235
Views
2
CrossRef citations to date
0
Altmetric
Review

The use of chemical modifiers in electrothermal atomic absorption spectrometry

References

  • Butcher, D. J. Innovations and Developments in Graphite Furnace Atomic Absorption Spectrometry (GFAAS). Appl. Spectrosc. Rev. 2021, 1–18. doi: 10.1080/05704928.2021.1919896.
  • Butcher, D. J. Recent Highlights in Graphite Furnace Atomic Absorption Spectrometry. Appl. Spectrosc. Rev. 2017, 52, 755–773. doi: 10.1080/05704928.2017.1303504.
  • Tsalev, D. L.; Slaveykova, V. I.; Lampugnani, L.; D’Ulivo, A.; Georgieva, R. Permanent Modification in Electrothermal Atomic Absorption Spectrometry - Advances, Anticipations and Reality. Spectrochim. Acta Part B 2000, 55, 473–490. doi: 10.1016/S0584-8547(00)00194-4.
  • Tsalev, D. L.; Slaveykova, V. I. Chemical Modification in Electrothermal Atomic Absorption Spectrometry. In Advances in Atomic Spectroscopy; Vol. IV, J. Sneddon, Ed.; JAI Press: Greenwich, CT, 1998; pp 27–150.
  • Volynsky, A. B. Investigations of the Mechanisms of the Action of Chemical Modifiers for ETAAS: What for and How? Spectrochim. Acta Part B 1998, 53, 139–149. doi: 10.1016/S0584-8547(97)00124-9.
  • Volynsky, A. B. Application of Graphite Tubes Modified with High-Melting Carbides in Electrothermal Atomic Absorption Spectrometry. I. General Approach. Spectrochim. Acta Part B 1998, 53, 509–535. doi: 10.1016/S0584-8547(98)00093-7.
  • Volynsky, A. B. Graphite Atomizers Modified with High-Melting Carbides for Electrothermal Atomic Absorption Spectrometry. II. Practical Aspects. Spectrochim. Acta Part B 1998, 53, 1607–1644. doi: 10.1016/S0584-8547(98)00221-3.
  • Acar, O. Evaluation of V, Ir, Ru, V–Ir, V–Ru, and W–V as Permanent Chemical Modifiers for the Determination of Cadmium, Lead, and Zinc in Botanic and Biological Slurries by Electrothermal Atomic Absorption Spectrometry. Analyt. Chim. Acta 2005, 545, 244–251. doi: 10.1016/j.aca.2005.04.081.
  • Acar, O. Molybdenum, Mo–Ir and Mo–Ru Coatings as Permanent Chemical Modifiers for the Determination of Cadmium and Lead in Sediments and Soil Samples by Electrothermal Atomic Absorption Spectrometry. Analyt. Chim. Acta 2005, 542, 280–286. doi: 10.1016/j.aca.2005.03.017.
  • Acar, O. Electrothermal Atomic Absorption Spectrometric Determination of Cadmium and Lead in Environmental, Botanic and Biological Samples by Different Permanent Modifiers. J. Anal. At. Spectrom. 2004, 19, 709–711. doi: 10.1039/B315881K.
  • Welz, B.; Becker-Ross, H.; Florek, S.; Heitmann, U. High Resolution Continuum Source AAS; the Better Way to Do Atomic Absorption Spectrometry; Wiley-VCH: Weinheim, Germany, 2005.
  • Tsalev, D. L. Hyphenated Vapour Generation Atomic Absorption Spectrometric Techniques. Invited Lecture. J. Anal. At. Spectrom. 1999, 14, 147–162. doi: 10.1039/A807304J.
  • Ferreira, S. L. C.; Bezerra, M. A.; Santos, A. S.; Dos Santos, W. N. L.; Novaes, C. G.; De Oliveira, O. M. C.; Oliveira, M. L.; Garcia, R. L. Atomic Absorption spectrometry - A Multi Element Technique. Trends Anal. Chem. 2018, 100, 1–6.
