach, C. Accuracy of Electrical Aerosol Sensors Measuring Lung Deposited Surface Area Concentrations. J. Aerosol. Sci. 2015, 89, 96–109. doi:10.1016/j.jaerosci.2015.07.003
  • Asbach, C.; Kaminski, H.; Fissan, H.; Monz, C.; Dahmann, D.; Mülhopt, S.; Paur, H. R.; Kiesling, H. J.; Herrmann, F.; Voetz, M.; Kuhlbusch, T. A. J. Comparison of Four Mobility Particle Sizers with Different Time Resolution for Stationary Exposure Measurements. J. Nanopart. Res. 2009, 11, 1593–1609. doi:10.1007/s11051-009-9679-x
  • Asbach, C.; Kaminski, H.; Von Barany, D.; Kuhlbusch, T. A. J.; Monz, C.; Dziurowitz, N.; Pelzer, J.; Vossen, K.; Berlin, K.; Dietrich, S.; et al. Comparability of Portable Nanoparticle Exposure Monitors. Ann. Occup. Hyg. 2012, 56, 606–621.
  • Levin, M.; Gudmundsson, A.; Pagels, J. H.; Fierz, M.; Mølhave, K.; Löndahl, J.; Jensen, K. A.; Koponen, I. K. Limitations in the Use of Unipolar Charging for Electrical Mobility Sizing Instruments: A Study of the Fast Mobility Particle Sizer. Aerosol Sci. Technol. 2015, 49, 556–565. doi:10.1080/02786826.2015.1052039
  • Levin, M.; Witschger, O.; Bau, S.; Jankowska, E.; Koponen, I. K.; Koivisto, A. J.; Clausen, P. A.; Jensen, A.; Mølhave, K.; Asbach, C.; Jensen, K. A. Can we Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials? Aerosol. Air Qual. Res. 2016, 16, 1105–1117. doi:10.4209/aaqr.2015.06.0413
  • Leavey, A.; Fang, J.; Sahu, M.; Biswas, P. Comparison of Measured Particle Lung-Deposited Surface Area Concentrations by an Aerotrak 9000 Using Size Distribution Measurements for a Range of Combustion Aerosols. Aerosol Sci. Technol. 2013, 47, 966–978. doi:10.1080/02786826.2013.803018
  • Leskinen, J.; Joutsensaari, J.; Lyyränen, J.; Koivisto, J.; Ruusunen, J.; Järvelä, M.; Tuomi, T.; Hämeri, K.; Auvinen, A.; Jokiniemi, J. Comparison of Nanoparticle Measurement Instruments for Occupational Health Applications. J. Nanopart. Res. 2012, 14, 718.
  • Asbach, C.; Fissan, H.; Stahlmecke, B.; Kuhlbusch, T. A. J.; Pui, D. Y. H. Conceptual Limitations and Extensions of Lung-Deposited Nanoparticle Surface Area Monitor (NSAM). J. Nanopart. Res. 2009, 11, 101–109. doi:10.1007/s11051-008-9479-8
  • Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Del Buono, L.; Cattaneo, A.; Cavallo, D. M, Luca Del Buono Miniaturized Monitors for Assessment of Exposure to Air Pollutants: A Review. IJERPH 2017, 14, 909. doi:10.3390/ijerph14080909
  • Fanti, G.; Borghi, F.; Spinazzè, A.; Rovelli, S.; Campagnolo, D.; Keller, M.; Cattaneo, A.; Cauda, E.; Cavallo, D. M. Features and Practicability of the Next-Generation Sensors and Monitors for Exposure Assessment to Airborne Pollutants: A Systematic Review. Sensors. 2021, 21, 4513. doi:10.3390/s21134513
  • Howard, J.; Murashov, V.; Cauda, E.; Snawder, J. Advanced Sensor Technologies and the Future of Work. Am. J. Ind. Med. 2022, 65, 3–11. doi:10.1002/ajim.23300
  • Morawska, L.; Thai, P. K.; Liu, X.; Asumadu-Sakyi, A.; Ayoko, G.; Bartonova, A.; Bedini, A.; Chai, F.; Christensen, B.; Dunbabin, M.; et al. Applications of Low-Cost Sensing Technologies for Air Quality Monitoring and Exposure Assessment: How Far Have They Gone? Environ. Int. 2018, 116, 286–299. doi:10.1016/j.envint.2018.04.018
  • Fishbain, B.; Lerner, U.; Castell, N.; Cole-Hunter, T.; Popoola, O.; Broday, D. M.; Martinez Iñiguez, T.; Nieuwenhuijsen, M.; Jovasevic-Stojanovic, M.; Topalovic, D.; et al. An Evaluation Tool Kit of Air Quality Micro-Sensing Units. Sci. Total Environ. 2017, 575, 639–648. doi:10.1016/j.scitotenv.2016.09.061
  • Castell, N.; Dauge, F. R.; Schneider, P.; Vogt, M.; Lerner, U.; Fishbain, B.; Broday, D.; Bartonova, A. Can Commercial Low-Cost Sensor Platforms Contribute to Air Quality Monitoring and Exposure Estimates? Environ. Int. 2017, 99, 293–302. doi:10.1016/j.envint.2016.12.007
