2,547
Views
9
CrossRef citations to date
0
Altmetric
Review

Emerging Raman spectroscopy and saliva-based diagnostics: from challenges to applications

, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Hardy, M.; Kelleher, L.; de Carvalho Gomes, P.; Buchan, E.; Chu, H. O. M.; Goldberg Oppenheimer, P. Methods in Raman Spectroscopy for Saliva Studies—A Review. Appl. Spectrosc. Rev. 2022, 57, 177–233. doi:10.1080/05704928.2021.1969944
  • Bombara, D.; Williams, C.; Borg, S.; Kim, H. J. Automated Real-Time Spectral Characterization of Phase-Change Tunable Optical Filters Using a Linear Variable Filter and Infrared Camera. 2021. http://arxiv.org/abs/2102.11028.
  • Yan, H.; Bangxing, H.; Seisler, H. W. Handheld near-Infrared Spectrometers: Reality and Empty Promises. Spectrscopy 2020, 35, 15–18.
  • Vardaki, M. Z.; Georg Schulze, H.; Serrano, K.; Blades, M. W.; Devine, D. V.; Turner, R. F. B. Assessing the Quality of Stored Red Blood Cells Using Handheld Spatially Offset Raman Spectroscopy with Multisource Correlation Analysis. Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 2022, 276.
  • Coic, L.; Sacré, P.-Y.; Dispas, A.; Dumont, E.; Horne, J.; De Bleye, C.; Fillet, M.; Hubert, P.; Ziemons, E. Evaluation of the Analytical Performances of Two Raman Handheld Spectrophotometers for Pharmaceutical Solid Dosage Form Quantitation. Talanta 2020, 214, 120888. doi:10.1016/j.talanta.2020.120888
  • Ataka, K.; Heberle, J. Biochemical Applications of Surface-Enhanced Infrared Absorption Spectroscopy. Anal. Bioanal. Chem. 2007, 388, 47–54. doi:10.1007/s00216-006-1071-4
  • Le Ru, E. C.; Blackie, E.; Meyer, M.; Etchegoin, P. G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. doi:10.1021/jp0687908
  • Blackie, E. J.; Le Ru, E. C.; Etchegoin, P. G. Single-Molecule Surface-Enhanced Raman Spectroscopy of Nonresonant Molecules. J. Am. Chem. Soc. 2009, 131, 14466–14472. doi:10.1021/ja905319w
  • Dadas, A.; Washington, J.; Diaz-Arrastia, R.; Janigro, D. Biomarkers in Traumatic Brain Injury (TBI): A Review. Neuropsychiatr. Dis. Treat. 2018, 14, 2989–3000. doi:10.2147/NDT.S125620
  • Valpapuram, I.; Candeloro, P.; Coluccio, M.; Parrotta, E.; Giugni, A.; Das, G.; Cuda, G.; Di Fabrizio, E.; Perozziello, G. Waveguiding and SERS Simplified Raman Spectroscopy on Biological Samples. Biosensors-Basel 2019, 9, 37. doi:10.3390/bios9010037
  • Hagner, M.; Wang, J.; Benzaquen, S. Comparing Endobronchial-Ultrasound Guided Miniforceps Biopsy to Needle Aspiration for Diagnostic Yield and Molecular Testing at a Single Biopsy Site. Chest 2019, 156, A923. doi:10.1016/j.chest.2019.08.864
  • Kah, J. C. Y.; Kho, K. W.; Lee, C. G. L.; James, C.; Sheppard, R.; Shen, Z. X.; Soo, K. C.; Olivo, M. C. Early Diagnosis of Oral Cancer Based on the Surface Plasmon Resonance of Gold Nanoparticles. Int. J. Nanomedicine. 2007, 2, 785–798.
  • Pastare, D.; Bennour, M. R.; Polunosika, E.; Karelis, G. Biomarkers of Multiple Sclerosis. TOIJ. 2019, 9, 1–13. doi:10.2174/1874226201909010001
  • USFDA. BEST: Biomarkers, EndpointS and Other Tools. 2019.
  • WHO. World Health Organization & International Programme on Chemical Safety. Biomarkers and risk assessment : concepts and principles / published under the joint sponsorship of the United Nations environment Programme, the International Labour Organisation, an [Internet]. 1993. Available from: https://apps.who.int/iris/handle/10665/39037.
  • Poste, G. Bring on the Biomarkers. Nature 2011, 469, 156–157. doi:10.1038/469156a
  • Jones, L. E.; Stewart, A.; Peters, K. L.; McNaul, M.; Speers, S. J.; Fletcher, N. C.; Bell, S. E. J. Infrared and Raman Screening of Seized Novel Psychoactive Substances: A Large Scale Study of >200 Samples. Analyst 2016, 141, 902–909. doi:10.1039/c5an02326b
  • Ransohoff, D. F.; Gourlay, M. L. Sources of Bias in Specimens for Research about Molecular Markers for Cancer. J. Clin. Oncol. 2010, 28, 698–704. doi:10.1200/JCO.2009.25.6065
  • Sung, H.; Ferlay, J.; Siegel, R. L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA. A Cancer J. Clin. 2021, 71, 209–249. doi:10.3322/caac.21660
  • Githaiga, J. I.; Angeyo, H. K.; Kaduki, K. A.; Bulimo, W. D.; Ojuka, D. K. Quantitative Raman Spectroscopy of Breast Cancer Malignancy Utilizing Higher-Order Principal Components: A Preliminary Study. Sci. African 2021, 14.
  • Wu, W.; Gong, H.; Liu, M.; Chen, G.; Chen, R. Noninvasive Breast Tumors Detection Based on Saliva Protein Surface Enhanced Raman Spectroscopy and Regularized Multinomial Regression. In Proceedings - 2015 8th International Conference on BioMedical Engineering and Informatics, BMEI 2015. 2016. p. 214–218.
  • Feng, S.; Huang, S.; Lin, D.; Chen, G.; Xu, Y.; Li, Y.; Huang, Z.; Pan, J.; Chen, R.; Zeng, H. Surface-Enhanced Raman Spectroscopy of Saliva Proteins for the Noninvasive Differentiation of Benign and Malignant Breast Tumors. Int. J. Nanomedicine. 2015, 10, 537–547. doi:10.2147/IJN.S71811
  • Hernández-Arteaga, A.; de Jesús Zermeño Nava, J.; Kolosovas-Machuca, E. S.; Velázquez-Salazar, J. J.; Vinogradova, E.; José-Yacamán, M.; Navarro-Contreras, H. R. Diagnosis of Breast Cancer by Analysis of Sialic Acid Concentrations in Human Saliva by Surface-Enhanced Raman Spectroscopy of Silver Nanoparticles. Nano. Res. 2017, 10, 3662–3670. doi:10.1007/s12274-017-1576-5
  • American Cancer Society. Cancer Statistics. 2021. https://www.cancer.org.
  • Wang, Y.; Hua, L.; Wang, Y.; Cui, Z.; Chen, A.; Zhang, Y. A New Method for the Early Detection of the Lung Cancer by the Saliva Tests Using Surface-Enhanced Raman Spectroscopy. In International Symposium on Signal Processing Biomedical Engineering, and Informatics (Spbei 2013). 2014. p. 866–873.
  • Li, X.; Yang, T.; Ding, J. Surface Enhanced Raman Spectroscopy (SERS) of Saliva for the Diagnosis of Lung Cancer. Guang Pu Xue Yu Guang Pu Fen Xi 2012, 32, 391–393.
  • Qian, K.; Wang, Y.; Hua, L.; Chen, A.; Zhang, Y. New Method of Lung Cancer Detection by Saliva Test Using Surface-Enhanced Raman Spectroscopy. Thorac. Cancer. 2018, 9, 1556–1561. http://doi.org/10.1111/1759-7714.12837.
  • Chow, L. Q. M. Head and Neck Cancer. N Engl. J. Med. 2020, 382, 60–72. http://doi.org/10.1056/NEJMra1715715.