  • Kroukamp, E. M.; Wondimu, T.; Forbes, P. B. C. Metal and Metalloid Speciation in Plants: Overview, Instrumentation, Approaches and Commonly Assessed Elements. Trends Anal. Chem. 2016, 77, 87–99. doi: 10.1016/j.trac.2015.10.007.
  • Balaram, V. Recent Advances in the Determination of Elemental Impurities in Pharmaceuticals e Status, Challenges and Moving Frontiers. Trends Anal. Chem. 2016, 80, 83–95. doi: 10.1016/j.trac.2016.02.001.
  • Mketo, N.; Nomngongo, P. N.; Ngila, J. C. An Overview on Analytical Methods for Quantitative Determination of Multi-Element in Coal Samples. Trends Anal. Chem. 2016, 85, 107–116. doi: 10.1016/j.trac.2016.09.002.
  • Leopold, K.; Philippe, A.; Worle, K.; Schaumann, G. E. Analytical Strategies to the Determination of Metal-Containing Nanoparticles in Environmental Waters. Trends Anal. Chem. 2016, 84, 107–120. doi: 10.1016/j.trac.2016.03.026.
  • Welz, B.; Vale, M. G. R.; Pereira, E. R.; Castilho, I. N. B.; Dessuy, M. B. Continuum Source Atomic Absorption Spectrometry: Past, Present and Future Aspects – A Critical Review. J. Brazil Chem. Soc. 2014, 25, 799–821. doi: 10.5935/0103-5053.20140053.
  • Dos Passos, A. S.; Dessuy, M. B.; Nakadi, F. V.; De Andrade, J. B.; Vale, M. G. R. Investigation of Different Chemical Modifiers Based on the Pd/Mg Mixture for the Determination of Sulfur in Shale Oil by High-Resolution Continuum Source Graphite Furnace Molecular Absorption Spectrometry. Talanta 2019, 204, 206–212. doi: 10.1016/j.talanta.2019.05.114.
  • Tsalev, D. L.; Lampugnani, L.; Georgieva, R.; Chakarova, K. K.; Petrov, I. I. Jr. Electrothermal Atomic Absorption Spectrometric Determination of Cadmium and Lead with Stabilized Phosphate Deposited on Permanently Modified Platforms. Talanta 2002, 58, 331–340. doi: 10.1016/s0039-9140(02)00250-3.
  • Styris, D. J. Modifiers in Electrothermal Atomic Absorption Spectrometry. In Electrothermal Atomization for Analytical Atomic Spectrometry, K. W. Jackson, Ed.; Wiley: Chichester, 1999, pp 311–358.
  • Skoog, D. A.; West, D. M.; Holler, F. J.; Crouch, S. R. Fundamentals of Analytical Chemistry, 9th ed.; Cengage Learning, São Paulo, 2014.
  • Purohit, P. J.; Goyal, N.; Godbole, S. V. Studies on Matrix Interference and Atomization Behavior of Al, Cr, Cs, Cu, Mn, Ni and Zn in Th Matrix Using GFAAS Technique. At. Spectrosc. 2011, 32, 68–74. doi: 10.46770/AS.2011.02.004.
  • Acar, O.; Kalfa, O. M.; Yalçınkaya, O.; Türker, A. R. Evaluation of Activation Energies for Cadmium Atomization on Different Atomizer Surfaces and Modifier Solutions in Electrothermal Atomic Absorption Spectrometry. Spectrosc. Lett. 2012, 45, 315–323. doi: 10.1080/00387010.2012.666696.
  • Burylin, M. Y.; Malykhin, S. E.; Galai, E. F. Efficiency of a Cobalt-Containing Matrix Modifier Based on Activated Carbon for the Electrothermal Atomic Absorption Determination of the Highly Volatile Elements. J. Anal. Chem. 2015, 70, 459–467. doi: 10.1134/S1061934815040036.