  • Chojer, H.; Branco, P. T. B. S.; Martins, F. G.; Alvim-Ferraz, M. C. M.; Sousa, S. I. V. Development of Low-Cost Indoor Air Quality Monitoring Devices: Recent Advancements. Sci. Total Environ. 2020, 727, 138385. doi:10.1016/j.scitotenv.2020.138385
  • Zhang, H.; Srinivasan, R. A Systematic Review of Air Quality Sensors, Guidelines, and Measurement Studies for Indoor Air Quality Management. Sustain. 2020, 12, 9045. doi:10.3390/su12219045
  • Kang, Y.; Aye, L.; Ngo, T. D.; Zhou, J. Performance Evaluation of Low-Cost Air Quality Sensors: A Review. Sci. Total Environ. 2022, 818, 151769. doi:10.1016/j.scitotenv.2021.151769
  • Kumar, P.; Skouloudis, A. N.; Bell, M.; Viana, M.; Carotta, M. C.; Biskos, G.; Morawska, L. Real-Time Sensors for Indoor Air Monitoring and Challenges Ahead in Deploying Them to Urban Buildings. Sci. Total Environ. 2016, 560-561, 150–159. doi:10.1016/j.scitotenv.2016.04.032
  • Schieweck, A.; Uhde, E.; Salthammer, T.; Salthammer, L. C.; Morawska, L.; Mazaheri, M.; Kumar, P. Smart Homes and the Control of Indoor Air Quality. Renew. Sustain. Energy Rev. 2018, 94, 705–718. doi:10.1016/j.rser.2018.05.057
  • Jovašević-Stojanović, M.; Bartonova, A.; Topalović, D.; Lazović, I.; Pokrić, B.; Ristovski, Z. On the Use of Small and Cheaper Sensors and Devices for Indicative Citizen-Based Monitoring of Respirable Particulate Matter. Environ. Pollut. 2015, 206, 696–704. doi:10.1016/j.envpol.2015.08.035
  • Sá, J. P.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V. Application of the Low-Cost Sensing Technology for Indoor Air Quality Monitoring: A Review. Environ. Technol. Innov. 2022, 28, 102551. doi:10.1016/j.eti.2022.102551
  • Lewis, A. Von Schneidemesser, E.; and Peltier, R. Low-Cost Sensors for the Measurement of Atmospheric Composition: overview of Topic and Future Applications, WMO, 2018.
  • Peltier, R. E.; Castell, N.; Clements, A. L.; Dye, T.; Hüglin, C.; Kroll, J. H.; Lung, S. C. C.; Ning, Z.; Parsons, M.; Penza, M.; et al. An Update on Low-Cost Sensors for the Measurement of Atmospheric Composition, WMO, 2020. https://library.wmo.int/doc_num.php?explnum_id=10620
  • Technical Committee CEN/TC264/ WG 42 - Air Quality - Gas sensors.
  • Li, J.; Li, H.; Ma, Y.; Wang, Y.; Abokifa, A. A.; Lu, C.; Biswas, P. Spatiotemporal Distribution of Indoor Particulate Matter Concentration with a Low-Cost Sensor Network. Build. Environ. 2018, 127, 138–147. (November 2017): doi:10.1016/j.buildenv.2017.11.001
  • Cho, J. H.; Moon, J. W. Integrated Artificial Neural Network Prediction Model of Indoor Environmental Quality in a School Building. J. Clean. Prod. 2022, 344, 131083. (November 2021): doi:10.1016/j.jclepro.2022.131083
  • Yuchi, W.; Gombojav, E.; Boldbaatar, B.; Galsuren, J.; Enkhmaa, S.; Beejin, B.; Naidan, G.; Ochir, C.; Legtseg, B.; Byambaa, T.; et al. Evaluation of Random Forest Regression and Multiple Linear Regression for Predicting Indoor Fine Particulate Matter Concentrations in a Highly Polluted City. Environ. Pollut. 2019, 245, 746–753. doi:10.1016/j.envpol.2018.11.034
  • Loy-Benitez, J.; Vilela, P.; Li, Q.; Yoo, C. K. Sequential Prediction of Quantitative Health Risk Assessment for the Fine Particulate Matter in an Underground Facility Using Deep Recurrent Neural Networks. Ecotoxicol. Environ. Saf. 2019, 169, 316–324. (November 2018): doi:10.1016/j.ecoenv.2018.11.024
  • Saini, J.; Dutta, M.; Marques, G. Sensors for Indoor Air Quality Monitoring and Assessment through Internet of Things: A Systematic Review. Environ. Monit. Assess. 2021, 193. doi:10.1007/s10661-020-08781-6