  • Son, E.; Panwar, A.; Mosher, C. H.; Lydiatt, D. Cancers of the Major Salivary Gland. J. Oncol. Pract. 2018, 14, 99–108. doi:10.1200/JOP.2017.026856
  • Fălămaș, A.; Rotaru, H.; Hedeșiu, M. Surface-Enhanced Raman Spectroscopy (SERS) Investigations of Saliva for Oral Cancer Diagnosis. Lasers Med. Sci. 2020, 35, 1393–1401. doi:10.1007/s10103-020-02988-2
  • Zapata, F.; Gregório, I.; García-Ruiz, C. Body Fluids and Spectroscopic Techniques in Forensics: A Perfect Match? J. Forensic Med. 2015, 1, 1000101.
  • Ram, S.; Siar, C. H. Chemiluminescence as a Diagnostic Aid in the Detection of Oral Cancer and Potentially Malignant Epithelial Lesions. Int. J. Oral Maxillofac. Surg. 2005, 34, 521–527. doi:10.1016/j.ijom.2004.10.008
  • Hu, S.; Loo, J. A.; Wong, D. T. Human Saliva Proteome Analysis. Ann. N. Y. Acad. Sci. 2007, 1098, 323–329. doi:10.1196/annals.1384.015
  • Wang, S.; Qin, Y.; Zou, Z. Determination of Liver Cancer Biomarkers by Surface-Enhanced Raman Scattering Using Gold-Silica Nanoparticles. Anal. Lett. 2016, 49, 1209–1220. doi:10.1080/00032719.2015.1098656
  • Connolly, J. M.; Davies, K.; Kazakeviciute, A.; Wheatley, A. M.; Dockery, P.; Keogh, I.; Olivo, M. Non-Invasive and Label-Free Detection of Oral Squamous Cell Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy and Multivariate Analysis. Nanomedicine 2016, 12, 1593–1601. http://dx.doi.org/10.1016/j.nano.2016.02.021.
  • Rekha, P.; Aruna, P.; Brindha, E.; Koteeswaran, D.; Baludavid, M.; Ganesan, S. Near-Infrared Raman Spectroscopic Characterization of Salivary Metabolites in the Discrimination of Normal from Oral Premalignant and Malignant Conditions. J. Raman Spectrosc. 2016, 47, 763–772. doi:10.1002/jrs.4897
  • Jaychandran, S.; PK, M.; Ganesan, S. Raman Spectroscopic Analysis of Blood, Urine, Saliva and Tissue of Oral Potentially Malignant Disorders and Malignancy-A Diagnostic Study. Int. J. Oral Craniofacial Sci. 2016, 11–14.
  • Su, S.-F.; Han, F.; Zhao, C.; Chen, C.-Y.; Xiao, W.-W.; Li, J.-X.; Lu, T.-X. Long-Term Outcomes of Early-Stage Nasopharyngeal Carcinoma Patients Treated with Intensity-Modulated Radiotherapy Alone. Int. J. Radiat. Oncol. Biol. Phys. 2012, 82, 327–333. doi:10.1016/j.ijrobp.2010.09.011
  • Ma, J.; Mai, H. Q.; Hong, M. H.; Min, H. Q.; Mao, Z. D.; Cui, N. J.; Lu, T. X.; Mo, H. Y. Results of a Prospective Randomized Trial Comparing Neoadjuvant Chemotherapy plus Radiotherapy with Radiotherapy Alone in Patients with Locoregionally Advanced Nasopharyngeal Carcinoma. J. Clin. Oncol. 2001, 19, 1350–1357. doi:10.1200/JCO.2001.19.5.1350
  • Lin, X.; Lin, D.; Ge, X.; Qiu, S.; Feng, S.; Chen, R. Noninvasive Detection of Nasopharyngeal Carcinoma Based on Saliva Proteins Using Surface-Enhanced Raman Spectroscopy. J. Biomed. Opt. 2017, 22, 1–6. doi:10.1117/1.JBO.22.10.105004
  • Feng, S.; Lin, D.; Lin, J.; Huang, Z.; Chen, G.; Li, Y.; et al. Saliva Analysis Combining Membrane Protein Purification with Surface-Enhanced Raman Spectroscopy for Nasopharyngeal Cancer Detection. Appl. Phys. Lett. 2014, 104.
  • Qiu, S.; Xu, Y.; Huang, L.; Zheng, W.; Huang, C.; Huang, S.; Lin, J.; Lin, D.; Feng, S.; Chen, R.; et al. Non-Invasive Detection of Nasopharyngeal Carcinoma Using Saliva Surface-Enhanced Raman Spectroscopy. Oncol. Lett. 2016, 11, 884–890. doi:10.3892/ol.2015.3969
  • Aslam, M. A.; Due, C.; Liu, M.; Wang, K.; Cui, D. Classification and Prediction of Gastric Cancer from Saliva Diagnosis Using Artificial Neural Network. Eng. Lett. 2021, 29.
  • Zhang, Y.; Wang, Z.; Jiang, T.; Wang, Y. Biomimetic Regulation of Dentine Remineralization by Amino Acid in Vitro. Dent. Mater. 2019, 35, 298–309. doi:10.1016/j.dental.2018.11.026
  • Maitra, I.; Morais, C. L. M.; Lima, K. M. G.; Ashton, K. M.; Date, R. S.; Martin, F. L. Raman Spectral Discrimination in Human Liquid Biopsies of Oesophageal Transformation to Adenocarcinoma. J. Biophotonics. 2020, 13, e201960132–e201960132. doi:10.1002/jbio.201960132
  • Cottat, M.; D’Andrea, C.; Yasukuni, R.; Malashikhina, N.; Grinyte, R.; Lidgi-Guigui, N.; Fazio, B.; Sutton, A.; Oudar, O.; Charnaux, N.; et al. High Sensitivity, High Selectivity SERS Detection of MnSOD Using Optical Nanoantennas Functionalized with Aptamers. J. Phys. Chem. C 2015, 119, 15532–15540. doi:10.1021/acs.jpcc.5b03681
  • Zermeño-Nava, J. d J.; Martínez-Martínez, M. U.; Rámirez-de-Ávila, A. L.; Hernández-Arteaga, A. C.; García-Valdivieso, M. G.; Hernández-Cedillo, A.; José-Yacamán, M.; Navarro-Contreras, H. R. Determination of sialic acid in Saliva by Means of Surface-Enhanced Raman Spectroscopy as a Marker in Adnexal Mass Patients: Ovarian Cancer vs Benign Cases. J. Ovarian Res. 2018, 11, 61. doi:10.1186/s13048-018-0433-9
  • Cao, G.; Chen, M.; Chen, Y.; Huang, Z.; Lin, J.; Lin, J.; Xu, Z.; Wu, S.; Huang, W.; Weng, G.; et al. A Potential Method for Non-Invasive Acute Myocardial Infarction Detection Based on Saliva Raman Spectroscopy and Multivariate Analysis. Laser Phys. Lett. 2015, 12, 125702. doi:http://dx.doi.org/10.1088/1612-2011/12/12/125702
  • Moisoiu, V.; Badarinza, M.; Stefancu, A.; Iancu, S. D.; Serban, O.; Leopold, N.; et al. Combining Surface-Enhanced Raman Scattering (SERS) of Saliva and Two-Dimensional Shear Wave Elastography (2D-SWE) of the Parotid Glands in the Diagnosis of Sjogren’s Syndrome. Spectrochim ACTA PART A-MOLECULAR Biomol. Spectrosc. 2020, 235.