  • Burylin, M. Y.; Malykhin, S. E.; Galai, E. F. Development and Properties of Iron-Containing Chemical Modifier Based on Activated Carbon for Electrothermal Atomic Absorption Determination of Volatile Elements. Inorg. Mater. 2016, 52, 1383–1390. doi: 10.1134/S0020168516140041.
  • Burylin, M. Y.; Pupyshev, A. A. Development of Electrothermal Atomic Absorption Spectrometry in 2005–2016. J. Anal. Chem. 2017, 72, 935–946. doi: 10.1134/S1061934817090039.
  • Malykhin, S. E.; Burylin, M.; Burylin, S. Y.; Zil’berberg, I. L. Adsorption Energy of the as Atom on the Pd (II) Surface according to the Density Functional Theory Data. J. Struct. Chem. 2011, 52, 1098–1101. doi: 10.1134/S0022476611060096.
  • Dittrich, K.; Fuchs, H. Analytical Applications of Furnace Atomic Non-Thermal Excitation Spectrometry (FANES) and Molecular Non-Thermal Excitation Spectrometry (MONES). Part. 5. Study of the MONES of PO and HPO for the Determination of Trace Amounts of Phosphorus. J. Anal. At. Spectrom. 1990, 5, 39–43. doi: 10.1039/JA9900500039.
  • Reboucas, M. V.; Ferreira, S. L. C.; Neto, B. B. Behaviour of Chemical Modifiers in the Determination of Arsenic by Electrothermal Atomic Absorption Spectrometry in Petroleum Products. Talanta 2005, 67, 195–204. doi: 10.1016/j.talanta.2005.02.014.
  • Stanisz, E.; Zgoła-Grześkowiak, A.; Matusiewicz, H. Generation of Volatile Copper Species after in Situ Ionic Liquid Formation Dispersive Liquid-Liquid Microextraction Prior to Atomic Absorption Spectrometric Detection. Talanta 2014, 129, 254–262. doi: 10.1016/j.talanta.2014.05.048.
  • Carletto, J. S.; Carasek, E.; Welz, B. Hollow-Fiber Liquid-Liquid-Solid Micro-Extraction of Lead in Soft Drinks and Determination by Graphite Furnace Atomic Absorption Spectrometry. Talanta 2011, 84, 989–994. doi: 10.1016/j.talanta.2011.03.002.
  • Zhang, S.; Fan, Z. Determination of Antimony(III) and Total Antimony by Dispersive Liquid-Liquid Microextraction Combined with Electrothermal Atomic Absorption Spectrometry. At. Spectrosc. 2011, 32, 75–79. doi: 10.46770/AS.2011.02.005.
  • Rivas, R.; López-García, I.; Hernández-Córdoba, M. Determination of Traces of Lead and Cadmium Using Dispersive Liquid-Liquid Microextraction Followed by Electrothermal Atomic Absorption Spectrometry. Microchim. Acta 2009, 166, 355–361. doi: 10.1007/s00604-009-0206-7.
  • Asadollahzadeh, M.; Niksirat, N.; Tavakoli, H.; Hemmati, A.; Rahdari, P.; Mohammadi, M.; Fazaeli, R. Application of Multi-Factorial Experimental Design to Successfully Model and Optimize Inorganic Arsenic Speciation in Environmental Water Samples by Ultrasound Assisted Emulsification of Solidified Floating Organic Drop Microextraction. Anal. Methods 2014, 6, 2973–2981. doi: 10.1039/C3AY41712C.
  • De la Calle, I.; Pena-Pereira, F.; Lavilla, I.; Bendicho, C. Liquid-Phase Microextraction Combined with Graphite Furnace Atomic Absorption Spectrometry: A Review. Anal. Chim. Acta 2016, 936, 12–39. doi: 10.1016/j.aca.2016.06.046.
  • Shuttler, I. L.; Feuerstein, M.; Schlemmer, G. Long-Term Stability of a Mixed Pd-Ir Trapping Reagent for in Situ Hydride Trapping within a Graphite Electrothermal Atomizer. J. Anal. Atom. Spectrom. 1992, 7, 1299–1301. doi: 10.1039/JA9920701299.
  • Bulska, E.; Liebert-Ilkowska, K.; Hulanicki, A. Optimization of Electrochemical Deposition of Noble Metals for Permanent Modification in GFAAS. Spectrochim. Acta Part B 1998, 53, 1057–1062.
  • Ni, Z-m.; Zhang, D-q Influence of Sample Deposition and Coating with Zr and Pd on the Atomization Kinetics of Ge in GFAAS. Spectrochim. Acta Part B 1995, 50, 1779–1786.
  • Tsalev, D. L.; D'Ulivo, A.; Lampugnani, L.; di Marco, M.; Zamboni, R. Thermally Stabilized Iridium on an Integrated, Carbide-Coated Platform as a Permanent Modifier for Hydride-Forming Elements in Electrothermal Atomic Absorption Spectrometry. Part 2. Hydride Generation and Collection, and Behaviour of Some Organoelement Species. J. Anal. At. Spectrom. 1996, 11, 979–988. doi: 10.100/978-947-007-0253-0-11.
  • Martínez, D.; Grindlay, G.; Gras, L.; Mora, J. Determination of Cadmium and lead in wine Samples by Means of Dispersive Liquid–Liquid Microextraction Coupled to Electrothermal Atomic Absorption Spectrometry. J. Food Compos. Anal. 2018, 67, 178–183. doi: 10.1016/j.jfca.2018.01.013.
  • Paixão, L. B.; Brandão, G. C.; Araujo, R. G. O.; Korn, M. G. A. Assessment of Cadmium and Lead in Commercial Coconut Water and Industrialized Coconut Milk Employing HR-CS GF AAS. Food Chem. 2019, 284, 259–263. doi: 10.1016/j.foodchem.2018.12.116.
  • Gómez-Nieto, B.; Motyzhov, V.; Gismera, M. J.; Procopio, J. R.; Sevilla, M. T. Fast-Sequential Determination of Cadmium and Copper in Milk Powder and Infant Formula by Direct Solid Sampling High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2020, 159, 105335. doi: 10.1016/j.microc.2020.105335.
  • Cadorim, H. R.; Schneider, M.; Hinz, J.; Luvizon, F.; Dias, A. N.; Carasek, E.; Welz, B. Effective and High-Throughput Analytical Methodology for the Determination of Lead and Cadmium in Water Samples by Disposable Pipette Extraction Coupled with High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry (HR-CS GF AAS). Anal. Lett. 2019, 52, 2133–2149. doi: 10.1080/00032719.2019.1596117.
  • Almeida, J. S.; Souza, O. C. C. O.; Teixeira, L. S. G. Determination of Pb, Cu and Fe in Ethanol Fuel Samples by High-Resolution Continuum Source Electrothermal Atomic Absorption Spectrometry by Exploring a Combination of Sequential and Simultaneous Strategies. Microchem. J. 2018, 137, 22–26. doi: 10.1016/j.microc.2017.09.012.
  • Ataee, M.; Ahmadi-Jouibari, T.; Fattahi, N. Application of Microwave-Assisted Dispersive Liquid–Liquid Microextraction and Graphite Furnace Atomic Absorption Spectrometry for Ultra-Trace Determination of Lead and Cadmium in Cereals and Agricultural Products. Int. J. Environ. Anal. Chem. 2016, 96, 271–283. doi: 10.1080/03067319.2016.1150464.
  • Borges, A. R.; Bazanella, D. N.; Duarte, Á. T.; Zmozinski, A. V.; Vale, M. G. R.; Welz, B. Development of a Method for the Sequential Determination of Cadmium and Chromium from the Same Sample Aliquot of Yerba Mate Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2017, 130, 116–121. Doi101016/j.microc.2016.08.010.