  • Stefancu, A.; Badarinza, M.; Moisoiu, V.; Iancu, S. D.; Serban, O.; Leopold, N.; Fodor, D. SERS-Based Liquid Biopsy of Saliva and Serum from Patients with Sjogren’s Syndrome. Anal. Bioanal. Chem. 2019, 411, 5877–5883. doi:10.1007/s00216-019-01969-x
  • Eom, G.; Hwang, A.; Kim, H.; Yang, S.; Lee, D. K.; Song, S.; Ha, K.; Jeong, J.; Jung, J.; Lim, E.-K.; et al. Diagnosis of Tamiflu-Resistant Influenza Virus in Human Nasal Fluid and Saliva Using Surface-Enhanced Raman Scattering. ACS Sens. 2019, 4, 2282–2287. doi:10.1021/acssensors.9b00697
  • Ember, K.; Daoust, F.; Mahfoud, M.; Dallaire, F.; Ahmad, E. Z.; Tran, T.; et al. Saliva-Based Detection of COVID-19 Infection in a Real-World Setting Using Reagent-Free Raman Spectroscopy and Machine Learning. J. Biomed. Opt 2022, 27,
  • Carlomagno, C.; Banfi, P. I.; Gualerzi, A.; Picciolini, S.; Volpato, E.; Meloni, M.; Lax, A.; Colombo, E.; Ticozzi, N.; Verde, F.; et al. Human Salivary Raman Fingerprint as Biomarker for the Diagnosis of Amyotrophic Lateral Sclerosis. Sci. Rep. 2020, 10, doi:10.1038/s41598-020-67138-8
  • Ralbovsky, N. M.; Halámková, L.; Wall, K.; Anderson-Hanley, C.; Lednev, I. K. Screening for Alzheimer’s Disease Using Saliva: A New Approach Based on Machine Learning and Raman Hyperspectroscopy. J. Alzheimers. Dis. 2019, 71, 1351–1359. doi:10.3233/JAD-190675
  • Zamora-Mendoza, B. N.; Espinosa-Tanguma, R.; Ramírez-Elías, M. G.; Cabrera-Alonso, R.; Montero-Moran, G.; Portales-Pérez, D.; Rosales-Romo, J. A.; Gonzalez, J. F.; Gonzalez, C. Surface-Enhanced Raman Spectroscopy: A Non Invasive Alternative Procedure for Early Detection in Childhood Asthma Biomarkers in Saliva. Photodiagnosis Photodyn. Ther. 2019, 27, 85–91. 10.1016/j.pdpdt.2019.05.009.
  • Wu, L.; Wang, Z.; Zong, S.; Cui, Y. Rapid and Reproducible Analysis of Thiocyanate in Real Human Serum and Saliva Using a Droplet SERS-Microfluidic Chip. Biosens. Bioelectron. 2014, 62, 13–18. http://dx.doi.org/10.1016/j.bios.2014.06.026.
  • Žukovskaja, O.; Jahn, I. J.; Weber, K.; Cialla-May, D.; Popp, J. Detection of Pseudomonas aeruginosa Metabolite Pyocyanin in Water and Saliva by Employing the SERS Technique. Sensors (Switzerland) 2017, 17, 1704. doi:10.3390/s17081704
  • Yáñez-Mó, M.; Siljander, P. R.-M.; Andreu, Z.; Bedina Zavec, A.; Borràs, F. E.; Buzas, E. I.; Buzas, K.; Casal, E.; Cappello, F.; Carvalho, J.; et al. Biological Properties of Extracellular Vesicles and Their Physiological Functions. Journal of Extracellular Vesicles 2015, 4, 27066–27060. doi:10.3402/jev.v4.27066
  • Borges, F. T.; Melo, S. A.; Özdemir, B. C.; Kato, N.; Revuelta, I.; Miller, C. A.; Gattone, V. H.; LeBleu, V. S.; Kalluri, R. TGF-β1-Containing Exosomes from Injured Epithelial Cells Activate Fibroblasts to Initiate Tissue Regenerative Responses and Fibrosis. J. Am. Soc. Nephrol. 2013, 24, 385–392. doi:10.1681/ASN.2012101031
  • Gámez-Valero, A.; Lozano-Ramos, S. I.; Bancu, I.; Lauzurica-Valdemoros, R.; Borràs, F. E. Urinary Extracellular Vesicles as Source of Biomarkers in Kidney Diseases. Front. Immunol. 2015, 6, 6. doi:10.3389/fimmu.2015.00006
  • Taylor, D. D.; Gercel-Taylor, C. MicroRNA Signatures of Tumor-Derived Exosomes as Diagnostic Biomarkers of Ovarian Cancer. Gynecol. Oncol. 2008, 110, 13–21. doi:10.1016/j.ygyno.2008.04.033
  • Thompson, Martin MW. Extracellular vesicles in neurodegenerative disease-pathogenesis to biomarkers. 2016.
  • Alzahrani, F. A.; Saadeldin, I. M.; Ahmad, A.; Kumar, D.; Azhar, E. I.; Siddiqui, A. J.; Kurdi, B.; Sajini, A.; Alrefaei, A. F.; Jahan, S.; et al. The Potential Use of Mesenchymal Stem Cells and Their Derived Exosomes as Immunomodulatory Agents for COVID-19 Patients. Stem. Cells Int. 2020, 2020, 1–11. doi:10.1155/2020/8835986
  • Caruso, S.; Poon, I. K. H. Apoptotic Cell-Derived Extracellular Vesicles: More than Just Debris. Front. Immunol. 2018, 9, doi:10.3389/fimmu.2018.01486
  • van Niel, G.; D'Angelo, G.; Raposo, G. Shedding Light on the Cell Biology of Extracellular Vesicles. Nat. Rev. Mol. Cell Biol. 2018, 19, 213–228. doi:10.1038/nrm.2017.125
  • Hu, G.; Drescher, K. M.; Chen, X. M. Exosomal miRNAs: Biological Properties and Therapeutic Potential. Front. Genet. 2012, 3,
  • Gonda, D. D.; Akers, J. C.; Kim, R.; Kalkanis, S. N.; Hochberg, F. H.; Chen, C. C.; Carter, B. S. Neuro-Oncologic Applications of Exosomes, Microvesicles, and Other Nano-Sized Extracellular Particles. Neurosurgery 2013, 72, 501–510. doi:10.1227/NEU.0b013e3182846e63
  • Shao, H.; Im, H.; Castro, C. M.; Breakefield, X.; Weissleder, R.; Lee, H. New Technologies for Analysis of Extracellular Vesicles. Chem. Rev. 2018, 118, 1917–1950. doi:10.1021/acs.chemrev.7b00534
  • Witwer, K. W.; Buzás, E. I.; Bemis, L. T.; Bora, A.; Lässer, C.; Lötvall, J. Standardization of Sample Collection, Isolation and Analysis Methods in Extracellular Vesicle Research. J. Extracell. Vesicles 2013, 2.
  • Vlassov, A. V.; Magdaleno, S.; Setterquist, R.; Conrad, R. Exosomes: Current Knowledge of Their Composition, Biological Functions, and Diagnostic and Therapeutic Potentials. Biochim. Biophys. Acta. 2012, 1820, 940–948. doi:10.1016/j.bbagen.2012.03.017
  • Müller, G. Novel Tools for the Study of Cell Type-Specific Exosomes and Microvesicles. J. Bioanal. Biomed. 2012, 4, 46–60.
  • Yoshioka, Y.; Kosaka, N.; Konishi, Y.; Ohta, H.; Okamoto, H.; Sonoda, H.; Nonaka, R.; Yamamoto, H.; Ishii, H.; Mori, M.; et al. Ultra-Sensitive Liquid Biopsy of Circulating Extracellular Vesicles Using ExoScreen. Nat. Commun. 2014, 5, 3591. doi:10.1038/ncomms4591
  • Zhao, Z.; Yang, Y.; Zeng, Y.; He, M. A Microfluidic ExoSearch Chip for Multiplexed Exosome Detection towards Blood-Based Ovarian Cancer Diagnosis. Lab. Chip. 2016, 16, 489–496. doi:10.1039/c5lc01117e
  • Maiolo, D.; Paolini, L.; Di Noto, G.; Zendrini, A.; Berti, D.; Bergese, P.; Ricotta, D. Colorimetric Nanoplasmonic Assay to Determine Purity and Titrate Extracellular Vesicles. Anal. Chem. 2015, 87, 4168–4176. doi:10.1021/ac504861d
  • Gualerzi, A.; Kooijmans, S. A. A.; Niada, S.; Picciolini, S.; Brini, A. T.; Camussi, G.; et al. Raman Spectroscopy as a Quick Tool to Assess Purity of Extracellular Vesicle Preparations and Predict Their Functionality. J. Extracell. Vesicles 2019, 8.