  • Dos Passos, A. S.; Tonon, G. F.; Nakadi, F. V.; Mangrich, A. S.; De Andrade, J. B.; Welz, B.; Vale, M. G. R. Determination of Cr, Cu and Pb in Industrial Waste of Oil Shale Using Highresolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Anal. Methods 2018, 10, 3645–3653. doi: 10.1039/C8AY01270A.
  • Dos Santos, J. M.; Quináia, S. P.; Felsner, M. L. Fast and Direct Analysis of Cr, Cd and Pb in Brown Sugar by GFAAS. Food Chem. 2018, 260, 19–26. doi: 10.1016/j.foodchem.2018.03.106.
  • Leao, D. J.; Junior, M. M. S.; Brandao, G. C.; Ferreira, S. L. C. Simultaneous Determination of Cadmium, Iron and Tin in Canned Foods Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Talanta 2016, 153, 45–50. doi: 10.1016/j.talanta.2016.02.023.
  • De Oliveira Lopes, A. M.; Chellini, P. R.; De Sousa, R. A. Cadmium and Chromium Determination in Herbal Tinctures Employing Direct Analysis by Graphite Furnace Atomic Absorption Spectrometry (GF-AAS). Anal. Lett. 2020, 53, 2096–2110. doi: 10.1080/00032719.2020.1729169.
  • Mihucz, V. G.; Bencs, L.; Koncz, K.; Tatár, E.; Weiszburg, T.; Záray, G. Fast Arsenic Speciation in Water by on-Site Solid Phase Extraction and High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B: At. Spectrosc. 2017, 128, 30–35. doi: 10.1016/j.sab.2016.12.010.
  • Mollo, A.; Sixto, A.; Falchi, L.; Medina, M.; Knochen, M. Zinc Determination in Tannat Wine by Direct Injection onto Graphite Tube: Electrothermal AAS as an Alternative to Flame AAS. Microchem. J. 2017, 135, 239–244. doi: 10.1016/j.microc.2017.09.008.
  • Naeemullah, N.; Tuzen, M.; Kazi, T. G.; Citak, D. A New Green Switchable Hydrophobic–Hydrophilic Transition Dispersive Solid Liquid Microextraction of Selenium in Water Samples. Anal. Methods 2016, 8, 2756–2763. doi: 10.1039/C6AY00278A.
  • Oreste, E. Q.; De Souza, A. O.; Pereira, C. C.; Bonemann, D. H.; Vieira, M. A.; Ribeiro, A. S. Evaluation of Sample Preparation Methods for the Determination of Cd, Cr and Pb in Ceramic Tableware by Graphite Furnace Atomic Absorption Spectrometry. Anal. Lett. 2020, 53, 436–458. doi: 10.1080/00032719.2019.1655759.
  • Pozzatti, M.; Borges, A. R.; Dessuy, M. B.; Vale, M. G. R.; Welz, B. Determination of Cadmium, Chromium and Copper in Vegetables of the Solanaceae Family Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Anal. Methods 2017, 9, 329–337. doi: 10.1039/C6AY02594C.
  • Schneider, M.; Pereira, É. R.; Castilho, IN.; Carasek, E.; Welz, B.; Gonzaga Martens, I. B. A Simple Sample Preparation Procedure for the Fast Screening of Selenium Species in Soil Samples Using Alkaline Extraction and Hydride-Generation Graphite Furnace Atomic Absorption Spectrometry. Microchem. J. 2016, 125, 50–55. doi: 10.1016/J.Microc.2015.10.018.
  • Schneider, M.; Pereira, É. R.; De Quadros, D. P.; Welz, B.; Carasek, E.; De Andrade, J. B.; Del Campo Menoyo, J.; Feldmann, J. Investigation of Chemical Modifiers for the Determination of Cadmium and Chromium in Fish Oil and Lipoid Matrices Using HRCS GF AAS and a Simple ‘Dilute-and-Shoot’ Approach. Microchem. J. 2017, 133, 175–181. doi: 10.1016/j.microc.2017.03.038.