  • Kwizera, E. A.; O'Connor, R.; Vinduska, V.; Williams, M.; Butch, E. R.; Snyder, S. E.; Chen, X.; Huang, X. Molecular Detection and Analysis of Exosomes Using Surface-Enhanced Raman Scattering Gold Nanorods and a Miniaturized Device. Theranostics 2018, 8, 2722–2738. doi:10.7150/thno.21358
  • Deckert-Gaudig, T.; Taguchi, A.; Kawata, S.; Deckert, V. Tip-Enhanced Raman Spectroscopy-from Early Developments to Recent Advances. Chem. Soc. Rev. 2017, 46, 4077–4110. doi:10.1039/c7cs00209b
  • Mahapatra, S.; Li, L.; Schultz, J. F.; Jiang, N. Tip-Enhanced Raman Spectroscopy: Chemical Analysis with Nanoscale to Angstrom Scale Resolution. J. Chem. Phys. 2020, 153, 10902.
  • Matheson, E. J.; Hamilton, S. M.; Kyser, K. Shallow Groundwater Salinization of the Niagara Peninsula, Ontario, Canada. GEEA. 2018, 18, 155–174. doi:10.1144/geochem2017-072
  • Dies, H.; Raveendran, J.; Escobedo, C.; Docoslis, A. Rapid Identification and Quantification of Illicit Drugs on Nanodendritic Surface-Enhanced Raman Scattering Substrates. Sensors Actuators B Chem. 2018, 257, 382–388. doi:http://dx.doi.org/10.1016/j.snb.2017.10.181
  • Salemmilani, R.; Piorek, B. D.; Mirsafavi, R. Y.; Fountain, A. W.; III Moskovits, M.; Meinhart, C. D. Dielectrophoretic Nanoparticle Aggregation for on-Demand Surface Enhanced Raman Spectroscopy Analysis. Anal. Chem. 2018, 90, 7930–7936. doi:10.1021/acs.analchem.8b00510
  • Barnett, N.; Rathmell, C. Detecting Drugs in Saliva. Opt. Photonik 2015, 10, 31–34. doi:10.1002/opph.201500040
  • Hodges, C. M.; Hendra, P. J.; Willis, H. A.; Farley, T. Fourier Transform Raman Spectroscopy of Illicit Drugs. J. Raman Spectrosc. 1989, 20, 745–749. doi:10.1002/jrs.1250201108
  • Ryder, A. G.; O’Connor, G. M.; Glynn, T. J. Identifications and Quantitative Measurements of Narcotics in Solid Mixtures Using near-IR Raman Spectroscopy and Multivariate Analysis. J. Forensic Sci. 1999, 44, 1013–1019.
  • Li, W.; Li, X.; Yang, T.; Guo, X.; Song, Y. Detection of Saliva Morphine Using Surface-Enhanced Raman Spectroscopy Combined with Immunochromatographic Assay. J. Raman Spectrosc. 2020, 51, 642–648. doi:10.1002/jrs.5822
  • Sivashanmugan, K.; Zhao, Y.; Wang, A. X. Tetrahydrocannabinol Sensing in Complex Biofluid with Portable Raman Spectrometer Using Diatomaceous SERS Substrates. Biosensors 2019, 9, 125–111. doi:10.3390/bios9040125
  • Sivashanmugan, K.; Squire, K.; Tan, A.; Zhao, Y.; Kraai, J. A.; Rorrer, G. L.; Wang, A. X. Trace Detection of Tetrahydrocannabinol in Body Fluid via Surface-Enhanced Raman Scattering and Principal Component Analysis. ACS Sens. 2019, 4, 1109–1117. doi:10.1021/acssensors.9b00476
  • Andreou, C.; Hoonejani, M. R.; Barmi, M. R.; Moskovits, M.; Meinhart, C. D. Rapid Detection of Drugs of Abuse in Saliva Using Surface Enhanced Raman Spectroscopy and Microfluidics. ACS Nano. 2013, 7, 7157–7164. doi:10.1021/nn402563f
  • Qu, D.; Wang, Y.; Chen, A.; Zheng, W.; Liu, J.; Jiao, Y.; et al. New Method for Screening Drug Addicts Based on Surface-Enhanced Raman Spectroscopy Technology. IEEE 4th Int. Conf. Bioinforma. Biomed. Eng. 2010, 1–3.
  • Yang, T.; Guo, X.; Wang, H.; Fu, S.; Wen, Y.; Yang, H. Magnetically Optimized SERS Assay for Rapid Detection of Trace Drug-Related Biomarkers in Saliva and Fingerprints. Biosens. Bioelectron. 2015, 68, 350–357. doi:10.1016/j.bios.2015.01.021
  • Kline, N. D.; Tripathi, A.; Mirsafavi, R.; Pardoe, I.; Moskovits, M.; Meinhart, C.; Guicheteau, J. A.; Christesen, S. D.; Fountain, A. W. Optimization of Surface-Enhanced Raman Spectroscopy Conditions for Implementation into a Microfluidic Device for Drug Detection. Anal. Chem. 2016, 88, 10513–10522. doi:10.1021/acs.analchem.6b02573
  • D'Elia, V.; Montalvo, G.; Ruiz, C. G.; Ermolenkov, V. V.; Ahmed, Y.; Lednev, I. K. Ultraviolet Resonance Raman Spectroscopy for the Detection of Cocaine in Oral Fluid. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 188, 338–340. doi:10.1016/j.saa.2017.07.010
  • Farquharson, S.; Shende, C.; Inscore, F. E.; Maksymiuk, P.; Gift, A. Analysis of 5-Fluorouracil in Saliva Using Surface-Enhanced Raman Spectroscopy. J. Raman Spectrosc. 2005, 36, 208–212. doi:10.1002/jrs.1277
  • Vandenabeele, P.; Edwards, H. G. M.; Jehlička, J. The Role of Mobile Instrumentation in Novel Applications of Raman Spectroscopy: Archaeometry, Geosciences, and Forensics. Chem. Soc. Rev. 2014, 43, 2628–2649. doi:10.1039/c3cs60263j
  • Akçan, R.; Yildirim, M. Ş.; Ilhan, H.; Güven, B.; Tamer, U.; Sağlam, N. Surface Enhanced Raman Spectroscopy as a Novel Tool for Rapid Quantification of Heroin and Metabolites in Saliva. Turk. J. Med. Sci. 2020, 50, 1470–1479. doi:10.3906/sag-1912-196
  • Deriu, C.; Conticello, I.; Mebel, A. M.; McCord, B. Micro Solid Phase Extraction Surface-Enhanced Raman Spectroscopy (mu-SPE/SERS) Screening Test for the Detection of the Synthetic Cannabinoid JWH-018 in Oral Fluid. Anal. Chem. 2019, 91, 4780–4789. doi:10.1021/acs.analchem.9b00335
  • Inscore, F.; Shende, C.; Sengupta, A.; Huang, H.; Farquharson, S. Detection of Drugs of Abuse in Saliva by Surface-Enhanced Raman Spectroscopy (SERS). Appl. Spectrosc. 2011, 65, 1004–1008. doi:10.1366/11-06310
  • Farquharson, S.; Shende, C.; Sengupta, A.; Huang, H.; Inscore, F. Rapid Detection and Identification of Overdose Drugs in Saliva by Surface-Enhanced Raman Scattering Using Fused Gold Colloids. Pharmaceutics 2011, 3, 425–439. doi:10.3390/pharmaceutics3030425
  • Ye, Z.; Li, C.; Xu, Y.; Bell, S. E. J. Exploiting the Chemical Differences between Ag and Au Colloids Allows Dramatically Improved SERS Detection of “Non-Adsorbing” Molecules. Analyst 2019, 144, 448–453. doi:10.1039/c8an01927d
  • Baia, M.; Astilean, S.; Iliescu, T. Raman and SERS Investigations of Pharmaceuticals. Heidelberg: Springer; 2008.
  • Goodacre, R. The Blind Men and the Elephant: Challenges in the Analysis of Complex Natural Mixtures. Faraday Discuss. 2019, 218, 524–539. doi:10.1039/c9fd00074g
  • Sulk, R. A.; Corcoran, R. C.; Carron, K. T. Surface-Enhanced Raman Scattering Detection of Amphetamine and Methamphetamine by Modi® Cation with 2-Mercaptonicotinic Acid. Appl. Spectrosc. 1999, 53, 954–959. doi:10.1366/0003702991947603
  • Xu, L. J.; Zong, C.; Zheng, X. S.; Hu, P.; Feng, J. M.; Ren, B. Label-Free Detection of Native Proteins by Surface-Enhanced Raman Spectroscopy Using Iodide-Modified Nanoparticles. Anal. Chem. 2014, 86, 2238–2245. doi:10.1021/ac403974n
  • Hong, Y.; Zhou, X.; Xu, B.; Huang, Y.; He, W.; Wang, S.; Wang, C.; Zhou, G.; Chen, Y.; Gong, T. Optoplasmonic Hybrid Materials for Trace Detection of Methamphetamine in Biological Fluids through SERS. ACS Appl. Mater. Interfaces 2020, 12, 24192–24200. doi:10.1021/acsami.0c00853
  • Su, M.; Jiang, Y.; Yu, F.; Yu, T.; Du, S.; Xu, Y.; Yang, L.; Liu, H. Mirrorlike Plasmonic Capsules for Online Microfluidic Raman Analysis of Drug in Human Saliva and Urine. ACS Appl. Bio. Mater. 2019, 2, 3828–3835. doi:10.1021/acsabm.9b00425
  • Shende, C.; Huang, H.; Farquharson, S. 2014 Detection of Illicit Drugs in Impaired Driver Saliva by a Field-Usable SERS Analyzer. In Smart Biomedical and Physiological Sensor Technology Xi, Cullum, BM and McLamore, ES (Eds.). (Proceedings of SPIE; vol. 9107). doi:10.1117/12.2054284
  • Scheidweiler, K. B.; Kolbrich Spargo, E. A.; Kelly, T. L.; Cone, E. J.; Barnes, A. J.; Huestis, M. A. Pharmacokinetics of Cocaine and Metabolites in Human Oral Fluid and Correlation with Plasma Concentrations after Controlled Administration. Ther. Drug Monit. 2010, 32, 628–637. doi:10.1097/FTD.0b013e3181f2b729
  • Dams, R.; Choo, R. E.; Lambert, W. E.; Jones, H.; Huestis, M. A. Oral Fluid as an Alternative Matrix to Monitor Opiate and Cocaine Use in Substance-Abuse Treatment Patients. 2007.
  • Schramm, W.; Craig, P. A.; Smith, R. H.; Berger, G. E. Cocaine and Benzoylecgonine in Saliva, Serum, and Urine. Clin. Chem. 1993, 39, 481–487.
  • Dana, K.; Shende, C.; Huang, H.; Farquharson, S. Rapid Analysis of Cocaine in Saliva by Surface-Enhanced Raman Spectroscopy. J. Anal. Bioanal. Tech. 2015, 6, 1–5. doi:10.4172/2155-9872.1000289
  • Meyer, S. A.; Le Ru, E. C.; Etchegoin, P. G. Combining Surface Plasmon Resonance (SPR) Spectroscopy with Surface-Enhanced Raman Scattering (SERS). Anal. Chem. 2011, 83, 2337–2344. doi:10.1021/ac103273r
  • Leggett, R.; Lee-Smith, E. E.; Jickells, S. M.; Russell, D. A. “Intelligent” Fingerprinting: Simultaneous Identification of Drug Metabolites and Individuals by Using Antibody-Functionalized Nanoparticles. Angew. Chem. Int. Ed. Engl. 2007, 46, 4100–4103. doi:10.1002/anie.200700217
  • Shende, C.; Farquharson, A.; Brouillette, C.; Smith, W.; Farquharson, S. Quantitative Measurements of Codeine and Fentanyl on a Surface-Enhanced Raman-Active Pad. Molecules 2019, 24, 2578. doi:10.3390/molecules24142578
  • Tripathi, S.; Tabor, R. F. Modeling Two-Rate Adsorption Kinetics: Two-Site, Two-Species, Bilayer and Rearrangement Adsorption Processes. J. Colloid Interface Sci. 2016, 476, 119–131. doi:10.1016/j.jcis.2016.05.007
  • Farquharson, S.; Gift, A.; Shende, C.; Inscore, F.; Ordway, B.; Farquharson, C.; Murren, J. Surface-Enhanced Raman Spectral Measurements of 5-Fluorouracil in Saliva. Molecules 2008, 13, 2608–2627. doi:10.3390/molecules13102608
  • Aitchison, H.; Aizpurua, J.; Arnolds, H.; Baumberg, J.; Bell, S.; Bonifacio, A.; Chikkaraddy, R.; Dawson, P.; de Nijs, B.; Deckert, V.; et al. Analytical SERS: general Discussion. Faraday Discuss. 2017, 205, 561–600. doi:10.1039/c7fd90096a
  • Zapata, F.; Fernández De La Ossa, Á.; García-Ruiz, C. Emerging Spectrometric Techniques for the Forensic Analysis of Body Fluids. Trends Anal. Chem. 2015, 64, 53–63. doi:http://dx.doi.org/10.1016/j.trac.2014.08.011
  • Sikirzhytski, V.; Virkler, K.; Lednev, I. K. Discriminant Analysis of Raman Spectra for Body Fluid Identification for Forensic Purposes. Sensors (Basel) 2010, 10, 2869–2884. doi:10.3390/s100402869
  • Muro, C. K.; de Souza Fernandes, L.; Lednev, I. K. Sex Determination Based on Raman Spectroscopy of Saliva Traces for Forensic Purposes. Anal. Chem. 2016, 88, 12489–12493. https://pubs.acs.org/sharingguidelines. doi:10.1021/acs.analchem.6b03988
  • Virkler, K.; Lednev, I. K. Analysis of Body Fluids for Forensic Purposes: From Laboratory Testing to Non-Destructive Rapid Confirmatory Identification at a Crime Scene. Forensic Sci. Int. 2009, 188, 1–17. doi:10.1016/j.forsciint.2009.02.013
  • Amin, M. O.; Al-Hetlani, E.; Lednev, I. K. Trends in Vibrational Spectroscopy of Fingermarks for Forensic Purposes. TrAC 2021, 143.
  • Muro, C. K.; Doty, K. C.; Fernandes, L. d S.; Lednev, I. K. Forensic Body Fluid Identification and Differentiation by Raman Spectroscopy. FORENSIC Chem. 2016, 1, 31–38. doi:10.1016/j.forc.2016.06.003
  • Buchan, E.; Kelleher, L.; Clancy, M.; Stanley Rickard, J. J.; Oppenheimer, P. G. Spectroscopic Molecular-Fingerprint Profiling of Saliva. Anal. Chim. Acta. 2021, 1185.