  • Schneider, M.; Cadorim, H. R.; Welz, B.; Carasek, E.; Feldmann, J. Determination of Arsenic in Agricultural Soil Samples Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Solid Sample Analysis. Talanta 2018, 188, 722–728. doi: 10.1016/j.talanta.2018.06.052.
  • Shaltout, A. A.; Bouslimi, J.; Besbes, H. The Challenges of Se Quantification in Bean Samples Using Line and Continuum Sources Atomic Absorption Spectrometry. Food Chem. 2020, 328, 127124. doi: 10.1016/j.foodchem.2020.127124.
  • Stevens, B. J.; Hare, D. J.; Volitakis, I.; Cherny, R. A.; Roberts, B. R. Direct Determination of Zinc in Plasma by Graphite Furnace Atomic Absorption Spectrometry Using Palladium/Magnesium and EDTA Matrix Modification with High Temperature Pyrolysis. J. Anal. At. Spectrom. 2017, 32, 843–847. doi: 10.1039/c7ja00033b.
  • Thongsaw, A.; Chaiyasith, W. C.; Sananmuang, R.; Ross, G. M.; Ampiah-Bonney, R. J. Determination of Cadmium in Herbs by SFODME with ETAAS Detection. Food Chem. 2017, 219, 453–458. doi: 10.1016/j.foodchem.2016.09.177.
  • Tinas, H.; Özbek, N.; Akman, S. Determination of Lead in Flour Samples Directly by Solid Sampling High Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. Spectrochim. Acta Part B: At. Spectrosc. 2018, 140, 54–64. doi: 10.1016/j.sab.2017.12.002.
  • Atique Ullah, A. K. M.; Maksud, M. A.; Khan, S. R.; Lutfa, L. N.; Quraishi, S. B. Development and Validation of a GF-AAS Method and Its Application for the Trace Level Determination of Pb, Cd, and Cr in Fish Feed Samples Commonly Used in the Hatcheries of Bangladesh. J. Anal. Sci. Technol. 2017, 8, 15. doi. 10.1186/s40543-017-0124-y.
  • Valasques, G. S.; Dos Santos, A. M. P.; De Souza, V. S.; Teixeira, L. S. G.; Alves, J. P.; De Jesus Santos, M.; Dos Santos, W. P.; Bezerra, M. A. Multivariate Optimization for the Determination of Cadmium and Lead in Crude Palm Oil by Graphite Furnace Atomic Absorption Spectrometry after Extraction Induced by Emulsion Breaking. Microchem. J. 2020, 153, 104401. doi: 10.1016/j.microc.2019.104401.
  • Nova, D. G. V.; Robaina, N. F.; Do Amaral, K. D.; Cassella, R. J. Cadmium(II) Determination in Production Waters from Petroleum Exploration after Its Separation from the Highly Saline Matrix Mediated by a Semipermeable Membrane Device. Microchem. J. 2020, 152, 104310. doi: 10.1016/j.microc.2019.104310.
  • Zhang, Y.; Fang, L.; Wang, L. Speciation of Arsenic in Drinking Water by Dispersive Liquid-Liquid Microextraction, Graphite Furnace Atomic Absorption Spectrometry, and Orthogonal Array Design. Anal. Lett. 2017, 50, 853–865. doi: 10.1080/00032719.2016.1200593.
  • Zhong, W.-S.; Ren, T.; Zhao, L.-J. Determination of Pb (Lead), Cd (Cadmium), Cr (Chromium), Cu (Copper), and Ni (Nickel) in Chinese Tea with High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry. J. Food Drug Anal. 2015, 24, 46–55. doi: 10.1016/j.jfda.2015.04.010.
  • Zmozinski, A. V.; Pretto, T.; Borges, A. R.; Duarte, Á. T.; Vale, M. G. R. Determination of Pb and Cr in Sunscreen Samples by High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry and Direct Analysis. Microchem. J. 2016, 128, 89–94. doi: 10.1016/J.MICROC.2016.03.020.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.