  • Al-Hetlani, E.; Halámková, L.; Amin, M. O.; Lednev, I. K. Differentiating Smokers and Nonsmokers Based on Raman Spectroscopy of Oral Fluid and Advanced Statistics for Forensic Applications. J. Biophotonics. 2020, 13, e201960123–e201960123. doi:10.1002/jbio.201960123
  • Seredin, P. V.; Goloshchapov, D. L.; Prutskij, T.; Ippolitov, Y. A. A Simultaneous Analysis of Microregions of Carious Dentin by the Methods of Laser-Induced Fluorescence and Raman Spectromicroscopy. Opt. Spectrosc. 2018, 125, 803–809. doi:10.1134/S0030400X18110267
  • Daood, U.; Tsoi, J. K. H.; Neelakantan, P.; Matinlinna, J. P.; Omar, H. A. K.; Al-Nabulsi, M.; Fawzy, A. S. In Vitro Assessment of Ribose Modified Two-Step-Etch-and-Rinse Dentine Adhesive. Dent. Mater. 2018, 34, 1175–1187. doi:10.1016/j.dental.2018.05.005
  • Daood, U.; Matinlinna, J. P.; Fawzy, A. S. Synergistic Effects of VE-TPGS and Riboflavin in Crosslinking of Dentine. Dent. Mater. 2019, 35, 356–367. doi:10.1016/j.dental.2018.11.031
  • Seredin, P.; Goloshchapov, D.; Ippolitov, Y.; Vongsvivut, J. Spectroscopic Signature of the Pathological Processes of Carious Dentine Based on FTIR Investigations of the Oral Biological Fluids. Biomed. Opt. Express. 2019, 10, 4050–4058. https://www.osapublishing.org/viewmedia.cfm?uri=boe-10-8-4050&seq=0&html=true. doi:10.1364/BOE.10.004050
  • Zhang, A.; Chang, J.; Chen, Y.; Huang, Z.; Alfranca, G.; Zhang, Q.; Cui, D. Spontaneous Implantation of Gold Nanoparticles on Graphene Oxide for Salivary SERS Sensing. Anal. Methods 2019, 11, 5089–5097. doi:10.1039/C9AY01500K
  • Trolic, I. M.; Todoric, Z.; Acev, D. P.; Makreski, P.; Pejova, B.; Spalj, S. Effects of the Presence of Probiotic Bacteria in the Aging Medium on the Surface Roughness and Chemical Composition of Two Dental Alloys. Microsc. Res. Tech. 2019, 82, 1384–1391. doi:10.1002/jemt.23290
  • Calderon Moreno, J. M.; Popa, M.; Ivanescu, S.; Vasilescu, C.; Drob, S. I.; Neacsu, E. I.; Popa, M. V. Microstructure, Mechanical Properties, and Corrosion Resistance of Ti-20Zr Alloy in Undoped and NaF Doped Artificial Saliva. Met. Mater. Int. 2014, 20, 177–187. doi:10.1007/s12540-013-6031-x
  • Hussein, M. A.; Yilbas, B.; Kumar, A. M.; Drew, R.; Al-Aqeeli, N. Influence of Laser Nitriding on the Surface and Corrosion Properties of Ti-20Nb-13Zr Alloy in Artificial Saliva for Dental Applications. J. Materi. Eng. Perform. 2018, 27, 4655–4664. doi:10.1007/s11665-018-3569-2
  • Ameer, M. A.; Khamis, E.; Al-Motlaq, M. Electrochemical Behaviour of Recasting Ni-Cr and Co-Cr Non-Precious Dental Alloys. Corros. Sci. 2004, 46, 2825–2836. doi:10.1016/j.corsci.2004.03.011
  • Xiao, Y.; Karttunen, M.; Jalkanen, J.; Mussi, M. C. M.; Liao, Y.; Grohe, B.; Lagugné-Labarthet, F.; Siqueira, W. L. Hydroxyapatite Growth Inhibition Effect of Pellicle Statherin Peptides. J. Dent. Res. 2015, 94, 1106–1112. doi:10.1177/0022034515586769
  • Zheng, P.; Li, M.; Jurevic, R.; Cushing, S. K.; Liu, Y.; Wu, N. A Gold Nanohole Array Based Surface-Enhanced Raman Scattering Biosensor for Detection of Silver(I) and Mercury(II) in Human Saliva. Nanoscale 2015, 7, 11005–11012. doi:10.1039/c5nr02142a
  • Silva Soares, L. E.; Silva Soares, A. L.; De Oliveira, R.; Nahorny, S. The Effects of Acid Erosion and Remineralization on Enamel and Three Different Dental Materials: FT-Raman Spectroscopy and Scanning Electron Microscopy Analysis. Microsc. Res. Tech. 2016, 79, 646–656. doi:10.1002/jemt.22679
  • Condò, R.; Cerroni, L.; Pasquantonio, G.; Mancini, M.; Pecora, A.; Convertino, A.; Mussi, V.; Rinaldi, A.; Maiolo, L. A Deep Morphological Characterization and Comparison of Different Dental Restorative Materials. Biomed Res. Int. 2017, 2017, 7346317. doi:10.1155/2017/7346317
  • Paluszkiewicz, C.; Kwiatek, W. M.; Długoń, E.; Wesełucha-Birczyńska, A.; Piccinini, M. Surface Study of Selected Biomaterials Using Vibrational Spectroscopy. Acta Phys. Pol. A 2009, 115, 533–536. doi:10.12693/APhysPolA.115.533
  • Ubaldini, A. L. M.; Pascotto, R. C.; Sato, F.; Soares, V. O.; Zanotto, E. D.; Baesso, M. L. Effects of Bioactive Agents on Dentin Mineralization Kinetics after Dentin Bleaching. Oper. Dent. 2020, 45, 286–296. doi:10.2341/18-272-L
  • Urban, V. M.; Machado, A. L.; Vergani, C. E.; Giampaolo, E. T.; Pavarina, A. C.; de Almeida, F. G.; Cass, Q. B. Effect of Water-Bath Post-Polymerization on the Mechanical Properties, Degree of Conversion, and Leaching of Residual Compounds of Hard Chairside Reline Resins. Dent. Mater. 2009, 25, 662–671. doi:10.1016/j.dental.2008.10.017
  • Galvão, R. A.; Santa-Cruz, L. A. d.; Barreto, P. B.; Horta, M. K. d S.; Andrade, A. M. H. d.; Moura, F. J.; Aguilar, M. S.; Peripolli, S. B.; Campos, J. B. d.; Arruda, I. R. d S.; Machado, G. Electrochemical Single-Step Obtention and Characterization of a Biomimetic TiO2-HA NTs Covered by Chitosan. J. Mater. Res. 2019, 34, 1868–1878. doi:10.1557/jmr.2019.23
  • Foscaldo, T.; dos Santos, G. B.; Miragaya, L. M.; Garcia, M.; Hass, V.; da Silva, E. M. Effect of HEMA Phosphate as an Alternative to Phosphoric Acid for Dentin Treatment Prior to Hybridization with Etch-and-Rinse Adhesive Systems. J. Adhes. Dent. 2016, 18, 425–434.
  • Hu, S.; Gao, Y.; Wu, Y.; Guo, X.; Ying, Y.; Wen, Y.; Yang, H. Raman Tracking the Activity of Urease in Saliva for Healthcare. Biosens. Bioelectron. 2019, 129, 24–28. 10.1016/j.bios.2018.12.059.
  • Sa, Y.; Chen, D.; Liu, Y.; Wen, W.; Xu, M.; Jiang, T.; Wang, Y. Effects of Two in-Office Bleaching Agents with Different pH Values on Enamel Surface Structure and Color: An In Situ vs. In Vitro Study. J. Dent. 2012, 40, e26–34–e34. doi:10.1016/j.jdent.2012.02.010
  • Breschi, L.; Maravic, T.; Comba, A.; Cunha, S. R.; Loguercio, A. D.; Reis, A.; Hass, V.; Cadenaro, M.; Mancuso, E.; Mayer-Santos, E.; et al. Chlorhexidine Preserves the Hybrid Layer in Vitro after 10-Years Aging. Dent. Mater. 2020, 36, 672–680. doi:10.1016/j.dental.2020.03.009
  • Marangoni-Lopes, L.; Rovai-Pavan, G.; Steiner-Oliveira, C.; Nobre-Dos-Santos, M. Radiotherapy Reduces Microhardness and Mineral and Organic Composition, and Changes the Morphology of Primary Teeth: An in Vitro Study. Caries. Res. 2019, 53, 296–304. https://pubmed.ncbi.nlm.nih.gov/30317232/. doi:10.1159/000493099
  • Seredin, P. V.; Goloshchapov, D. L.; Ippolitov, Y. A.; Vongsvivut, J. (P.). A Spectroscopic Study of Changes in the Secondary Structure of Proteins of Biological Fluids of the Oral Cavity by Synchrotron Infrared Microscopy. Opt. Spectrosc. 2019, 127, 1002–1010. doi:10.1134/S0030400X19120221
  • Bonon, A. J.; Weck, M.; Bonfante, E. A.; Coelho, P. G. Physicochemical Characterization of Three Fiber-Reinforced Epoxide-Based Composites for Dental Applications. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 69, 905–913. doi:10.1016/j.msec.2016.07.002
  • Jinlong, L.; Tongxiang, L. Improved Corrosion Resistance of 316L Stainless Steel by Nanocrystalline and Electrochemical Nitridation in Artificial Saliva Solution. Appl. Surf. Sci. 2015, 359, 158–165.
  • Tsuda, H.; Arends, J. Raman-Spectra of Human Dental Calculus. J. Dent. Res. 1993, 72, 1609–1613. doi:10.1177/00220345930720121401
  • Wachesk, C. C.; Trava-Airoldi, V. J.; Da-Silva, N. S.; Lobo, A. O.; Marciano, F. R. The Influence of Titanium Dioxide on Diamond-Like Carbon Biocompatibility for Dental Applications. J. Nanomater. 2016, 2016, 1–7. doi:10.1155/2016/8194516
  • Braga, S. R. M.; de Faria, D. a.; de Oliveira, E.; Sobral, M. A. P. Morphological and Mineral Analysis of Dental Enamel after Erosive Challenge in Gastric Juice and Orange Juice. Microsc. Res. Tech. 2011, 74, 1083–1087. https://pubmed.ncbi.nlm.nih.gov/21538693/. doi:10.1002/jemt.20998
  • Braga, S. R. M.; de Oliveira, E.; Sobral, M. A. P. Effect of Neodymium:yttrium-Aluminum-Garnet Laser and Fluoride on the Acid Demineralization of Enamel. J. Investig. Clin. Dent. 2017, 8. https://pubmed.ncbi.nlm.nih.gov/26283312/.
  • Lee, J.-S.; Jeong, D.-W.; Tae Byun, Y. Porphyrin Nanofiber/Single-Walled Carbon Nanotube Nanocomposite-Based Sensors for Monitoring Hydrogen Peroxide Vapor. Sensors Actuators B Chem. 2020, 306, 127518. doi:10.1016/j.snb.2019.127518
  • Iijima, M.; Hashimoto, M.; Kohda, N.; Nakagaki, S.; Muguruma, T.; Endo, K.; Mizoguchi, I. Crystal Growth on Bioactive Glass Sputter-Coated Alumina in Artificial Saliva. Dent. Mater. J. 2013, 32, 775–780. doi:10.4012/dmj.2013-120
  • Popp, J.; Mäyerhöfer, Wille, G.; Schmidt, U.; Hollricher, O.; Strom, A. R. Recent Developments in Detection for Microfluidic Systems. Anal. Chem. 2021, 4(1):A923–A923.
  • Zaharia, A.; Plescan, V. G.; Anghel, E. M.; Musat, V. Human Dentine Remineralization under Non-Colagen Materials Action. Rev. Chim. 2017, 68, 928–932. doi:10.37358/RC.17.5.5583
  • Zaharia, A.; Muşat, V.; Anghel, E. M.; Atkinson, I.; Mocioiu, O.-C.; Buşilă, M.; Pleşcan, V. G. Biomimetic Chitosan-Hydroxyapatite Hybrid Biocoatings for Enamel Remineralization. Ceram. Int. 2017, 43, 11390–11402. doi:10.1016/j.ceramint.2017.05.346
  • Zhou, H.; Pandya, J. K.; Tan, Y.; Liu, J.; Peng, S.; Muriel Mundo, J. L.; et al. Role of Mucin in Behavior of Food-Grade TiO2 Nanoparticles under Simulated Oral Conditions. J. Agric. Food Chem. 2019. doi:https://doi.org/10.1021/acs.jafc.9b01732
  • Zhang, Y.; Zhao, S.; Zheng, J.; He, L. Surface-Enhanced Raman Spectroscopy (SERS) Combined Techniques for High-Performance Detection and Characterization. Trends Anal Chem [Internet]. 2017, 90, 1–13. doi:http://dx.doi.org/10.1016/j.trac.2017.02.006
  • Zhang, X.; Geng, H.; Gong, L.; Zhang, Q.; Li, H.; Zhang, X.; Wang, Y.; Gao, P. Modification of the Surface of Titanium with Multifunctional Chimeric Peptides to Prevent Biofilm Formation via Inhibition of Initial Colonizers. Int. J. Nanomedicine. 2018, 13, 5361–5375. doi:10.2147/IJN.S170819
  • Hua, F.; Yan, J.; Zhao, S.; Yang, H.; He, H. In Vitro Remineralization of Enamel White Spot Lesions with a Carrier-Based Amorphous Calcium Phosphate Delivery System. Clin. Oral Investig. 2020, 24, 2079–2089. doi:10.1007/s00784-019-03073-x
  • Silveira, J.; Coutinho, S.; Marques, D.; Castro, J.; Mata, A.; Carvalho, M. L.; Pessanha, S. Raman Spectroscopy Analysis of Dental Enamel Treated with Whitening Product – Influence of Saliva in the Remineralization. Spectrochim. Acta. A Mol. Biomol. Spectrosc. 2018, 198, 145–149. doi:10.1016/j.saa.2018.03.007
  • Osorio, R.; Toledano-Osorio, M.; Osorio, E.; Aguilera, F. S.; Padilla-Mondéjar, S.; Toledano, M. Zinc and Silica Are Active Components to Efficiently Treat in Vitro Simulated Eroded Dentin. Clin. Oral Investig. 2018, 22, 2859–2870. doi:10.1007/s00784-018-2372-7
  • Li, Y.; Wang, K.; He, P.; Huang, B. X.; Kovacs, P. Surface‐Enhanced Raman Spectroelectrochemical Studies of Corrosion Films on Implant Co–Cr–Mo Alloy in Biosimulating Solutions. J. Raman Spectrosc. 1999, 30, 97–103. doi:10.1002/(SICI)1097-4555(199902)30:2<97::AID-JRS352>3.0.CO;2-X
  • Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Minaeva, S. Raman Spectroscopy of Saliva as a Perspective Method for Periodontitis Diagnostics. Laser Phys. Lett. 2012, 9, 73–77. doi:10.1002/lapl.201110095
  • Gonchukov, S.; Sukhinina, A.; Bakhmutov, D.; Biryukova, T.; Tsvetkov, M.; Bagratashvily, V. Periodontitis Diagnostics Using Resonance Raman Spectroscopy on Saliva. Laser Phys. Lett. 2013, 10, 75610. doi:10.1088/1612-2011/10/7/075610
  • Calado, G.; Behl, I.; Daniel, A.; Byrne, H. J.; Lyng, F. M. Raman Spectroscopic Analysis of Saliva for the Diagnosis of Oral Cancer: A Systematic Review. Transl. Biophotonics 2019, 1, 12185.
  • Altuntas, S.; Buyukserin, F. Fabrication of thioflavin-T-Modified Nanopillared SERS Substrates for Ultrasensitive Beta-Amyloid Peptide Detection. J. Raman Spectrosc. 2018, 49, 1247–1256. doi:http://doi.org/10.1002/jrs.5376
  • Liu, J.; Duan, Y. Saliva: A Potential Media for Disease Diagnostics and Monitoring. Oral Oncol. 2012, 48, 569–577. http://dx.doi.org/10.1016/j.oraloncology.2012.01.021.
  • Romao, V. C.; Martins, S. A. M.; Germano, J.; Cardoso, F. A.; Cardoso, S.; Freitas, P. P. Lab-on-Chip Devices: Gaining Ground Losing Size. ACS Nano. 2017, 11, 10659–10664. doi:10.1021/acsnano.7b06703
  • Lin, H.-Y.; Huang, C.-H.; Park, J.; Pathania, D.; Castro, C. M.; Fasano, A.; Weissleder, R.; Lee, H. Integrated Magneto-Chemical Sensor for on-Site Food Allergen Detection. ACS Nano 2017, 11, 10062–10069. doi:10.1021/acsnano.7b04318
  • Pence, I.; Mahadevan-Jansen, A. Clinical Instrumentation and Applications of Raman Spectroscopy. Chem. Soc. Rev. 2016, 45, 1958–1979. doi:10.1039/c5cs00581g
  • Germano, J.; Martins, V. C.; Cardoso, F. A.; Almeida, T. M.; Sousa, L.; Freitas, P. P.; Piedade, M. S. A Portable and Autonomous Magnetic Detection Platform for Biosensing. Sensors (Basel) 2009, 9, 4119–4137. doi:10.3390/s90604119
  • Seitz, P. Photonics – Accelerating highly sensitive disease detection. Photonics for Medical Diagnostics Conference. 2020. Available from: https://ktn-uk.org/events/photonics-for-medical-diagnostics/.
  • Durucan, O.; Wu, K.; Viehrig, M.; Rindzevicius, T.; Boisen, A. Nanopillar-Assisted SERS Chromatography. ACS Sens. 2018, 3, 2492–2498. doi:10.1021/acssensors.8b00887
  • Gale, B.; Jafek, A.; Lambert, C.; Goenner, B.; Moghimifam, H.; Nze, U.; Kamarapu, S. A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions 2018, 3, 60. doi:10.3390/inventions3030060
  • McVey, C.; Gordon, U.; Haughey, S. A.; Elliott, C. T. Assessment of the Analytical Performance of Three near-Infrared Spectroscopy Instruments (Benchtop, Handheld and Portable) through the Investigation of Coriander Seed Authenticity. Foods 2021, 10, 956. doi:10.3390/foods10050956
  • Ben-Menahem, S. M.; Nistor-Gallo, R.; Macia, G.; von Krogh, G.; Goldhahn, J. How the New European Regulation on Medical Devices Will Affect Innovation. Nat. Biomed. Eng. 2020, 4, 585–590. doi:10.1038/s41551-020-0541-x
  • Jahn, I. J.; Žukovskaja, O.; Zheng, X.-S.; Weber, K.; Bocklitz, T. W.; Cialla-May, D.; Popp, J. Surface-Enhanced Raman Spectroscopy and Microfluidic Platforms: Challenges, Solutions and Potential Applications. Analyst 2017, 142, 1022–1047. doi:10.1039/c7an00118e
  • Zhang, L.; Resasco, D. E. Single-Walled Carbon Nanotube Pillars: A Superhydrophobic Surface. Langmuir 2009, 25, 4792–4798. doi:10.1021/la8040264
  • Mogensen, K. B.; Klank, H.; Kutter, J. P. Recent Developments in Detection for Microfluidic Systems. Electrophoresis 2004, 25, 3498–3512. doi:10.1002/elps.200406108
  • Sharma, B.; Ma, K.; Glucksberg, M. R.; Van Duyne, R. P. Seeing through Bone with Surface-Enhanced Spatially Offset Raman Spectroscopy. J. Am. Chem. Soc. 2013, 135, 17290–17293. doi:10.1021/ja409378f
  • El-Zahry, M. R.; Refaat, I. H.; Mohamed, H. A.; Lendl, B. Sequential SERS Determination of Aspirin and Vitamin C Using in Situ Laser-Induced Photochemical Silver Substrate Synthesis in a Moving Flow Cell. Anal. Bioanal. Chem. 2016, 408, 4733–4741. doi:10.1007/s00216-016-9562-4
  • Dochow, S.; Krafft, C.; Neugebauer, U.; Bocklitz, T.; Henkel, T.; Mayer, G.; Albert, J.; Popp, J. Tumour cell identification by Means of Raman Spectroscopy in Combination with Optical Traps and Microfluidic Environments. Lab. Chip. 2011, 11, 1484–1490. doi:10.1039/c0lc00612b
  • Iliescu, F. S.; Vrtačnik, D.; Neuzil, P.; Iliescu, C. Microfluidic Technology for Clinical Applications of Exosomes. Micromachines 2019, 10, 392. doi:10.3390/mi10060392
  • Zhang, W.; Guo, S.; Pereira Carvalho, W. S.; Jiang, Y.; Serpe, M. J. Portable Point-of-Care Diagnostic Devices. Anal. Methods 2016, 8, 7847–7867. doi:10.1039/C6AY02158A
  • Ashok, P. C.; Singh, G. P.; Rendall, H. A.; Krauss, T. F.; Dholakia, K. Waveguide Confined Raman Spectroscopy for Microfluidic Interrogation. Lab. Chip. 2011, 11, 1262–1270. doi:10.1039/c0lc00462f
  • Walker, P. A.; Morris, M. D.; Burns, M. A.; Johnson, B. N. Isotachophoretic Separations on a Microchip. Normal Raman Spectroscopy Detection. Anal. Chem. 1998, 70, 3766–3769. doi:10.1021/ac980195h
  • Quang, L. X.; Lim, C.; Seong, G. H.; Choo, J.; Do, K. J.; Yoo, S.-K. A Portable Surface-Enhanced Raman Scattering Sensor Integrated with a Lab-on-a-Chip for Field Analysis. Lab. Chip. 2008, 8, 2214–2219. doi:10.1039/b808835g
  • Lin, X.; Hasi, W.-L.-J.; Lou, X.-T.; Lin, S.; Yang, F.; Jia, B.-S.; Cui, Y.; Ba, D.-X.; Lin, D.-Y.; Lu, Z.-W.; et al. Rapid and Simple Detection of Sodium Thiocyanate in Milk Using Surface-Enhanced Raman Spectroscopy Based on Silver Aggregates. J. Raman Spectrosc. 2014, 45, 162–167. doi:10.1002/jrs.4436
  • Lawanstiend, D.; Gatemala, H.; Nootchanat, S.; Eakasit, S.; Wongravee, K.; Srisa-Art, M. Microfluidic Approach for in Situ Synthesis of Nanoporous Silver Microstructures as on-Chip SERS Substrates. Sensors Actuators B Chem. 2018, 270, 466–474. doi:10.1016/j.snb.2018.05.051
  • Yu, B.; Ge, M.; Li, P.; Xie, Q.; Yang, L. Development of Surface-Enhanced Raman Spectroscopy Application for Determination of Illicit Drugs: Towards a Practical Sensor. Talanta 2019, 191, 1–10. doi:10.1016/j.talanta.2018.08.032
  • Song, H.; Chen, D. L.; Ismagilov, R. F. Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. Engl. 2006, 45, 7336–7356. doi:10.1002/anie.200601554
  • Strehle, K. R.; Cialla, D.; Rösch, P.; Henkel, T.; Köhler, M.; Popp, J. A Reproducible Surface-Enhanced Raman Spectroscopy Approach. Online SERS Measurements in a Segmented Microfluidic System. Anal. Chem. 2007, 79, 1542–1547. doi:10.1021/ac0615246
  • Hoppmann, E. P.; Yu, W. W.; White, I. M. Highly Sensitive and Flexible Inkjet Printed SERS Sensors on Paper. Methods 2013, 63, 219–224. http://dx.doi.org/10.1016/j.ymeth.2013.07.010.
  • Díaz-Liñán, M. C.; García-Valverde, M. T.; López-Lorente, A. I.; Cárdenas, S.; Lucena, R. Silver Nanoflower-Coated Paper as Dual Substrate for Surface-Enhanced Raman Spectroscopy and Ambient Pressure Mass Spectrometry Analysis. Anal. Bioanal. Chem. 2020, 412, 3547–3557. 10.1007/s00216-020-02603-x.
  • Taylor, R. W.; Lee, T.-C.; Scherman, O. A.; Esteban, R.; Aizpurua, J.; Huang, F. M.; Baumberg, J. J.; Mahajan, S. Precise Subnanometer Plasmonic Junctions for SERS within Gold Nanoparticle Assemblies Using Cucurbit[n]Uril “Glue”. ACS Nano. 2011, 5, 3878–3887. doi:10.1021/nn200250v
  • Gracie, K.; Pang, S.; Jones, G. M.; Faulds, K.; Braybrook, J.; Graham, D. Detection of Cortisol in Serum Using Quantitative Resonance Raman Spectroscopy. Anal. Methods 2017, 9, 1589–1594. doi:10.1039/C6AY03296F
  • Rickard, J. J. S.; Di-Pietro, V.; Smith, D. J.; Davies, D. J.; Belli, A.; Oppenheimer, P. G. Rapid Optofluidic Detection of Biomarkers for Traumatic Brain Injury via Surface-Enhanced Raman Spectroscopy. Nat. Biomed. Eng. 2020, 4, 610–623. doi:10.1038/s41551-019-0510-4
  • McLaughlin, G.; Doty, K. C.; Lednev, I. K. Raman Spectroscopy of Blood for Species Identification. Anal. Chem. 2014, 86, 11628–11633. doi:10.1021/ac5026368
  • Strom, A. R.; Brangwynne, C. P. The Liquid Nucleome – Phase Transitions in the Nucleus at a Glance. J. Cell. Sci. 2019, 132.
  • Wille, G.; Schmidt, U.; Hollricher, O. RISE: Correlative Confocal Raman and Scanning Electron Microscopy. Confocal Raman Microscopy.2018. p. 559–580